[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08241712A - Alkaline storage battery and its manufacture - Google Patents

Alkaline storage battery and its manufacture

Info

Publication number
JPH08241712A
JPH08241712A JP7046962A JP4696295A JPH08241712A JP H08241712 A JPH08241712 A JP H08241712A JP 7046962 A JP7046962 A JP 7046962A JP 4696295 A JP4696295 A JP 4696295A JP H08241712 A JPH08241712 A JP H08241712A
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
alloy
alkaline
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7046962A
Other languages
Japanese (ja)
Inventor
Takashi Ebihara
孝 海老原
Yuko Omura
有功 大村
Koji Yuasa
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7046962A priority Critical patent/JPH08241712A/en
Publication of JPH08241712A publication Critical patent/JPH08241712A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide an alkaline storage battery having good conservative characteristic by use of a hydrogen storage alloy negative electrode having a relatively small Co quantity contained in the alloy is used. CONSTITUTION: In an alkaline storage battery consisting of a positive electrode, a negative electrode containing a hydrogen storage alloy as main constituting material, a separator, and an alkaline electrolyte, a hydrogen storage alloy negative electrode alloy is dipped in an alkaline aqueous solution having cobalt element dissolved therein in the state of powder or electrode plate at the formation of the hydrogen storage alloy negative electrode. Thus, an alkaline storage battery in which the eluted concentration of Mn per appearant surface area of the negative electrode is less than 0.2wt.%/m<2> when the negative electrode is dipped in 200ml of a caustic potash aqueous solution with a specific gravity of 1.30 and at 80 deg.C four 36 minutes is constituted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気化学的に水素の吸蔵
放出反応が可能な水素吸蔵合金を負極に用いたアルカリ
蓄電池およびその製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as a negative electrode and a method for producing the same.

【0002】[0002]

【従来の技術】活物質である水素を多量に吸蔵・放出し
うる水素吸蔵合金を電極材料とするニッケル・水素蓄電
池は、ニッケル・カドミウム蓄電池に比べエネルギー密
度が高く、また、同等な信頼性を有することから近年ポ
ータブル機器用電源としての用途が急速に増加してい
る。
2. Description of the Related Art A nickel-hydrogen storage battery using a hydrogen storage alloy that can store and release a large amount of hydrogen, which is an active material, as an electrode material has a higher energy density than a nickel-cadmium storage battery and has the same reliability. In recent years, the use as a power source for portable devices has rapidly increased because of its possession.

【0003】ニッケル・水素蓄電池の負極電極材料とし
てはMmNi5 (Mmは希土類元素の混合物)のNiの
部分をCu、Co、Mn、Fe、Alなどの金属により
置換したものが提案されてきた。これらの金属の中でM
nは少量で水素吸蔵・放出時の平衡圧を低下させること
が可能であり、重要な役割を担っている。しかし、その
反面Mnは他の金属に比べ蒸気圧が高いため、合金溶解
中に蒸発することにより合金の表面付近に偏析するた
め、Mnを含む場合は均一な合金を形成しにくい。この
ような均質性の良好でない水素吸蔵合金を用いた負極
は、アルカリ電解液中で合金化されていない金属が溶出
しやすく、合金容量や充放電反応速度が低下しやすい。
Mn、Alや希土類元素などのアルカリ中で溶解しやす
い金属は酸化物もしくは水酸化物として析出するものも
あり、これらの微細な析出物の多くは負極やセパレータ
に付着する。この付着物が例えば、MnO2 のように導
電性を持たない場合は、電池の内部抵抗の上昇を引き起
こすことにより放電容量を低下させ、逆に導電性を持っ
た物質がセパレータに析出した場合には、正極−負極間
の短絡の原因となる。そのため、このような負極を用い
たアルカリ蓄電池は保存特性に難点がある。また、この
現象は特に高温になると顕著になる。
As a negative electrode material for nickel-hydrogen storage batteries, there has been proposed one in which the Ni portion of MmNi 5 (Mm is a mixture of rare earth elements) is replaced with a metal such as Cu, Co, Mn, Fe or Al. Among these metals, M
A small amount of n can lower the equilibrium pressure at the time of hydrogen absorption and desorption, and plays an important role. On the other hand, however, Mn has a higher vapor pressure than other metals, and evaporates during melting of the alloy to segregate near the surface of the alloy. Therefore, when Mn is contained, it is difficult to form a uniform alloy. In the negative electrode using such a hydrogen storage alloy having poor homogeneity, unalloyed metal is likely to be eluted in the alkaline electrolyte, and the alloy capacity and charge / discharge reaction rate are likely to decrease.
Some metals such as Mn, Al and rare earth elements which are easily dissolved in alkali are precipitated as oxides or hydroxides, and most of these fine precipitates adhere to the negative electrode and the separator. For example, when the deposit has no conductivity like MnO 2 , the discharge capacity is lowered by causing an increase in internal resistance of the battery, and conversely, when a substance having conductivity is deposited on the separator. Causes a short circuit between the positive electrode and the negative electrode. Therefore, the alkaline storage battery using such a negative electrode has a problem in storage characteristics. Moreover, this phenomenon becomes remarkable especially at high temperatures.

【0004】上記の欠点を克服するために合金中にCo
が添加されている。電池内において水素吸蔵合金中のC
oはコバルト錯イオンの形でアルカリ電解液中に溶解
し、充電時には再び金属にまで還元されるため、合金粒
子間の導電性ネットワークとして働く。また、合金中の
Co含有量が多い程水素吸蔵合金の腐食が抑制される。
したがって、従来から水素吸蔵合金組成中のNiの一部
をCoで置換することにより、合金中のMnなどの可溶
性成分の溶出、酸化を抑制し、電池特性の安定化が図ら
れてきた。しかしながら、合金のNiからCoへの置換
は水素吸蔵合金の容量密度を低下させるとともに放電特
性をも低下させる傾向があり、また、Coは高価である
ため置換量はできる限り少ないほうが好ましい。
In order to overcome the above drawbacks, Co
Has been added. C in the hydrogen storage alloy in the battery
Since o dissolves in the alkaline electrolyte in the form of cobalt complex ion and is reduced to a metal again during charging, it functions as a conductive network between alloy particles. Further, the higher the Co content in the alloy, the more the corrosion of the hydrogen storage alloy is suppressed.
Therefore, conventionally, by substituting a part of Ni in the hydrogen storage alloy composition with Co, elution and oxidation of soluble components such as Mn in the alloy have been suppressed, and the battery characteristics have been stabilized. However, the replacement of the alloy with Ni by Co tends to lower the capacity density of the hydrogen storage alloy and also lower the discharge characteristics, and since Co is expensive, it is preferable that the replacement amount be as small as possible.

【0005】水素吸蔵合金の溶解・析出の問題をCo置
換以外の方法で解決するために、特開昭61−6406
9号では水素吸蔵合金の表面を耐食性を有するNi金属
で被覆することが提案されている。また、特開昭63−
175339号では合金を高温のアルカリ水溶液中に浸
漬させ、合金表面に酸化膜を形成することにより、耐食
性を向上させることが提案されている。
In order to solve the problem of dissolution / precipitation of hydrogen storage alloys by a method other than Co substitution, JP-A-61-6406
No. 9 proposes coating the surface of a hydrogen storage alloy with Ni metal having corrosion resistance. In addition, JP-A-63-
In 175339, it is proposed that the alloy is immersed in a high temperature alkaline aqueous solution to form an oxide film on the surface of the alloy to improve the corrosion resistance.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、水素吸
蔵合金の表面にNiなどの無電解めっきを施す場合、耐
食性を向上させるには多量のめっきを施す必要があり、
それに伴い水素吸蔵合金以外の物質が占める割合が大き
くなるため、ニッケル・水素蓄電池の長所のひとつであ
る、高エネルギー密度を阻害することとなる。また、処
理自体が非常に煩雑で手間がかかること、多量の合金を
一度に処理するのが困難という問題点がある。
However, when electroless plating of Ni or the like is applied to the surface of the hydrogen storage alloy, a large amount of plating must be applied to improve the corrosion resistance.
As a result, the proportion of substances other than hydrogen storage alloys increases, which impedes the high energy density, which is one of the advantages of nickel-hydrogen storage batteries. Further, the treatment itself is very complicated and time-consuming, and it is difficult to treat a large amount of alloy at once.

【0007】次の単なるアルカリ水溶液への浸漬処理
は、電解液中で不安定な溶出成分を除去する効果ととも
に、溶解したCo成分を再析出させることにより合金の
耐食性を向上させているため、Co含有量の多い合金に
おいては有効であるが、Co量が比較的少ない合金にお
いては十分な効果をもっていなかった。
The following simple immersion treatment in an alkaline aqueous solution has the effect of removing the unstable leaching component in the electrolytic solution and improves the corrosion resistance of the alloy by reprecipitating the dissolved Co component. It was effective in alloys with high content, but did not have sufficient effect in alloys with relatively low Co content.

【0008】本発明は上記従来の問題点を解決するもの
で、合金中に含まれるCo量が比較的少ない水素吸蔵合
金負極を用いても、保存時の内部抵抗が上昇し難く保存
特性が良好なアルカリ蓄電池を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems. Even when a hydrogen storage alloy negative electrode containing a relatively small amount of Co contained in the alloy is used, the internal resistance during storage is unlikely to rise and the storage characteristics are good. It is intended to provide a stable alkaline storage battery.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明のアルカリ蓄電池は、金属酸化物を主たる構成
材料とする正極と、活物質である水素を電気化学的に吸
蔵・放出することが可能な水素吸蔵合金を主たる構成材
料とする負極と、アルカリ電解液と、セパレータとから
なり、前記負極は80℃、比重1.30の苛性カリ水溶
液200mlに30分間浸漬した条件において、負極の
見かけ表面積当たりのMnの溶出濃度が0.2重量%/
2 以下であることを特徴とする。
In order to solve this problem, the alkaline storage battery of the present invention has a positive electrode containing a metal oxide as a main constituent material and an active material, hydrogen, which is occluded and released electrochemically. Of a negative electrode containing a hydrogen storage alloy as a main constituent material, an alkaline electrolyte, and a separator. The negative electrode is apparently immersed in 200 ml of a caustic potash aqueous solution having a specific gravity of 1.30 at 80 ° C. for 30 minutes. Elution concentration of Mn per surface area is 0.2% by weight /
It is characterized by being m 2 or less.

【0010】また、本発明のアルカリ蓄電池の製造法
は、前記アルカリ蓄電池を得るために、水素吸蔵合金負
極の構成に際し、水素吸蔵合金を粉末状態、もしくは負
極板として形成した状態でコバルト元素を溶解したアル
カリ水溶液中に浸漬する工程を含むことを特徴とする。
Further, in the method for producing an alkaline storage battery of the present invention, in order to obtain the alkaline storage battery, when forming the hydrogen storage alloy negative electrode, the cobalt element is dissolved in a powder state of the hydrogen storage alloy or in a state of being formed as a negative electrode plate. It is characterized by including a step of immersing in the alkaline aqueous solution.

【0011】[0011]

【作用】上記構成によって、Co含有量が比較的少ない
水素吸蔵合金を用いても、高温のアルカリ処理水溶液中
に浸漬することにより、電解液中で不安定な溶出成分を
除去し、さらに処理水溶液中のCoイオンが水素吸蔵合
金表面に耐食性に優れるコバルト酸化物として析出する
ことで、Mnなどのアルカリ電解液中での溶出を抑制
し、保存時に電池の内部抵抗が上昇し難く、保存特性に
優れたアルカリ蓄電池を提供することが可能となる。
With the above structure, even if a hydrogen storage alloy having a relatively low Co content is used, it is immersed in a high-temperature alkaline treatment aqueous solution to remove unstable leaching components in the electrolytic solution, and to further treat the aqueous solution. By depositing Co ions in the hydrogen storage alloy surface as cobalt oxide, which has excellent corrosion resistance, the elution of Mn and other alkaline electrolytes is suppressed, and the internal resistance of the battery does not rise easily during storage, which improves storage characteristics. It is possible to provide an excellent alkaline storage battery.

【0012】[0012]

【実施例】【Example】

(実施例1)本発明の詳細をニッケル・水素蓄電池を例
にとり説明する。
(Example 1) The details of the present invention will be described by taking a nickel-hydrogen storage battery as an example.

【0013】Co含有量の少ない合金としてMmNi
4.1 Mn0.4 Al0.3 Co0.2 の組成式を有する合金を
作成した。
As an alloy having a low Co content, MmNi
An alloy having a composition formula of 4.1 Mn 0.4 Al 0.3 Co 0.2 was prepared.

【0014】希土類金属の混合物であるMm(ミッシュ
メタル)とNi、Mn、Al、Coの各試料を前記の組
成比になるように秤量して混合した。この試料をアーク
溶解炉に入れて10-4〜10-5torrまで真空状態に
した後、アルゴンガス雰囲気中でアーク放電し、過熱溶
解した後冷却して合金を作成した。この合金の均質性を
向上するために、1050℃のアルゴンガス雰囲気下に
おいて6時間熱処理を行い、次に、この合金を粗粉砕
後、ボールミルで粉砕し平均粒径22μmの水素吸蔵合
金粉末aを得た。
Mm (Misch metal), which is a mixture of rare earth metals, and Ni, Mn, Al, and Co samples were weighed and mixed so as to have the above composition ratio. This sample was placed in an arc melting furnace and evacuated to 10 -4 to 10 -5 torr, then arc-discharged in an argon gas atmosphere, overheated and melted, and then cooled to prepare an alloy. In order to improve the homogeneity of this alloy, heat treatment was performed for 6 hours in an atmosphere of argon gas at 1050 ° C. Then, this alloy was roughly crushed and then crushed by a ball mill to obtain a hydrogen storage alloy powder a having an average particle diameter of 22 μm. Obtained.

【0015】この水素吸蔵合金粉末a100gに対し
0.5gのCo量になるように、あらかじめ水酸化コバ
ルトを溶解させた、80℃、比重1.30苛性カリ水溶
液中で60分間攪拌処理(以下「Coアルカリ処理」と
称す)した後、水洗、乾燥した水素吸蔵合金10gを、
ポリビニルアルコール5重量%水溶液でペースト状に
し、発泡ニッケル多孔体に充填し、乾燥、加圧して、幅
35mm、長さ145mm、厚さ0.4mmの水素吸蔵
合金負極を得た。
Stirring treatment was carried out for 60 minutes in an aqueous solution of caustic potash at 80 ° C. and a specific gravity of 1.30 in which cobalt hydroxide was previously dissolved so that the amount of Co was 0.5 g per 100 g of this hydrogen storage alloy powder a (hereinafter referred to as “Co 10 g of hydrogen storage alloy that has been washed with water and dried,
A 5% by weight aqueous solution of polyvinyl alcohol was used to form a paste, the foamed nickel porous body was filled, dried and pressed to obtain a hydrogen storage alloy negative electrode having a width of 35 mm, a length of 145 mm and a thickness of 0.4 mm.

【0016】次に、酸化ニッケル正極として公知の方法
で得られた発泡式ニッケル正極を用い、セパレータには
ポリプロピレン不織布をスルホン化処理したスルホン化
ポリプロピレン不織布を、電解液として水酸化リチウム
を40g/l溶解した比重1.30の苛性カリ水溶液を
使用し、前記負極と組合せ、公称容量1500mAhの
4/5Aサイズの密閉型ニッケル・水素蓄電池を構成し
た。この電池を本発明による実施例Aとする。
Next, a foamed nickel positive electrode obtained by a known method was used as a nickel oxide positive electrode, a sulfonated polypropylene nonwoven fabric obtained by subjecting a polypropylene nonwoven fabric to sulfonation treatment was used as a separator, and lithium hydroxide was used as an electrolytic solution at 40 g / l. A 4/5 A size sealed nickel-hydrogen storage battery having a nominal capacity of 1500 mAh was constructed by using a dissolved caustic potash aqueous solution having a specific gravity of 1.30 and combining with the negative electrode. This battery is designated as Example A according to the present invention.

【0017】比較のため、前記水素吸蔵合金粉末aに実
施例AのCoアルカリ処理に代わり、水素吸蔵合金粉末
表面に厚さ1μm程度の湿式無電解液Niめっきを施し
た水素吸蔵合金電極を用いて、実施例Aと同様にして構
成した電池を比較例Bとした。同様にCoアルカリ処理
に代わり、80℃、比重1.30苛性カリ水溶液中で6
0分間攪拌処理(以下「アルカリ処理」と称す)した水
素吸蔵合金電極を用いた電池を比較例C、処理を行わな
かった電池を比較例Dとした。
For comparison, the hydrogen storage alloy powder a was replaced with the Co alkali treatment of Example A, and a hydrogen storage alloy electrode having a wet electroless solution Ni plating of about 1 μm thick was used on the surface of the hydrogen storage alloy powder. A battery configured in the same manner as in Example A was used as Comparative Example B. Similarly, instead of the Co alkali treatment, the specific gravity is 1.30 in a caustic potash aqueous solution of 1.30.
A battery using a hydrogen storage alloy electrode that had been agitated for 0 minutes (hereinafter referred to as “alkali treatment”) was designated as Comparative Example C, and a battery that was not treated was designated as Comparative Example D.

【0018】次に、Co含有量の多い水素吸蔵合金とし
て、組成式MmNi3.5 Mn0.4 Al0.3 Co0.8 の水
素吸蔵合金を作成した。所望の組成比になるように混合
した試料を、前記水素吸蔵合金粉末aと同じ製法で作成
し、水素吸蔵合金粉末bとした。
Next, as many hydrogen storage alloys Co content, creating the hydrogen storage alloy having the composition formula MmNi 3.5 Mn 0.4 Al 0.3 Co 0.8 . A sample mixed so as to have a desired composition ratio was prepared by the same manufacturing method as the hydrogen storage alloy powder a to obtain a hydrogen storage alloy powder b.

【0019】この水素吸蔵合金粉末bを用いて実施例A
と同様のCoアルカリ処理を施し構成した電池を本発明
による実施例E、比較例Bと同様な無電解Niめっきを
施した電池を比較例F、比較例Cと同様なアルカリ処理
を施した電池を比較例G、比較例Dと同様に処理を行わ
ない電池を比較例Hとした。
Example A using this hydrogen storage alloy powder b
A battery treated with the same alkali treatment as Co. was used in Example E according to the present invention, and a battery subjected to the same electroless Ni plating as Comparative Example B was treated with the same alkali treatment as Comparative Example F and Comparative Example C. In Comparative Example G and Comparative Example D, a battery which was not treated was designated as Comparative Example H.

【0020】以上の方法により得られた実施例A,E、
比較例B,C,D,F,G,Hの電池を20℃で充電を
0.1CmAで正極容量の150%まで、放電を0.2
CmAで終止電圧0.8Vまでの充放電を3サイクル行
った。なお、この3サイクル目の放電容量を電池容量と
した。
Examples A, E, obtained by the above method
The batteries of Comparative Examples B, C, D, F, G and H were charged at 20 ° C. to 0.1 CmA to 150% of the positive electrode capacity and discharged to 0.2%.
Charging / discharging to a final voltage of 0.8 V with CmA was performed for 3 cycles. The discharge capacity at the third cycle was defined as the battery capacity.

【0021】この電池A〜Hの保存特性を調べるため、
放電状態の電池を65℃の環境下で保存し電池の内部抵
抗の変化を比較した。また、保存開始から30日が経過
した時点で、20℃の温度下において0.1CmAで1
50%まで充電し、終止電圧0.8Vまで放電する充放
電サイクルを行い、保存前の容量に対する容量回復率を
測定した。
In order to investigate the storage characteristics of the batteries A to H,
The discharged battery was stored in an environment of 65 ° C. and the changes in the internal resistance of the battery were compared. In addition, when 30 days have passed since the start of storage, at 1C at 0.1 CmA at a temperature of 20 ° C.
A charge / discharge cycle of charging to 50% and discharging to a final voltage of 0.8 V was performed, and the capacity recovery rate with respect to the capacity before storage was measured.

【0022】また本発明者らは数々の検討の結果、本実
施例のいずれの合金組成においても保存前後の電池の内
部抵抗上昇および容量回復率と、水素吸蔵合金負極から
のMnの溶出濃度との間には相関性があることを新たに
見出した。
As a result of various investigations by the present inventors, the increase in internal resistance and capacity recovery rate of the battery before and after storage, and the elution concentration of Mn from the hydrogen storage alloy negative electrode were observed in any alloy composition of this example. It was newly found that there is a correlation between the two.

【0023】Mn溶出濃度は以下の方法で測定した。ま
ず、構成後の実施例A,E、比較例B,C,D,F,
G,Hの電池をそれぞれ分解し、取り出した水素吸蔵合
金負極を所定の大きさに切断した。この極板を80℃に
保った比重1.30の苛性カリ水溶液200mlに入れ
30分間浸漬した。その後、シリンジで溶液を3.0m
l取り、シリンジフィルターにてろ過し、ろ液1mlを
ビーカーに採取した。このとき、ろ液中のイオンの析出
を防ぐため、ろ液を受けるサンプル瓶はあらかじめ80
℃に保温しておいた。このろ液に塩酸を加え酸性にした
後、10mlの純水を加えホットプレート上で加熱、放
冷後、50mlに定容した。このようにして得られた溶
液をICP発光分光法により定量し、水素吸蔵合金負極
の面積を用いて、負極の見かけ表面積当たりのMnの溶
出濃度を(数1)に示す計算式により算出した。
The Mn elution concentration was measured by the following method. First, Examples A and E after the configuration, Comparative Examples B, C, D, F,
Each of the G and H batteries was disassembled and the taken out hydrogen storage alloy negative electrode was cut into a predetermined size. This electrode plate was placed in 200 ml of a caustic potash aqueous solution having a specific gravity of 1.30 kept at 80 ° C. and immersed for 30 minutes. After that, add 3.0m of solution with a syringe.
l was collected and filtered with a syringe filter, and 1 ml of the filtrate was collected in a beaker. At this time, in order to prevent the precipitation of ions in the filtrate, the sample bottle that receives the filtrate should be
It was kept warm at ℃. Hydrochloric acid was added to the filtrate to acidify it, 10 ml of pure water was added, the mixture was heated on a hot plate, allowed to cool, and then adjusted to a constant volume of 50 ml. The solution thus obtained was quantified by ICP emission spectroscopy, and the elution concentration of Mn per apparent surface area of the negative electrode was calculated by the formula shown in (Equation 1) using the area of the negative electrode of the hydrogen storage alloy.

【0024】[0024]

【数1】 [Equation 1]

【0025】保存前後の電池内部抵抗上昇、容量回復率
およびMn溶出濃度の算出結果を(表1)に示す。
The calculation results of the increase in battery internal resistance before and after storage, the capacity recovery rate and the Mn elution concentration are shown in (Table 1).

【0026】[0026]

【表1】 [Table 1]

【0027】この結果より、水素吸蔵合金粉末a,bい
ずれの水素吸蔵合金においても、本発明によるCoアル
カリ処理を施した実施例AおよびEの電池は、他の処理
を施した電池や処理を行わなかった電池B〜DおよびF
〜Hに比べ内部抵抗の上昇が少なく、容量回復率も高い
ことから保存特性が向上していることが分かる。理由は
Mn溶出濃度の結果からも解るように、本発明による処
理により、まず水素吸蔵合金表面近傍のアルカリ電解液
中で不安定な溶出成分をあらかじめ溶出し、次に処理液
中のCoにより水素吸蔵合金表面が耐酸化性Co化合物
層で被覆されることで、電池内でMnなどのアルカリ電
解液中での溶出を抑制し、保存特性を悪化させるような
析出物の生成を抑制したためと考えられる。
From these results, the batteries of Examples A and E, which were subjected to the Co alkali treatment according to the present invention, were subjected to other treatments or treatments with any of the hydrogen storage alloy powders a and b. Batteries B to D and F not performed
It can be seen that the storage characteristics are improved because the increase in internal resistance is small and the capacity recovery rate is high as compared with the cases of ~ H. As can be understood from the result of the Mn elution concentration, the reason for the treatment according to the present invention is that the unstable elution component is first eluted in advance in the alkaline electrolyte near the surface of the hydrogen-absorbing alloy, and then Co in the treatment solution is used to generate hydrogen. It is considered that the surface of the storage alloy was coated with the oxidation resistant Co compound layer to suppress the elution of Mn and the like in the alkaline electrolyte in the battery and to suppress the formation of precipitates that deteriorate the storage characteristics. To be

【0028】無電解Niめっきやアルカリ処理も保存特
性は向上しているが、Coアルカリ処理がより効果的で
あった。無電解Niめっきも水素吸蔵合金表面に耐食性
を有する被膜が形成されるが、無電解Niめっきは通
常、酸性または弱酸性のめっき液への浸漬処理であるた
め、強アルカリ性である電解液中で不安定な溶出成分を
除去する効果がなかったためであると考えられる。一
方、アルカリ処理はCo含有量の違いによる差が大きい
ことから、Co含有量の比較的少ない水素吸蔵合金では
電解液中で不安定な溶出成分を除去する効果はあるが、
耐食性をもつ被膜の形成が不十分であったと考えられ
る。
Although the storage characteristics were improved by electroless Ni plating and alkali treatment, Co alkali treatment was more effective. Electroless Ni plating also forms a film having corrosion resistance on the surface of the hydrogen storage alloy, but since electroless Ni plating is usually a dipping treatment in an acidic or weakly acidic plating solution, it is used in a strongly alkaline electrolyte. It is considered that this was because there was no effect of removing the unstable eluted components. On the other hand, since the alkali treatment has a large difference due to the difference in Co content, a hydrogen storage alloy having a relatively small Co content has an effect of removing an unstable elution component in the electrolytic solution,
It is considered that the formation of a film having corrosion resistance was insufficient.

【0029】実施例Aの電池の保存特性は、比較的Co
含有量の多い水素吸蔵合金粉末bを用いた実施例Eの電
池と同等であった。すなわち本発明による処理を施すこ
とにより、従来保存特性があまり良好でなかったCo含
有量の少ない合金において、特に効果的に保存特性を向
上させることが可能であることが確認された。
The storage characteristics of the battery of Example A was relatively Co
It was equivalent to the battery of Example E using the hydrogen storage alloy powder b having a large content. That is, it was confirmed that the treatment according to the present invention can improve the storage characteristics particularly effectively in the alloy having a small Co content, which has not been so good in the conventional storage characteristics.

【0030】図1に水素吸蔵合金負極からのMnの溶出
濃度と保存時の内部抵抗上昇および容量回復率の関係を
示す。本実施例のいずれの合金組成においても、水素吸
蔵合金負極からのMnの溶出量と、保存後の電池の内部
抵抗および容量回復率との間には相関性があり、水素吸
蔵合金負極からのMnの溶出が少ないほど保存時の内部
抵抗が上昇し難く、保存後の容量回復性が良好であっ
た。容量回復率が95%以上であれば実使用上問題ない
と推定されるため、Mnの溶出濃度は0.2重量%/m
2 以下が望ましい。
FIG. 1 shows the relationship between the elution concentration of Mn from the hydrogen storage alloy negative electrode and the increase in internal resistance during storage and the capacity recovery rate. In any alloy composition of this example, there is a correlation between the amount of Mn eluted from the hydrogen storage alloy negative electrode and the internal resistance and capacity recovery rate of the battery after storage. The smaller the elution of Mn, the less the internal resistance during storage was likely to rise, and the better the capacity recovery after storage was. If the capacity recovery rate is 95% or more, it is estimated that there is no problem in practical use, so the elution concentration of Mn is 0.2% by weight / m.
2 or less is desirable.

【0031】また、保存後の電池を分解してみたとこ
ろ、保存特性の良好でなかった電池では、Mnの水酸化
物と思われる多量の析出物がセパレータの孔を埋めるよ
うに析出しており、セパレータの電解液保液量も低下し
ていた。
When the battery after storage was disassembled, a large amount of precipitates, which are thought to be hydroxides of Mn, were deposited so as to fill the pores of the separator in the battery having poor storage characteristics. Also, the amount of the electrolytic solution held in the separator was reduced.

【0032】以上のことにより、保存特性には水素吸蔵
合金からアルカリ電解液へのMnの溶出が影響を及ぼし
ていることを確認した。
From the above, it was confirmed that the storage characteristics were affected by the elution of Mn from the hydrogen storage alloy into the alkaline electrolyte.

【0033】このような数々の検討の結果、十分満足さ
せるような保存特性を得るため、すなわち電池の内部抵
抗の上昇を抑制し優れた容量回復率を得るためには、水
素吸蔵合金負極を80℃、比重1.30の苛性カリ水溶
液200mlに30分間浸漬した場合のMnの溶出濃度
は0.2重量%/m2 以下であることが好ましいことを
見出した。
As a result of various examinations as described above, in order to obtain a sufficiently satisfactory storage characteristic, that is, in order to suppress an increase in internal resistance of the battery and to obtain an excellent capacity recovery rate, the hydrogen storage alloy negative electrode is set to 80%. It was found that the elution concentration of Mn when immersed in 200 ml of a caustic potash aqueous solution having a specific gravity of 1.30 at 30 ° C. for 30 minutes is preferably 0.2% by weight / m 2 or less.

【0034】なお、本実施例において水素吸蔵合金はM
mNi5 系を用いたがZrNi2 系などのMnを含む他
の合金系でも良く、正極はMnO2 などでも良い。
In this embodiment, the hydrogen storage alloy is M
Although the mNi 5 type is used, other alloy type containing Mn such as ZrNi 2 type may be used, and the positive electrode may be MnO 2 or the like.

【0035】また、本実施例では粉末の状態で処理した
ものを例にとったが、極板の状態で処理しても良い。し
かし、短時間の処理で効果を得るためには粉末状態での
処理が好ましい。保存特性を向上させるために水素吸蔵
合金表面に生成されるCo化合物は、少量薄膜であれば
どのような方法でも良い。また、Coと他の金属との複
合酸化物でも良いが、種々の金属元素の検討をしたとこ
ろ、本発明の処理により生成される耐酸化性Co化合物
層が最も良好な結果を示した。
Further, in the present embodiment, the one treated in the powder state is taken as an example, but the treatment may be carried out in the electrode plate state. However, the treatment in a powder state is preferable in order to obtain the effect by the treatment in a short time. The Co compound produced on the surface of the hydrogen storage alloy in order to improve the storage characteristics may be formed by any method as long as it is a thin film. Further, although a complex oxide of Co and another metal may be used, various metal elements have been investigated, and the oxidation resistant Co compound layer produced by the treatment of the present invention showed the best result.

【0036】[0036]

【発明の効果】以上のように本発明は、水素吸蔵合金を
粉末の状態もしくは極板の状態でコバルト元素を含む高
温のアルカリ水溶液中で処理することにより、Co含有
量が比較的少ない水素吸蔵合金を用いても、合金表面に
耐食性に優れるCo化合物層を形成させ、水素吸蔵合金
負極からのMnの溶出を抑制し、保存特性の良好な優れ
たアルカリ蓄電池を実現させるものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a hydrogen storage alloy having a relatively low Co content is treated by treating the hydrogen storage alloy in a powder state or an electrode plate state in a high temperature alkaline aqueous solution containing elemental cobalt. Even if an alloy is used, a Co compound layer having excellent corrosion resistance is formed on the surface of the alloy to suppress the elution of Mn from the hydrogen storage alloy negative electrode, thereby realizing an excellent alkaline storage battery having good storage characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】水素吸蔵合金負極からのMnの溶出量と保存後
の電池の内部抵抗および容量回復率の関係を示す図
FIG. 1 is a diagram showing the relationship between the amount of Mn eluted from a hydrogen storage alloy negative electrode and the internal resistance and capacity recovery rate of a battery after storage.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は80℃、比重1.30の苛性カリ水溶液200ml
に30分間浸漬した条件において、負極の見かけ表面積
当たりのMnの溶出濃度が0.2重量%/m2 以下であ
ることを特徴とするアルカリ蓄電池。
1. A positive electrode whose main constituent material is a metal oxide, a negative electrode whose main constituent material is a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, and the negative electrode is 80 ° C. and has a specific gravity of 1.30
The alkaline storage battery is characterized in that the elution concentration of Mn per apparent surface area of the negative electrode is 0.2% by weight / m 2 or less under the condition of being immersed in the solution for 30 minutes.
【請求項2】 金属酸化物を主たる構成材料とする正極
と、活物質である水素を電気化学的に吸蔵・放出するこ
とが可能な水素吸蔵合金を主たる構成材料とする負極
と、アルカリ電解液と、セパレータとからなり、前記負
極は80℃、比重1.30の苛性カリ水溶液200ml
に30分間浸漬した条件において、負極の見かけ表面積
当たりのMnの溶出濃度が0.2重量%/m2 以下であ
るアルカリ蓄電池の製造法であって、水素吸蔵合金負極
の構成に際し、水素吸蔵合金を粉末状態、もしくは負極
板として形成した状態でコバルト元素を溶解したアルカ
リ水溶液中に浸漬する工程を含むことを特徴とするアル
カリ蓄電池の製造法。
2. A positive electrode whose main constituent material is a metal oxide, a negative electrode whose main constituent material is a hydrogen storage alloy capable of electrochemically occluding and releasing hydrogen as an active material, and an alkaline electrolyte. And a separator, and the negative electrode is 80 ° C. and has a specific gravity of 1.30
A method for producing an alkaline storage battery, wherein the elution concentration of Mn per apparent surface area of the negative electrode is 0.2% by weight / m 2 or less under the condition of being immersed in the hydrogen storage alloy for 30 minutes. A method for manufacturing an alkaline storage battery, which comprises a step of immersing in a powder state or in a state of being formed as a negative electrode plate in an alkaline aqueous solution in which cobalt element is dissolved.
JP7046962A 1995-03-07 1995-03-07 Alkaline storage battery and its manufacture Pending JPH08241712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046962A JPH08241712A (en) 1995-03-07 1995-03-07 Alkaline storage battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046962A JPH08241712A (en) 1995-03-07 1995-03-07 Alkaline storage battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH08241712A true JPH08241712A (en) 1996-09-17

Family

ID=12761912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046962A Pending JPH08241712A (en) 1995-03-07 1995-03-07 Alkaline storage battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH08241712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777129B2 (en) 2000-04-27 2004-08-17 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777129B2 (en) 2000-04-27 2004-08-17 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery

Similar Documents

Publication Publication Date Title
JP4678130B2 (en) Sealed nickel metal hydride storage battery and its manufacturing method
JP3214341B2 (en) Manufacturing method of hydrogen storage alloy for batteries
JP3835993B2 (en) Electrode alloy powder and method for producing the same
JPH07326353A (en) Manufacture of hydrogen storage alloy electrode
KR100431101B1 (en) Electrode alloy powder and method of producing the same
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2975625B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH08241712A (en) Alkaline storage battery and its manufacture
JP3279994B2 (en) Hydrogen storage alloy powder and negative electrode for alkaline storage battery
JP4688986B2 (en) Surface treatment method of hydrogen storage alloy for battery materials
JP4894132B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and nickel metal hydride storage battery
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP4404447B2 (en) Method for producing alkaline storage battery
JPH0756802B2 (en) Manufacturing method of hydrogen storage electrode
JP2008269888A (en) Nickel-hydrogen storage battery
JP2002343349A (en) Hydrogen storage alloy electrode
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JPH10326613A (en) Electrode of hydrogen storage alloy
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH08333603A (en) Hydrogen storage alloy particle and its production
JPH1150263A (en) Production of stabilized hydrogen storage alloy
JP3317099B2 (en) Hydrogen storage alloy powder for alkaline storage battery, method for producing the same, and method for producing hydrogen storage electrode