JPH08245965A - Production of coke for blast furnace - Google Patents
Production of coke for blast furnaceInfo
- Publication number
- JPH08245965A JPH08245965A JP5260995A JP5260995A JPH08245965A JP H08245965 A JPH08245965 A JP H08245965A JP 5260995 A JP5260995 A JP 5260995A JP 5260995 A JP5260995 A JP 5260995A JP H08245965 A JPH08245965 A JP H08245965A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- coke
- carbonization chamber
- carbonization
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coke Industry (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高炉用コークス製造用原
料炭の炭種を拡大し、石炭資源の多様化への対応を図る
とともに、生産性の向上、コークス製造工程の経済性の
向上および設備コストの削減を図る高炉用コークスの製
造方法に関する。BACKGROUND OF THE INVENTION The present invention expands the types of coking coal for blast furnace coke production to cope with the diversification of coal resources, improve productivity, and improve economic efficiency of coke production process. The present invention relates to a method for manufacturing blast furnace coke for reducing equipment costs.
【0002】従来、高炉用コークスは例えば、図2に概
略を示すような構成を有する装置を用いて製造される。
まず、予め、粉砕され粒度調整された石炭をコークス炉
上にある石炭装入車10よりコークス炉の炭化室1に挿
入する。炭化室1に装入した石炭を乾留するために、炭
化室1に隣接した燃焼室2内で予熱された空気および貧
ガスまたは富ガスが燃焼される。この時の燃焼室2内の
ガス温度は、通常1,100〜1,350℃程度であ
る。上記炭化室1と燃焼室2とは珪石煉瓦製の炉壁で隔
てられており、炭化室に装入した石炭を乾留するための
熱量は珪石煉瓦の炉壁を通して燃焼室内から炭化室内の
石炭に伝えられる。炭化室1における乾留は、石炭が約
900℃以上加熱されるまで行われる。図中3は蓄熱
室、4は押出機、5は上昇管、6はドライメーンを示
す。Conventionally, a blast furnace coke is manufactured, for example, by using an apparatus having a structure as schematically shown in FIG.
First, coal that has been crushed and whose particle size has been adjusted in advance is inserted into the carbonization chamber 1 of the coke oven from the coal charging vehicle 10 on the coke oven. In order to carbonize the coal charged in the carbonization chamber 1, the preheated air and the lean gas or rich gas are burned in the combustion chamber 2 adjacent to the carbonization chamber 1. The gas temperature in the combustion chamber 2 at this time is usually about 1,100 to 1,350 ° C. The carbonization chamber 1 and the combustion chamber 2 are separated by a furnace wall made of silica brick, and the heat quantity for carbonizing the coal charged in the carbonization chamber is transferred from the combustion chamber to the coal in the carbonization chamber through the furnace wall of the silica stone brick. Reportedly. The carbonization in the carbonization chamber 1 is performed until the coal is heated to approximately 900 ° C. or higher. In the figure, 3 is a heat storage chamber, 4 is an extruder, 5 is an ascending pipe, and 6 is a dry main.
【0003】このような従来のコークス製造方法では室
温で石炭を装入するため、水分の蒸発温度(100℃)
までは、炭化室内に装入された石炭の温度は上昇しな
い。さらに石炭は熱伝導率が非常に小さいため、熱は炭
化室の両側壁から徐々に中心部に向かって伝熱し、熱分
解が起こる。そのため、炭化室の炉壁近傍と炉中心部と
では大きな温度差が生じており、石炭装入後、5〜6時
間を経過後、炉壁近傍の石炭が800〜1,000℃に
達しコークス化した状態にあっても、炭化室中心部では
未だ100℃で推移している。このように、コークス炉
の炭化室における石炭の昇温速度が2〜3℃/分と非常
に小さいため、乾留時間として14〜20時間程度の長
時間を要する。そこで、生産性が非常に低いとともに消
費エネルギーが大きいという問題点を有していた。さら
に、上記のように炉壁付近と炭化室中心部では昇温速度
および高温下におかれる時間が非常に異なっており、炭
化室中心部においては水分蒸発が充分に行われるまでに
要する時間が前記乾留時間の約1/2〜2/3を占め、
結果として炭化の炉幅方向の中央部において得られるコ
ークスは軟化溶融から再固化にかけて圧縮力を受けるこ
とが少ないためスポンジコークスになりやすく、この部
分のコークス強度は低いためコークス全体の強度が低下
する原因となっている。In such a conventional coke manufacturing method, since coal is charged at room temperature, the evaporation temperature of water (100 ° C.)
Until then, the temperature of the coal charged into the carbonization chamber does not rise. Furthermore, since coal has a very low thermal conductivity, heat is gradually transferred from the both side walls of the carbonization chamber toward the center, and thermal decomposition occurs. Therefore, a large temperature difference occurs between the furnace wall near the carbonization chamber and the furnace center, and 5 to 6 hours after the charging of coal, the coal near the furnace wall reaches 800 to 1,000 ° C. Even in the liquefied state, the temperature still remains at 100 ° C in the center of the carbonization chamber. As described above, the rate of temperature rise of coal in the carbonization chamber of the coke oven is as small as 2 to 3 ° C./minute, and therefore a long time of about 14 to 20 hours is required as the dry distillation time. Therefore, there is a problem that productivity is very low and energy consumption is large. Further, as described above, the temperature rise rate and the time of being placed under high temperature are very different in the vicinity of the furnace wall and in the central part of the carbonization chamber, and in the central part of the carbonization chamber, the time required for sufficient water evaporation to occur. Approximately 1/2 to 2/3 of the dry distillation time,
As a result, the coke obtained in the center of the carbonization furnace width direction is less likely to be subjected to compressive force from softening and melting to re-solidification, and is likely to become sponge coke. The coke strength in this part is low, and the strength of the entire coke is reduced. It is the cause.
【0004】さらに、このような従来法における高炉用
コークス製造方法では原料炭の選択において高炉用コー
クス品質の制約から強粘結炭が中心であり、炭種拡大の
柔軟性が欠けるものであった。非微粘結炭は粘結炭に比
べて安価であり、地球上の埋蔵量が非常に多く存在して
いるが、上記のような従来のコークス製造方法では粘結
炭に比べて粘結性の劣る非微粘結炭をコークス製造原料
として30wt%以上多量に配合するとコークス強度が
著しく低下するという欠点を有している。Further, in the conventional blast furnace coke manufacturing method as described above, in the selection of the coking coal, the strong coking coal is mainly used because of the restriction of the quality of the blast furnace coke, and the flexibility of expanding the coal type is lacking. . Although non-caking coal is cheaper than caking coal and has a large amount of earth reserves, conventional coke production methods such as those mentioned above are more caking than caking coal. If the non-lightly caking coal, which is inferior in composition, is blended in a large amount of 30 wt% or more as a raw material for producing coke, the coke strength is significantly lowered.
【0005】高炉用コークスの製造において乾留時間を
短縮する方法として、コークス製造用原料炭を事前に乾
留予熱してコークス炉に装入することにより、乾留時間
の短縮や装入密度の向上およびコークス品質の改善を可
能とするプロセスが開発されている。例えば原料炭を約
200℃に予熱した後コークス炉に装入して乾留する方
法としてプレカーボン法があり、その予熱方法とコーク
ス炉での乾留方法については例えば、コークスノート
(社団法人燃料協会1988年版)p.134等に発表
されている。しかし、プレカーボン法では石炭を予熱す
ることにより、コークス炉内における乾留速度の向上、
即ち、生産性の向上を目的としているが、石炭の予熱温
度は180〜230℃と低いため、コークスの生産性は
予熱工程を有しないプロセスに比べて約35%しか向上
しない。As a method for shortening the carbonization time in the production of blast furnace coke, the carbonization raw material coal is preheated by carbonization and charged into the coke oven to shorten the carbonization time, improve the charging density and improve the coke density. Processes have been developed to enable quality improvements. For example, there is a pre-carbon method as a method of preheating the raw coal to about 200 ° C. and then charging it into a coke oven for carbonization. For the preheating method and the carbonization method in the coke oven, for example, see Coke Note (Fuel Association of Japan 1988). Annual edition) p. It was announced in 134 etc. However, in the pre-carbon method, preheating the coal improves the carbonization rate in the coke oven,
That is, the purpose is to improve productivity, but since the preheating temperature of coal is as low as 180 to 230 ° C., the productivity of coke is improved by only about 35% as compared with the process having no preheating step.
【0006】コークスの生産性を大幅に向上させるとと
もに原料炭の多様化を図る方法として石炭を350℃〜
400℃まで予熱した後、コークス炉に装入する方法が
特願平05−267952号で提案されている。しか
し、この方法では乾留時における炭化室内の炉幅方向に
おける石炭乾留時の昇温速度に差があるため、全体的に
均質で強固なコークスを製造することが不可能である。As a method for greatly improving the productivity of coke and diversifying the raw coal, the temperature of coal at 350 ° C.
Japanese Patent Application No. 05-267952 proposes a method of charging the coke oven after preheating to 400 ° C. However, in this method, there is a difference in the temperature rising rate during coal carbonization in the furnace width direction in the carbonization chamber during carbonization, so it is impossible to produce coke that is homogeneous and strong overall.
【0007】そこで、石炭を予熱処理して石炭の粘結性
を向上させるとともに、炭化室内における石炭乾留時の
常温速度を大幅に増加させることによりコークス強度を
向上させ、非微粘結炭の多量使用および生産性の大幅な
向上を可能とする高炉用コークス製造方法の開発が必要
とされていた。Therefore, the coal is preheated to improve the caking property of the coal, and the coke strength is improved by greatly increasing the room temperature rate during the carbonization of the coal in the carbonization chamber. There was a need to develop a coke manufacturing process for blast furnaces that would enable significant improvements in use and productivity.
【0008】[0008]
【発明が解決しようとする課題】以上の様に、石炭を予
熱して乾留することにより生産性を向上させるととも
に、非微粘結炭を多量に使用して高強度のコークスを製
造する方法の開発が必要とされていた。As described above, a method of producing high strength coke by using pre-heated coal and carbonizing it to improve productivity and using a large amount of non-fine coking coal is proposed. Development was needed.
【0009】本発明は、高炉用コークス製造用原料炭と
して非微粘結炭の多量使用を可能にするとともに、生産
性を向上させる方法を提供することを目的とする。It is an object of the present invention to provide a method for increasing the productivity while enabling the use of a large amount of non-fine coking coal as a raw material coal for producing blast furnace coke.
【0010】[0010]
【課題を解決するための手段】本発明者らは、以上のよ
うな問題点を解決すべく、石炭が乾留工程で受ける熱的
条件を任意に設定してシミュレート実験ができる小型乾
留炉を用いて石炭が受ける熱的条件と石炭の乾留工程に
おける挙動および製品コークス品質の関係について詳細
な実験を行い、鋭意検討を重ねた結果、乾留時の石炭の
軟化開始温度以上から固化温度以下までの温度域(以
下、軟化溶融温度という)における昇温速度を増加させ
ることによりコークス強度を向上させることができる本
発明を完成するに到った。SUMMARY OF THE INVENTION In order to solve the above problems, the present inventors have set up a small carbonization furnace capable of performing a simulation experiment by arbitrarily setting the thermal conditions that coal receives in the carbonization process. Detailed experiments were conducted on the relationship between the thermal conditions that coal receives, the behavior of coal in the carbonization process, and the quality of product coke, and as a result of repeated intensive studies, the temperature from above the softening start temperature to below the solidification temperature of coal during carbonization was investigated. The present invention has been completed in which the coke strength can be improved by increasing the rate of temperature rise in the temperature range (hereinafter referred to as the softening and melting temperature).
【0011】すなわち、本発明が要旨とするところは、
粘結炭を40〜100wt%含み、残部が非微粘結炭か
らなる装入炭を乾留して高炉用コークスを製造する方法
において、装入炭を250〜350℃まで予熱後、炭化
室へ挿入して乾留する方法において、運転中に測定した
コークス炉燃焼室内の雰囲気ガス温度Tfおよび炭化室
上部のガス温度Tgの差により、前記炭化室内の微小空
間におけるガス放出熱量Qgを算出し、この値に基づい
て該炭化室内の微小空間における装入炭の吸熱量Qcを
算出して、炭化室内における装入炭の昇温速度HRを算
出し、所定のチェック時間以上の間、装入炭の昇温速度
が5℃/分未満であるとき、燃焼室に吹き込む燃焼ガス
流量により装入炭の昇温速度を5〜30℃/分に調節す
ることを特徴とする高炉用コークスの製造方法である。That is, the gist of the present invention is that
In a method for producing a coke for a blast furnace by dry-distilling a charging coal containing 40 to 100 wt% of caking coal and the balance consisting of non-fine coking coal, the charging coal is preheated to 250 to 350 ° C. and then transferred to a carbonization chamber. In the method of inserting and performing carbonization, the gas release heat amount Qg in the minute space in the carbonization chamber is calculated from the difference between the atmospheric gas temperature Tf in the coke oven combustion chamber and the gas temperature Tg in the upper part of the carbonization chamber, which are measured during operation. Based on the value, the heat absorption amount Qc of the charging charcoal in the minute space in the carbonization chamber is calculated, the temperature rising rate HR of the charging charcoal in the carbonization chamber is calculated, and the charging coal A method for producing blast furnace coke, characterized in that when the rate of temperature rise is less than 5 ° C / min, the rate of temperature rise of charging coal is adjusted to 5 to 30 ° C / min by the flow rate of combustion gas blown into the combustion chamber. is there.
【0012】特に、炭化室内の壁から中心方向に60%
の範囲の昇温速度を5〜30℃/分に調節することを特
徴とし、さらに、所定のチェック時間を10〜20分間
に設定することを特徴とする。Particularly, 60% from the wall in the carbonization chamber toward the center
It is characterized in that the temperature rising rate in the range of 5 is adjusted to 5 to 30 ° C./minute, and further that a predetermined check time is set to 10 to 20 minutes.
【0013】[0013]
【作用】以下、その具体的内容について説明する。The operation will be described below in detail.
【0014】図1は本発明に関わる室炉式コークス炉を
示す図である。1は炭化室、2は燃焼室、3は蓄熱室、
4は押出機、5は上昇管、6はドライメーン、7は石炭
乾燥機、8は石炭予熱機、9は予熱炭装入ホッパーを各
々示す。FIG. 1 is a diagram showing a chamber furnace type coke oven according to the present invention. 1 is a carbonization chamber, 2 is a combustion chamber, 3 is a heat storage chamber,
4 is an extruder, 5 is an ascending pipe, 6 is a dry main, 7 is a coal dryer, 8 is a coal preheater, and 9 is a preheated coal charging hopper.
【0015】本発明者らは図1に示すようなコークス製
造プロセスを前提として、また表1に示すような性状の
石炭について、非微粘結炭の多量使用の可能性を検討し
た。The present inventors presumed the coke production process as shown in FIG. 1 and examined the possibility of using a large amount of non-slightly caking coal for the coal having the properties as shown in Table 1.
【0016】[0016]
【表1】 [Table 1]
【0017】本発明者らは図1に示すコークス炉による
高炉用コークス製造プロセスにおけるコークス生産性の
向上について検討するために小型乾留炉により実験を行
った。この結果、石炭の予熱温度は250〜350℃と
する。250℃未満では生産性を大幅に向上させるため
の乾燥予熱の目的を充分に達成することはできず、35
0℃超では石炭からガスが発生する。そこで、乾燥予熱
の目的を達成するとともに、ガス発生を抑制するために
予熱温度は250〜350℃とする。The inventors of the present invention conducted an experiment using a small-scale carbonization furnace in order to study the improvement of coke productivity in the coke manufacturing process for a blast furnace using the coke oven shown in FIG. As a result, the preheating temperature of coal is set to 250 to 350 ° C. If the temperature is less than 250 ° C., the purpose of drying preheating for significantly improving productivity cannot be sufficiently achieved.
Above 0 ° C, gas is generated from coal. Therefore, the preheating temperature is set to 250 to 350 ° C. in order to achieve the purpose of dry preheating and suppress gas generation.
【0018】コークス炉に装入する石炭は通常、粒径3
mm以下が80wt%以上となるように粉砕されてい
る。Coal charged into a coke oven usually has a particle size of 3
It is crushed so that mm or less becomes 80 wt% or more.
【0019】石炭の乾留は、コークス炉に装入する石炭
の温度が250〜350℃で、燃焼室内のガス温度が
1,000〜1,350℃、乾留時間が6〜10時間の
条件で実施され、かかる石炭の熱分解・重縮合反応によ
って、いわゆるコークス化反応が進行する。The carbonization of coal is carried out under the conditions that the temperature of the coal charged into the coke oven is 250 to 350 ° C., the gas temperature in the combustion chamber is 1,000 to 1350 ° C., and the carbonization time is 6 to 10 hours. The so-called coking reaction proceeds due to the thermal decomposition / polycondensation reaction of the coal.
【0020】本発明者らは図1に示すコークス炉による
高炉用コークス製造プロセスにおける乾留過程の伝熱解
析を行うために、小型乾留炉における実験とその結果を
用いて、コークス炉における伝熱モデルを作成した。本
モデルは図4〜6に示すように乾留過程のコークスの伝
熱挙動について伝熱モデルを基礎式として、乾留時の石
炭の比熱、熱伝導率、反応熱、ガス発生、石炭の装入密
度、石炭の容積、密度変化などを温度関数として組み入
れられたシミュレーションモデルである。In order to conduct heat transfer analysis of the carbonization process in the coke manufacturing process for the blast furnace by the coke oven shown in FIG. It was created. This model is based on the heat transfer model for the heat transfer behavior of coke in the carbonization process as shown in Figs. 4 to 6, with specific heat, thermal conductivity, heat of reaction, gas generation, and coal charge density during carbonization. , A simulation model that incorporates coal volume and density changes as a temperature function.
【0021】該シミュレーションモデルにより、コーク
ス炉内での乾留過程における燃焼室上部および炭化室上
部の雰囲気ガス温度の測定値の差により、炭化室内の配
合炭の吸熱量Qcを算出し、この値に基いて前記配合炭
の昇温速度を算出し、炭化室内で前記配合炭の軟化溶融
温度域における昇温速度を伝熱式により算出する。Using the simulation model, the endothermic amount Qc of the coal blend in the carbonization chamber was calculated from the difference in the measured values of the atmospheric gas temperatures in the upper part of the combustion chamber and the upper part of the carbonization chamber during the carbonization process in the coke oven, and this value was calculated. Based on this, the temperature rise rate of the blended coal is calculated, and the temperature rise rate in the softening and melting temperature range of the blended coal in the carbonization chamber is calculated by the heat transfer equation.
【0022】本発明者らは表1に性状を示す高炉用コー
クス製造原料として使用される代表的な強粘結炭A炭
(VM24.8%、最高流動度2.7)および非微粘結
炭B炭(VM33%、最高流動度1.0)を配合した原
料炭を用いて、乾留時のコークスが受ける熱的条件をシ
ミュレートできる小型乾燥炉により乾留して、コークス
を製造する実験を行った。The inventors of the present invention have shown the properties shown in Table 1 and used as a typical raw material for producing coke for a blast furnace, which is a typical strongly caking coal A (VM 24.8%, maximum fluidity 2.7) and non-fine caking. Charcoal B charcoal (VM 33%, maximum fluidity 1.0) was used to produce coke by dry distillation using a small drying furnace that can simulate the thermal conditions that coke receives during dry distillation. went.
【0023】本発明者らは250〜350℃に予熱した
石炭を炭化室内で乾留した場合の石炭の昇温速度とコー
クス強度の関係について鋭意検討した。はじめに、粘結
炭A炭を用いて該石炭の軟化開始温度以上から固化温度
までの温度域(以下、軟化溶融温度域と記す)における
石炭の昇温速度とコークス強度の関係について調査し
た。その結果、図3に示すように軟化溶融温度域におけ
る石炭の昇温速度が5℃/分以上のときにコークス強度
が向上することを見い出した。The inventors diligently studied the relationship between the temperature rising rate of coal and the coke strength when carbon preheated to 250 to 350 ° C. was carbonized in the carbonization chamber. First, the relationship between the temperature rising rate of the coal and the coke strength in the temperature range from the softening start temperature of the coal to the solidification temperature (hereinafter referred to as the softening and melting temperature range) was investigated using the coking coal A coal. As a result, as shown in FIG. 3, it was found that the coke strength was improved when the heating rate of coal in the softening and melting temperature range was 5 ° C./min or more.
【0024】本発明者らは、さらに石炭の軟化溶融温度
域と炭化室炉幅方向のコークス強度の関係について調査
するために、表1に性状を示す非微粘結炭B炭を用いて
前記小型乾留炉により乾留実験を行った。その結果、表
2に示すように炭化室内の60wt%以上の範囲で石炭
の軟化溶融温度域における昇温速度を5℃/分以上に増
加させることにより、高強度な高炉用コークスを得るこ
とができることを見い出した。In order to further investigate the relationship between the softening and melting temperature range of coal and the coke strength in the width direction of the coke chamber, the inventors of the present invention described above using non-fine coking coal B charcoal having the properties shown in Table 1. A carbonization experiment was carried out using a small carbonization furnace. As a result, as shown in Table 2, a high-strength blast furnace coke can be obtained by increasing the temperature rising rate in the softening and melting temperature range of coal to 5 ° C./min or more in the range of 60 wt% or more in the carbonization chamber. I found what I could do.
【0025】[0025]
【表2】 [Table 2]
【0026】そこで、具体的に本技術を運転に適用する
方法について検討した。Therefore, a specific method of applying the present technology to driving was examined.
【0027】図4〜6にコークス炉の燃焼室に吹き込む
燃料ガスの調節量の算出方法を示す。はじめに運転中に
測定した燃焼室上部ガス温度Tfおよび炭化室上部ガス
温度Tgの差により燃焼室から炭化室への伝熱量Qfお
よび炭化室内における配合炭への伝熱量Qgおよび配合
炭の吸熱量Qcを算出する。この値に基いて伝熱計算に
より前記配合炭の昇温速度を算出し、炭化室内の壁から
中心方向に60%以上の範囲の装入炭が前記配合炭の軟
化溶融温度域の昇温速度が5℃/分以上であるかどうか
チェックする。4 to 6 show a method of calculating the adjustment amount of the fuel gas blown into the combustion chamber of the coke oven. First, the heat transfer amount Qf from the combustion chamber to the carbonization chamber, the heat transfer amount Qg to the coal blending coal in the carbonization chamber, and the heat absorption amount Qc of the coal blending due to the difference between the combustion chamber upper gas temperature Tf and the carbonization chamber upper gas temperature Tg measured during operation. To calculate. Based on this value, the heating rate of the blended coal was calculated by heat transfer calculation, and the charging rate in the range of 60% or more from the wall in the carbonization chamber toward the center was the rate of temperature rise in the softening and melting temperature range of the blended coal. Check if is above 5 ° C / min.
【0028】炭化室内における石炭の乾留は炭化室の両
壁からの伝熱により徐々に中心部に向かって進行する
が、石炭は熱伝導率が小さいため、30℃/分超の昇温
速度は確保できない。そこで、昇温速度の上限は30℃
/分に限定する。Although the carbonization of coal in the carbonization chamber gradually progresses toward the center due to heat transfer from both walls of the carbonization chamber, since the thermal conductivity of coal is small, the rate of temperature rise above 30 ° C./min. Cannot be secured. Therefore, the upper limit of the heating rate is 30 ° C.
/ Min.
【0029】上記のチェック結果により、コークス炉炭
化室内の60wt%以上の装入炭の昇温速度が5℃/分
未満である場合には、燃焼室に吹き込む燃料ガス流量の
調節量を図5、6に示すように以下の方法で算出する。From the above check results, when the temperature rising rate of the charging coal of 60 wt% or more in the coke oven carbonization chamber is less than 5 ° C./min, the adjustment amount of the flow rate of the fuel gas blown into the combustion chamber is shown in FIG. , 6 is calculated by the following method.
【0030】燃焼室に吹き込む燃料ガス量に対して、1
回当たりのガス量の調節量を変更した際の燃焼室内の雰
囲気ガス温度、炭化室への伝熱量、炭化室内の石炭への
伝熱量、および炭化室内石炭の吸熱量を前記のシミュレ
ーションモデルを用いて微小空間を逐次計算させること
により、該炭化室内の石炭の温度分布を推算する。この
推算値に基づいて、装入炭の軟化溶融温度域おける昇温
速度が5℃/分以上であるかどうかを判断し、繰り返し
計算により適正な燃料ガス量の調節量を算出する。1 for the amount of fuel gas blown into the combustion chamber
Using the above simulation model, the atmospheric gas temperature in the combustion chamber, the heat transfer amount to the carbonization chamber, the heat transfer amount to coal in the carbonization chamber, and the heat absorption amount of coal in the carbonization chamber when the adjustment amount of the amount of gas per time is changed are used. The temperature distribution of the coal in the carbonization chamber is estimated by sequentially calculating the minute space. Based on this estimated value, it is judged whether or not the temperature rising rate in the softening and melting temperature range of the charging coal is 5 ° C./min or more, and the appropriate adjustment amount of the fuel gas amount is calculated by repeated calculation.
【0031】この知見を基にして、本発明者らは、さら
に以下の検討を行った。装入炭の昇温速度が5℃/分を
下回る時間が長い場合は、昇温速度の安定状態への復帰
に時間がかかり、装入炭の昇温速度を低下させる原因と
なる。そこで、装入炭の昇温速度のチェック時間とコー
クス強度の関係について調査した結果を図8に示す。こ
の図からわかるように、実際のプラントでは、装入炭の
昇温速度のチェック時間を10〜20分間としたときに
装入炭の昇温速度を5℃/分以上に制御可能であり、コ
ークス強度を向上させることができた。そこで、昇温速
度を算出する時間は10〜20分間隔が好ましい。Based on this finding, the present inventors further conducted the following examination. If the temperature rise rate of the charging coal is lower than 5 ° C./minute, it takes a long time to return the temperature rising rate to a stable state, which causes the temperature rising rate of the charging coal to decrease. Therefore, FIG. 8 shows the results of an examination of the relationship between the checking time of the temperature rise rate of charging coal and the coke strength. As can be seen from this figure, in the actual plant, the temperature increase rate of the charging coal can be controlled to 5 ° C./minute or more when the checking time of the temperature rising rate of the charging coal is set to 10 to 20 minutes, The coke strength could be improved. Therefore, it is preferable that the time for calculating the rate of temperature increase be 10 to 20 minutes.
【0032】ここで算出したガス量調節量に基づいて、
燃焼室内に吹き込む燃料ガス量を調節して、燃焼室内の
雰囲気ガス温度を調節して、炭化室内の装入炭の60w
t%以上が前記配合炭の軟化溶融温度域での昇温速度を
5℃/分以上に制御することにより、石炭の粘結性が向
上し、コークス強度が向上する。Based on the gas amount adjustment amount calculated here,
Adjusting the amount of fuel gas blown into the combustion chamber, adjusting the atmospheric gas temperature in the combustion chamber, 60w of charging coal in the carbonization chamber
By controlling the temperature rising rate of the blended coal in the softening and melting temperature range of 5% / min or more to t% or more, the caking property of coal is improved and the coke strength is improved.
【0033】この際の燃焼室のガス温度は1,000〜
1,350℃である。At this time, the gas temperature in the combustion chamber is 1,000 to
It is 1,350 ° C.
【0034】この結果、生産性が高く、かつ、非微粘結
炭の多量使用を可能とする本発明を完成するに到った。As a result, the present invention has been completed which has high productivity and enables a large amount of non-caking coal to be used.
【0035】本明細書における最高流動度、および固化
温度とはJIS M 8801に示されているようにギ
ーセラープラストメーターにより測定した最高流動度、
および固化温度の値である。In the present specification, the maximum fluidity and the solidification temperature are the maximum fluidity measured by a Giessler plastometer as shown in JIS M8801,
And the value of the solidification temperature.
【0036】本明細書でコークス強度とはJIS K
2151に示されているドラム強度試験法により測定
し、コークス試料を150回転後に15mmの篩上の残
存した重量比で表したものを示す。In this specification, the coke strength is JIS K.
The coke sample is measured by the drum strength test method shown in 2151 and is expressed by the weight ratio of the residual coke on the 15 mm sieve after 150 rotations.
【0037】また、本明細書で非微粘結炭とは粘結力指
数(CI)が80未満の石炭と定義する。粘結力指数
(CI)の測定方法は石炭利用技術用語時点(社団法人
燃料協会1983年版)p.255に示されているよう
に、粘度0.25mm以下の石炭1gに粒度0.25m
m以上から0.3mm以下の粉コークス9gを配合した
ものを磁性るつぼに入れて900℃で7分間乾留してコ
ークス化し、得られたコークスを0.42mmの篩にか
けて、その篩上に留まった量をAgとし、In the present specification, non-slightly caking coal is defined as coal having a caking strength index (CI) of less than 80. The measuring method of the cohesive strength index (CI) is as of the technical term of coal utilization technology (Fuel Association of Japan, 1983 edition) p. As shown in 255, 1 g of coal having a viscosity of 0.25 mm or less has a particle size of 0.25 m.
A mixture of 9 g of powder coke of m or more and 0.3 mm or less was placed in a magnetic crucible and coke-dried at 900 ° C. for 7 minutes to form coke. The obtained coke was passed through a 0.42 mm sieve and stayed on the sieve. The amount is Ag,
【0038】[0038]
【数1】 [Equation 1]
【0039】粘結炭の配合割合が40wt%未満では配
合炭の粘結性が不足し、高炉用コークスとして充分な強
度を有するコークスを製造することは不可能である。そ
こで、粘結炭の配合割合は40〜100wt%に限定す
る。従って、非微粘結炭の配合割合は60〜0wt%と
する。When the blending ratio of the caking coal is less than 40 wt%, the caking property of the blending coal is insufficient, and it is impossible to produce coke having sufficient strength as blast furnace coke. Therefore, the mixing ratio of caking coal is limited to 40 to 100 wt%. Therefore, the blending ratio of the non-slightly caking coal is 60 to 0 wt%.
【0040】本発明では装入炭の軟化溶融温度域におけ
る昇温速度が5℃/分以上の割合が装入炭の60wt%
未満ではコークス強度の向上効果が得られない。従っ
て、装入炭の軟化溶融温度域における昇温速度を5℃/
分以上に確保する割合を炭化室の壁から中心方向に60
%以上と定義する。In the present invention, the rate of temperature rise in the softening and melting temperature range of the charged coal is 5 wt.
If it is less than the above range, the effect of improving the coke strength cannot be obtained. Therefore, the temperature rising rate in the softening and melting temperature range of the charged coal is 5 ° C /
60% from the wall of the carbonization chamber toward the center
Defined as% or more.
【0041】以下、実施例により本発明の効果を説明す
る。The effects of the present invention will be described below with reference to examples.
【0042】[0042]
実施例1 配合炭は表1に示す2種類の石炭を使用した。粘結炭A
炭と非微粘結炭B炭の配合割合を重量比で70:30と
し、配合炭を小型乾留炉を用いて乾留した。小型乾留炉
の炉幅は420mmで、燃焼室と炭化室間の炉壁は通常
の珪石レンガ(密度:1.74g/cm3 )より密度の
高い高密度レンガ(密度:1.81g/cm3 )を使用
した。Example 1 Two types of coal shown in Table 1 were used as blended coal. Caking coal A
The blending ratio of the charcoal and the non-slightly caking coal B charcoal was set to 70:30 by weight, and the blended charcoal was dry-distilled using a small scale carbonization furnace. In oven width of the small carbonization furnace 420 mm, furnace wall ordinary silica brick (Density: 1.74g / cm 3) between the combustion chamber and the carbonizing chamber higher density than high density bricks (density: 1.81 g / cm 3 )It was used.
【0043】実施例1では、本発明の方法に従い、30
0℃に予熱した石炭を炭化室に装入し、図7に示す乾留
パターンAで7時間の乾留条件でコークスを製造した。
炭化室の炉幅は420mmである。運転中に測定した燃
焼室内の雰囲気ガス温度Tfは1,050〜1,350
℃で、炭化室上部のガス温度Tgは1,020〜1,3
20℃である。この際の炭化室内の微小空間におけるガ
ス放出熱量Qgの算出値は2,150〜2,600kc
al/Hrであり、前記炭化室の敏捷空間における装入
炭の吸熱量Qcは1,100〜1,650kcal/H
rである。装入炭の昇温速度の推算値HRは炭化室内の
壁から中心方向の100%において5℃/分以上であ
る。実際に炭化室内の石炭の昇温速度を熱電対で実測し
た結果、炭化室の炉壁煉瓦から70mmの範囲では1
0.4℃/分、炭化室の炉壁煉瓦から70〜140mm
の範囲の石炭の昇温速度は6.8℃/分、炭化室の炉壁
煉瓦から140〜210mmの範囲における石炭の昇温
速度は5.5℃/分である。即ち、装入炭の100wt
%の範囲で5℃/分以上の昇温速度が確保された。本乾
留により得られたコークスの強度は83.2である。In Example 1, according to the method of the present invention, 30
Coal preheated to 0 ° C. was charged into the carbonization chamber, and coke was produced under dry distillation conditions of 7 hours according to dry distillation pattern A shown in FIG.
The furnace width of the carbonization chamber is 420 mm. The atmospheric gas temperature Tf in the combustion chamber measured during operation is 1,050 to 1,350.
C, the gas temperature Tg of the upper part of the carbonization chamber is 1,020-1,3
It is 20 ° C. At this time, the calculated value of the gas release heat amount Qg in the minute space in the carbonization chamber is 2,150 to 2,600 kc.
al / Hr, and the heat absorption amount Qc of the charging coal in the agitation space of the carbonization chamber is 1,100 to 1,650 kcal / H.
r. The estimated value HR of the temperature rising rate of the charging coal is 5 ° C./min or more at 100% in the central direction from the wall in the carbonization chamber. As a result of actually measuring the temperature rising rate of coal in the carbonization chamber with a thermocouple, it was found to be 1 in the range of 70 mm from the furnace wall brick in the carbonization chamber.
0.4 ℃ / min, 70 ~ 140mm from furnace wall brick in carbonization chamber
The rate of temperature rise of coal in the range is 6.8 ° C./min, and the rate of temperature rise of coal in the range of 140 to 210 mm from the brick wall of the carbonization chamber is 5.5 ° C./min. That is, 100 wt of charged coal
A temperature increase rate of 5 ° C./min or more was ensured in the range of%. The coke obtained by the main carbonization has a strength of 83.2.
【0044】実施例2 実施例2では、本発明の方法に従い、300℃に予熱し
た石炭を図7に示す乾留パターンBで7時間の乾留条件
でコークスを製造した。運転中に測定した燃焼室内のガ
ス温度Tfは1,050〜1,200℃で、炭化室上部
のガス温度Tgは1,020〜1,150℃である。こ
の際の炭化室内の微小空間におけるガス放出熱量Qgの
算出値は1,510〜1,850kcal/Hrであ
り、前記炭化室の微小空間における装入炭の吸熱量Qc
は1,100〜1,350kal/Hrである。装入炭
の昇温速度の推算値HRは炭化室内の壁から中心方向の
70%において5℃/分以上である。実際に炭化室内の
石炭の昇温速度を熱電対で実測した結果、炭化室の炉壁
煉瓦から70mmの範囲では8.5℃/分、炭化室の炉
壁煉瓦から70〜140mmの範囲の石炭の昇温速度は
5.3℃/分、炭化室の炉壁煉瓦から140〜210m
mの範囲における石炭の昇温速度は3.9℃/分であ
る。すなわち、本乾留方法では装入炭の67wt%が5
℃/分以上の昇温速度で乾留される。この結果、得られ
たコークス強度は82.5%であり、実施例1、2とも
に高炉用コークスとして充分な強度を有するコークスが
得られる。 比較例1 これに対して、比較例1では、従来のコークス炉の操業
法に準じて、300℃の乾燥炭を乾留炉に装入し、1,
100℃一定のヒートパタンで7時間で乾留した。この
結果、得られたコークスの強度は78.4%と低く、高
炉用コークスとしては強度が不充分であった。Example 2 In Example 2, according to the method of the present invention, coke preheated to 300 ° C. was produced in the dry distillation pattern B shown in FIG. 7 under the dry distillation condition of 7 hours to produce coke. The gas temperature Tf in the combustion chamber measured during operation is 1,050 to 1,200 ° C., and the gas temperature Tg in the upper part of the carbonization chamber is 1,020 to 1,150 ° C. The calculated value of the gas release heat amount Qg in the minute space in the carbonization chamber at this time is 1,510 to 1,850 kcal / Hr, and the heat absorption amount Qc of the charging coal in the minute space of the carbonization chamber is Qc.
Is 1,100 to 1,350 kal / Hr. The estimated value HR of the temperature rising rate of charging coal is 5 ° C./min or more at 70% in the central direction from the wall in the carbonization chamber. As a result of actually measuring the rate of temperature rise of the coal in the carbonization chamber with a thermocouple, it was found that the temperature was 8.5 ° C / min in the range of 70 mm from the furnace wall brick in the carbonization chamber, and the range of 70 to 140 mm from the furnace wall brick in the carbonization chamber. Heating rate of 5.3 ℃ / min, 140 ~ 210m from the furnace wall brick in the carbonization chamber
The rate of temperature rise of coal in the range of m is 3.9 ° C / min. That is, 67 wt% of the charged coal was 5% by this carbonization method.
Dry distillation is carried out at a temperature rising rate of not less than ° C / min. As a result, the coke strength obtained was 82.5%, and coke having sufficient strength as coke for blast furnace was obtained in both Examples 1 and 2. Comparative Example 1 On the other hand, in Comparative Example 1, dry carbon at 300 ° C. was charged into a carbonization furnace according to the conventional coke oven operation method, and
Dry distillation was carried out at a constant heat pattern of 100 ° C. for 7 hours. As a result, the strength of the obtained coke was as low as 78.4%, and the strength was insufficient as blast furnace coke.
【0045】実施例3 実施例3では配合炭は表1に示す2種類の石炭を使用し
た。粘結炭A炭と非微粘結炭B炭の配合割合を重量比で
60:40とし、配合炭を前記小型乾留炉を用いて乾留
した。乾留条件は本発明の方法に従い、300℃に予熱
した石炭を炭化室に装入し、図7に示す乾留パターンB
で7時間の乾留条件で乾留し、コークスを製造した。運
転中に測定した燃焼室内の雰囲気ガス温度Tfは1,0
50〜1,200℃で、炭化室上部のガス温度Tgは
1,020〜1,150℃である。この際の炭化室内の
微小空間におけるガス放出熱量Qgの算出値は1,51
0〜1,850kcal/Hrであり、前記炭化室の微
小空間における装入炭の吸熱量Qcは1,100〜1,
350kcal/Hrである。この際の装入炭の昇温速
度の推算値HRは炭化室内の壁から中心方向の70%に
おいて5℃/分以上である。実際に炭化室内の石炭の昇
温速度を熱電対で実測した結果、炭化室の炉壁煉瓦から
70mmの範囲では9.0℃/分、炭化室の炉壁煉瓦か
ら70〜140mmの範囲の石炭の昇温速度は6.7℃
/分、炭化室の炉壁煉瓦から140〜210mmの範囲
における石炭の昇温速度は5.3℃/分である。即ち、
本乾留では装入炭の100wt%が昇温速度5℃/分以
上で乾留されている。この結果、得られたコークスの強
度は81.2%で、高炉用コークスとして充分な強度を
有している。Example 3 In Example 3, two kinds of coal shown in Table 1 were used as blended coal. The blending ratio of the caking coal A coal and the non-slightly caking coal B coal was set to 60:40 in weight ratio, and the blended coal was dry-distilled using the small-scale carbonization furnace. According to the method of the present invention, the carbonization conditions are as follows: Coal preheated to 300 ° C. is charged into the carbonization chamber, and carbonization pattern B shown in FIG.
Coke was produced by dry distillation under the conditions of dry distillation for 7 hours. The atmospheric gas temperature Tf in the combustion chamber measured during operation is 1,0
At a temperature of 50 to 1,200 ° C, the gas temperature Tg in the upper part of the carbonization chamber is 1,020 to 1,150 ° C. At this time, the calculated value of the gas release heat amount Qg in the minute space in the carbonization chamber is 1,51
0 to 1,850 kcal / Hr, and the heat absorption amount Qc of the charging coal in the minute space of the carbonization chamber is 1,100 to 1,
It is 350 kcal / Hr. The estimated value HR of the temperature rising rate of the charging coal at this time is 5 ° C./min or more at 70% in the central direction from the wall in the carbonization chamber. As a result of actually measuring the temperature rising rate of the coal in the carbonization chamber with a thermocouple, it was 9.0 ° C / min in the range of 70 mm from the furnace wall brick in the carbonization chamber, and in the range of 70 to 140 mm from the furnace wall brick in the carbonization chamber. Heating rate is 6.7 ℃
/ Min, the rate of temperature rise of coal in the range of 140 to 210 mm from the furnace wall brick in the carbonization chamber is 5.3 ° C / min. That is,
In this carbonization, 100 wt% of the charged coal is carbonized at a temperature rising rate of 5 ° C / min or more. As a result, the strength of the obtained coke was 81.2%, which is sufficient as blast furnace coke.
【0046】比較例2 これに対して比較例2で従来のコークス炉の操業法に準
じて、300℃の乾燥炭を乾留炉に装入し、1,100
℃一定のヒートパタンで7時間で乾留した。この結果、
得られたコークスの強度は73.4%と低く、高炉用コ
ークスとして強度が不充分であった。Comparative Example 2 On the other hand, in Comparative Example 2, according to the conventional coke oven operation method, dry carbon at 300 ° C. was charged into a carbonization furnace to obtain 1,100.
Dry distillation was carried out at a constant heat pattern at ℃ for 7 hours. As a result,
The strength of the obtained coke was as low as 73.4%, which was insufficient as blast furnace coke.
【0047】比較例3 比較例3では表1に性状を示す粘結炭A炭と非微粘結炭
B炭の配合割合を重量比で30:70とし、配合炭を前
記小型乾留炉を用いて乾留した。乾留条件は本発明の方
法に従い、300℃に予熱した石炭を炭化室に装入し、
図7に示す乾留パターンBで7時間の乾留条件で乾留
し、コークスを製造した。運転中に測定した燃焼室内の
雰囲気ガス温度Tfは1,050〜1,200℃で、炭
化室上部のガス温度Tgは1,020〜1,150℃で
ある。この際の炭化室内の微小空間におけるガス放出熱
量Qgの算出値は1,510〜1,850kcal/H
rであり、前記炭化室の微小空間における装入炭の吸熱
量Qcは1,100〜1,350kcal/Hrであ
る。この際の装入炭の昇温速度の推算値HRは炭化室内
の壁から中心方向の70%において5℃/分以上であ
る。実際に炭化室内の石炭の昇温速度を熱電対で実測し
た結果、炭化室の炉壁煉瓦から70mmの範囲では8.
9℃/分、炭化室の炉壁煉瓦から70〜140mmの範
囲の石炭の昇温速度は5.3℃/分、炭化室の炉壁煉瓦
から140〜210mmの範囲における石炭の昇温速度
は3.9℃/分であった。即ち、この乾留試験では装入
炭の67wt%が昇温速度5℃/分以上で乾留された。
この結果、得られたコークスは、粘結炭の配合割合が4
0wt%未満であるため、強度が61.2%と著しく低
く、高炉内コークスとして強度が不充分である。Comparative Example 3 In Comparative Example 3, the mixing ratio of the caking coal A coal and the non-slightly caking coal B coal whose properties are shown in Table 1 was set to 30:70 by weight, and the small coal distillation furnace was used as the mixing coal. I made a dry distillation. According to the method of the present invention, the carbonization conditions are as follows.
Coke was produced by dry distillation under dry distillation conditions of 7 hours in the dry distillation pattern B shown in FIG. The atmospheric gas temperature Tf in the combustion chamber measured during operation is 1,050 to 1,200 ° C., and the gas temperature Tg in the upper part of the carbonization chamber is 1,020 to 1,150 ° C. At this time, the calculated value of the gas release heat amount Qg in the minute space in the carbonization chamber is 1,510 to 1,850 kcal / H.
r, and the heat absorption amount Qc of the charging coal in the minute space of the carbonization chamber is 1,100 to 1,350 kcal / Hr. The estimated value HR of the temperature rising rate of the charging coal at this time is 5 ° C./min or more at 70% in the central direction from the wall in the carbonization chamber. As a result of actually measuring the rate of temperature rise of the coal in the carbonization chamber with a thermocouple, it was found to be 8. within a range of 70 mm from the brick wall of the carbonization chamber.
The heating rate of coal in the range of 9 ° C / min, 70 to 140 mm from the furnace wall brick in the carbonization chamber is 5.3 ° C / min, and the heating rate of coal in the range of 140 to 210 mm from the furnace wall brick in the carbonization chamber is It was 3.9 ° C./min. That is, in this dry distillation test, 67 wt% of the charged coal was dry distilled at a temperature rising rate of 5 ° C./min or more.
As a result, the coke obtained had a coking coal content of 4
Since it is less than 0 wt%, the strength is remarkably low as 61.2%, and the strength as coke in the blast furnace is insufficient.
【0048】実施例4 図8に表1に性状を示す粘結炭A炭と非微粘結炭B炭の
配合割合を重量比で70:30とし、配合炭を前記小型
乾留炉を用いて乾留した。乾留条件は本発明の方法に従
い、300℃に予熱した石炭を炭化室に装入し、図7に
示す乾留パターンBで7時間の乾留条件で乾留した場合
に本発明を適用した例を示す。Example 4 The mixing ratio of caking coal A coal and non-slightly caking coal B coal whose properties are shown in Table 1 in FIG. 8 was set to 70:30 in weight ratio, and the mixing coal was produced by using the small-scale carbonization furnace. It was carbonized. The carbonization conditions are as follows. According to the method of the present invention, coal preheated to 300 ° C. is charged into the carbonization chamber, and the present invention is applied to the carbonization pattern B shown in FIG.
【0049】運転中に測定した燃焼室内の雰囲気ガス温
度Tfは1,050〜1,200℃で、炭化室上部のガ
ス温度Tgは1,020〜1,150℃である。この際
の炭化室内の微小空間におけるガス放出熱量Qgの算出
値は1,510〜1,850kcal/Hrであり、前
記炭化室の微小空間における装入炭の吸熱量Qcは1,
100〜1,350kcal/Hrである。この際の装
入炭の昇温速度の推算値HRは炭化室内の壁から中心方
向の70%において5℃/分以上である。実際に炭化室
内の石炭の昇温速度を熱電対で実測した結果、炭化室の
炉壁煉瓦から70mmの範囲では8.9℃/分、炭化室
の炉壁煉瓦から70〜140mmの範囲の石炭の昇温速
度は5.3℃/分、炭化室の炉壁煉瓦から140〜21
0mmの範囲における石炭の昇温速度は3.9℃/分で
ある。The atmospheric gas temperature Tf in the combustion chamber measured during operation is 1,050-1,200 ° C., and the gas temperature Tg in the upper part of the carbonization chamber is 1,020-1,150 ° C. The calculated value of the gas release heat amount Qg in the minute space in the carbonization chamber at this time is 1,510 to 1,850 kcal / Hr, and the heat absorption amount Qc of the charging coal in the minute space of the carbonization chamber is 1,
It is 100 to 1,350 kcal / Hr. The estimated value HR of the temperature rising rate of the charging coal at this time is 5 ° C./min or more at 70% in the central direction from the wall in the carbonization chamber. As a result of actually measuring the temperature rising rate of the coal in the carbonization chamber with a thermocouple, it was found that coal in the range of 70 mm from the furnace wall brick in the carbonization chamber was 8.9 ° C./min, and in the range of 70 to 140 mm from the furnace wall brick in the carbonization chamber. Heating rate of 5.3 ℃ / min, 140 ~ 21 from the furnace wall brick in the carbonization chamber
The heating rate of coal in the range of 0 mm is 3.9 ° C / min.
【0050】従来の運転では炭化室内における石炭の昇
温速度のチェック時間を一定にしていなかったために、
コークスの強度が低かった。次に、本発明の通り、温度
チェック時間を10〜20分間に設定し、燃焼ガス流量
により装入炭の昇温速度を5℃以上に調節した結果、コ
ークス強度は80%以上に向上した。In the conventional operation, since the checking time of the temperature rising rate of coal in the carbonization chamber was not constant,
The coke strength was low. Next, as in the present invention, the temperature check time was set to 10 to 20 minutes, and the temperature rise rate of the charging coal was adjusted to 5 ° C or higher by the flow rate of the combustion gas, and as a result, the coke strength was improved to 80% or higher.
【0051】以上の結果を表3に示す。The above results are shown in Table 3.
【0052】[0052]
【表3】 [Table 3]
【0053】[0053]
【発明の効果】以上のように、本発明は高炉用コークス
製造原料石炭の炭種を拡大し、石炭資源多様化への対応
を図るとともに、生産性の向上、コークス製造行程の経
済性の向上、および設備コストの削減を図る方法に関す
るものであり、本発明の技術的および経済的な効果は非
常に大きい。INDUSTRIAL APPLICABILITY As described above, the present invention expands the coal types of the raw material coal for producing coke for blast furnaces to cope with the diversification of coal resources, improve the productivity, and improve the economical efficiency of the coke production process. , And a method for reducing equipment costs, and the technical and economic effects of the present invention are extremely large.
【図1】本発明を適用するコークス製造プロセスの全体
フロー図。FIG. 1 is an overall flow diagram of a coke manufacturing process to which the present invention is applied.
【図2】従来のコークス製造プロセスの全体フロー図。FIG. 2 is an overall flow diagram of a conventional coke manufacturing process.
【図3】本発明を効果を示す図で石炭の昇温速度とコー
クス強度の関係を示す図。FIG. 3 is a graph showing the effect of the present invention and a graph showing the relationship between the temperature rising rate of coal and the coke strength.
【図4】コークス炉内での石炭の乾留過程における伝熱
モデルを示す図。FIG. 4 is a diagram showing a heat transfer model in the carbonization process of coal in a coke oven.
【図5】燃焼室に吹き込む燃焼ガス量の流量調節量の算
出を示す図。FIG. 5 is a diagram showing calculation of a flow rate adjustment amount of a combustion gas amount blown into a combustion chamber.
【図6】燃焼室に吹き込む燃焼ガス量の流量調節量の算
出を示す図。FIG. 6 is a diagram showing calculation of a flow rate adjustment amount of a combustion gas amount blown into a combustion chamber.
【図7】本発明の実施例の乾留パターンを示す図。FIG. 7 is a diagram showing a dry distillation pattern according to an example of the present invention.
【図8】本発明の昇温速度のチェック時間とコークス強
度の関係を示す図。FIG. 8 is a graph showing the relationship between the temperature increase rate check time and the coke strength of the present invention.
1…炭化室 2…燃焼室 3…蓄熱室 4…押出機 5…上昇管 6…ドライメー
ン 7…石炭乾燥機 8…石炭予熱機 9…予熱炭装入ホッパー1 ... Carbonization chamber 2 ... Combustion chamber 3 ... Heat storage chamber 4 ... Extruder 5 ... Rise pipe 6 ... Dry main 7 ... Coal dryer 8 ... Coal preheater 9 ... Preheated coal charging hopper
Claims (3)
が非微粘結炭からなる装入炭を乾留して高炉用コークス
を製造する方法において、装入炭を250〜350℃ま
で予熱後、炭化室へ装入して乾留する際に、運転中に測
定したコークス炉燃焼室内の雰囲気ガス温度Tfおよび
炭化室上部Tgとの差により、前記炭化室内の微小空間
におけるガス放出熱量Qgを算出し、この値に基づいて
該炭化室内の微小空間における装入炭の吸熱量Qcを算
出して、炭化室内における装入炭の昇温速度HRを算出
し、所定のチェック時間以上の間、装入炭の昇温速度が
5℃未満であるとき、燃焼室に吹き込む燃焼ガス流量に
より装入炭の昇温速度を5〜30℃に調節することを特
徴とする高炉用コークスの製造方法。1. A method for producing a blast furnace coke by dry-distilling a charging coal containing caking coal in an amount of 40 to 100 wt% and the balance being non-fine coking coal, and preheating the charging coal to 250 to 350 ° C. After that, when charged into the carbonization chamber and subjected to carbonization, the gas release heat amount Qg in the minute space in the carbonization chamber is determined by the difference between the atmospheric gas temperature Tf in the coke oven combustion chamber and the carbonization chamber upper part Tg measured during operation. Calculated, based on this value, the heat absorption amount Qc of the charging coal in the minute space in the carbonization chamber is calculated, the temperature increase rate HR of the charging coal in the carbonization chamber is calculated, and for a predetermined check time or more, A method for producing blast furnace coke, characterized in that when the temperature increase rate of charging coal is less than 5 ° C, the temperature increase rate of charging coal is adjusted to 5 to 30 ° C by the flow rate of combustion gas blown into the combustion chamber.
囲の装入炭の昇温速度を5〜30℃/分に調節すること
を特徴とする請求項1記載の高炉用コークス製造方法。2. The method for producing coke for a blast furnace according to claim 1, wherein the temperature rising rate of the charged coal in the range of 60% from the wall in the carbonization chamber toward the center is adjusted to 5 to 30 ° C./min. .
設定することを特徴とする請求項1または2に記載の高
炉用コークスの製造方法。3. The method for producing blast furnace coke according to claim 1, wherein the predetermined check time is set to 10 to 20 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5260995A JPH08245965A (en) | 1995-03-13 | 1995-03-13 | Production of coke for blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5260995A JPH08245965A (en) | 1995-03-13 | 1995-03-13 | Production of coke for blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08245965A true JPH08245965A (en) | 1996-09-24 |
Family
ID=12919547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5260995A Pending JPH08245965A (en) | 1995-03-13 | 1995-03-13 | Production of coke for blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08245965A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033528A (en) * | 1995-02-02 | 2000-03-07 | The Japan Iron And Steel Federation | Process for making blast furnace coke |
JP2009227781A (en) * | 2008-03-21 | 2009-10-08 | Jfe Steel Corp | Ferrocoke for metallurgy |
CN103992807A (en) * | 2014-06-07 | 2014-08-20 | 太原理工大学 | Method for producing carbonized coal/coke for gasification by large-scale tamping coal cake on coke oven |
-
1995
- 1995-03-13 JP JP5260995A patent/JPH08245965A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033528A (en) * | 1995-02-02 | 2000-03-07 | The Japan Iron And Steel Federation | Process for making blast furnace coke |
JP2009227781A (en) * | 2008-03-21 | 2009-10-08 | Jfe Steel Corp | Ferrocoke for metallurgy |
CN103992807A (en) * | 2014-06-07 | 2014-08-20 | 太原理工大学 | Method for producing carbonized coal/coke for gasification by large-scale tamping coal cake on coke oven |
CN103992807B (en) * | 2014-06-07 | 2016-01-27 | 太原理工大学 | Method for producing carbonized coal/coke for gasification by large-scale tamping coal cake on coke oven |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201406945A (en) | Process and device for the production of metallurgical coke from petrol coal obtained in petroleum refineries by carbonisation in non-recovery or heat-recovery coke ovens | |
CN101910364B (en) | Method of producing ferro-coke | |
CN104194816B (en) | A kind of method preparing coke | |
CN110241273A (en) | A kind of iron coke and preparation method thereof using west place in Hubei iron ore and bottle coal preparation | |
JPH0665579A (en) | Method for compounding raw material of coal briquet for producing metallurgical formed coke | |
US2028105A (en) | Method of producing sponge iron | |
JP3384300B2 (en) | Evaluation and blending method of coal for coke production | |
JP5487790B2 (en) | Ferro-coke manufacturing method | |
JPH08245965A (en) | Production of coke for blast furnace | |
CN104884588B (en) | Moulded coal manufacture method and coal manufacturing | |
JP2004285134A (en) | Process for producing raw material for metallurgical furnace | |
JP4892928B2 (en) | Ferro-coke manufacturing method | |
JPH0280491A (en) | Operation of continuous formed coke oven | |
JPH08231962A (en) | Production of metallurgical coke | |
JP3611055B2 (en) | Coke production method for blast furnace | |
JP3668532B2 (en) | Coke production method for blast furnace | |
JP4695244B2 (en) | Coke manufacturing method | |
JPS60101184A (en) | Method for controlling fuel in coke oven | |
JP3614919B2 (en) | Blast furnace coke manufacturing method | |
JP7347462B2 (en) | Method for producing molded products and method for producing molded coke | |
US1754765A (en) | Coking coal | |
JP2008120973A (en) | Process for producing blast furnace coke | |
JP2912531B2 (en) | Manufacturing method of coke for metallurgy | |
JP3557631B2 (en) | Operating method of blast furnace using molded coke | |
JPS60101185A (en) | Method for controlling fuel in coke oven |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040225 |
|
A131 | Notification of reasons for refusal |
Effective date: 20040323 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20040720 Free format text: JAPANESE INTERMEDIATE CODE: A02 |