JPH08233386A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH08233386A JPH08233386A JP6522695A JP6522695A JPH08233386A JP H08233386 A JPH08233386 A JP H08233386A JP 6522695 A JP6522695 A JP 6522695A JP 6522695 A JP6522695 A JP 6522695A JP H08233386 A JPH08233386 A JP H08233386A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- condenser
- liquid
- component
- gas separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、代替フロンとしての3
種混合媒体を用いる冷凍機を含む空調機用の熱交換器に
関する。BACKGROUND OF THE INVENTION The present invention relates to a CFC alternative 3
The present invention relates to a heat exchanger for an air conditioner including a refrigerator using a seed mixed medium.
【0002】[0002]
【従来の技術】現在使用されている冷凍機を含む空調装
置1の基本構成を図3と図4を用いて先ずは説明する。
空調装置1の基本構成としては、圧縮機2と、四方弁3
と、室外側熱交換器4と、膨脹弁5と、室内側熱交換器
6と、アキュムレータ7とを有する冷媒回路が用いられ
る。ここで、アキュムレータ7は、始動直後等に膨脹弁
5下流側の低圧ラインに存在する低温低圧気液の内の冷
媒液の一部を溜めるためのもので、始動直後等に冷媒液
の一部が圧縮機に吸入されるのを防止できる。2. Description of the Related Art The basic construction of an air conditioner 1 including a refrigerator currently in use will be described first with reference to FIGS.
The basic configuration of the air conditioner 1 includes a compressor 2 and a four-way valve 3
A refrigerant circuit having an outdoor heat exchanger 4, an expansion valve 5, an indoor heat exchanger 6, and an accumulator 7 is used. Here, the accumulator 7 is for accumulating a part of the refrigerant liquid in the low-temperature low-pressure gas-liquid existing in the low-pressure line on the downstream side of the expansion valve 5 immediately after the start, and for a part of the refrigerant liquid immediately after the start. Can be prevented from being sucked into the compressor.
【0003】冷房サイクルについて説明すれば、まず圧
縮機2からの高温高圧ガスが四方切換弁3を介して凝縮
器となる室外側熱交換器4に供給され、室外側熱交換器
4にて凝縮され、凝縮された相は、膨脹弁5により低温
低圧の気液2相となって蒸発器となる室内側熱交換器6
に供給されて蒸発して低温低圧ガスとなる。これによ
り、室内から吸熱されて室内冷房が行われる。最後に低
温低圧ガスがアキュムレータ7を介して圧縮機2に戻さ
れる。以上のサイクルの繰り返しにより室内冷房が行わ
れる。Explaining the cooling cycle, first, high-temperature high-pressure gas from the compressor 2 is supplied to the outdoor heat exchanger 4 serving as a condenser via the four-way switching valve 3 and condensed in the outdoor heat exchanger 4. The expanded and condensed phase becomes a low-temperature low-pressure gas-liquid two-phase by the expansion valve 5 and becomes an evaporator.
And is vaporized into low-temperature low-pressure gas. As a result, heat is absorbed from the room to cool the room. Finally, the low temperature low pressure gas is returned to the compressor 2 via the accumulator 7. The indoor cooling is performed by repeating the above cycle.
【0004】図4に示す暖房サイクルについては、まず
圧縮機2からの高温高圧ガスが四方切換弁3を介して凝
縮器となる室内側熱交換器6に供給されて凝縮されて高
温高圧液になる。これにより、室内に熱が放出されて室
内暖房が行われる。この高温高圧液は、膨脹弁5により
低温低圧の気液2相となって蒸発器となる室外側熱交換
器4に供給されて蒸発して低温低圧ガスとなり、この低
温低圧ガスがアキュムレータ7を介して圧縮機2に戻さ
れる。以上のサイクルの繰り返しにより暖房が行われ
る。In the heating cycle shown in FIG. 4, first, the high-temperature high-pressure gas from the compressor 2 is supplied to the indoor heat exchanger 6 serving as a condenser via the four-way switching valve 3 and condensed to form a high-temperature high-pressure liquid. Become. Thereby, heat is released into the room to heat the room. This high-temperature high-pressure liquid becomes a low-temperature low-pressure gas-liquid two-phase by the expansion valve 5 and is supplied to the outdoor heat exchanger 4 serving as an evaporator to evaporate to become a low-temperature low-pressure gas, and this low-temperature low-pressure gas passes through the accumulator 7. It is returned to the compressor 2 via. Heating is performed by repeating the above cycle.
【0005】空調機のこのようなサイクルを、媒体とし
てフロンガスを用いて行なっていたが、このフロンガス
は、オゾン破壊による地球温暖化をもたらすものとして
その製造が禁止されている。製造禁止された特定フロン
ガスを表1に示す。[0006] Such a cycle of an air conditioner has been carried out by using Freon gas as a medium, but the production of this Freon gas is prohibited because it causes global warming due to ozone destruction. Table 1 shows the specific CFCs whose production was banned.
【0006】[0006]
【表1】 [Table 1]
【0007】特定フロンガスの代替ガスの研究が活発と
なり、特定フロンガスに特性が似ていること、低めの T
b(大気圧下の沸点)と高めのガスを圧縮しても気体が液
化しない温度即ち Trb(臨界温度)をもつこと、高い成
績係数と効率(影響力のある物性を順に並べると、Cp
(比熱)> Tb(大気圧下の沸点)> Trb(臨界温度)>P
c(臨界圧)> Zc(臨界圧縮係数)となる)をもつこと等
を考慮して新しい媒体の開発が成されているが、混合媒
体の使用が、Tbを任意に選択できることおよび媒体の熱
力学的特性、溶解性や燃焼特性などの欠点が改善可能な
ことから注目されている。尚、混合媒体は、共沸混合媒
体と非共沸混合媒体とに分別され、共沸混合媒体は、共
沸点(Tbに対応する)において、気相と液相との組成が
変化することなく、あたかも単一媒体と同様の挙動を示
し、単一媒体で確立された技術、設備をそのまま利用で
きる利点を示す。一方、非共沸混合媒体は、全組成範囲
にわたり、露点曲線(凝集曲線)と沸点曲線とが分離し
ており、気相と液相との組成を異にし、液相の方が常に
高Tb媒体リッチである。[0007] Research on alternative gases to specific CFCs has become active, and the characteristics are similar to those of CFCs.
b (boiling point under atmospheric pressure) and a temperature at which the gas does not liquefy even if a higher gas is compressed, that is, Trb (critical temperature), and a high coefficient of performance and efficiency (influential physical properties are listed in order: Cp
(Specific heat)> Tb (boiling point at atmospheric pressure)> Trb (critical temperature)> P
Although a new medium has been developed taking into account that (c (critical pressure)> Zc (critical compression coefficient)), the use of mixed medium allows Tb to be arbitrarily selected and the heat of the medium. It has attracted attention because it can improve defects such as mechanical properties, solubility and combustion properties. The mixed medium is separated into an azeotropic mixed medium and a non-azeotropic mixed medium, and the azeotropic mixed medium does not change the composition of the gas phase and the liquid phase at the azeotropic point (corresponding to Tb). , It behaves as if it were a single medium, and shows the advantage that the technology and equipment established in a single medium can be used as it is. On the other hand, in the non-azeotropic mixed medium, the dew point curve (aggregation curve) and the boiling point curve are separated over the entire composition range, the gas phase and the liquid phase have different compositions, and the liquid phase always has a higher Tb. Medium rich.
【0008】これまで提案されてきた混合媒体は、2成
分或いは3成分のものがあるが、2成分系のものとして
はHCFC−22(CHClF2、Tb−40.8℃)45%とH
CFC−142b(CH3CClF2、Tb−9.2℃)55%のも
のがあるが、混合系が可燃性になる危険があり、実用性
が少い。一方、1989年1月に公開されたデュポン社
の3成分又はそれ以上の混合媒体に関する特許は、Tb、
燃焼性の異なる成分を巧みに配合し、実用上共沸混合に
近い挙動を実現させる。その代表成分はHCFC−2
2、HFC−152a(CHF2CH3 、Tb−24.15℃)、
CFC−114(CClF2CClF2、Tb−3.8℃)又はHCF
C−124(CHClFCF3、Tb−12℃)の3成分であり、
36対24対40の重量割合で混合され、カーエアコン
の媒体として利用される。The mixed media which have been proposed so far include two-component or three-component ones, but as a two-component system, HCFC-22 (CHClF 2 , Tb-40.8 ° C.) 45% and H.
CFC-142b (CH 3 CClF 2 , Tb-9.2 ℃) but there is 55%, there is a risk of mixing system becomes flammable, is less practical. On the other hand, the patent on the mixed medium of three components or more of DuPont published in January 1989 is Tb,
By skillfully blending components with different flammability, a behavior close to azeotropic mixing is realized in practice. The representative component is HCFC-2
2, HFC-152a (CHF 2 CH 3 , Tb-24.15 ° C),
CFC-114 (CClF 2 CClF 2 , Tb-3.8 ° C) or HCF
Three components of C-124 (CHClFCF 3 , Tb-12 ° C),
It is mixed in a weight ratio of 36:24:40 and used as a medium for a car air conditioner.
【0009】本発明は、前述した混合媒体の背景を受け
て、空調機に表2に示す混合媒体を用いる。In view of the background of the mixed medium described above, the present invention uses the mixed medium shown in Table 2 for the air conditioner.
【0010】[0010]
【表2】 [Table 2]
【0011】表2に示す混合媒体は、特定フロンガスで
あるCFC−12の代りに、R−134aを使用し、R
−134aの使用に原因する冷媒能力の低下、消費動力
の減少、重量流量の減少などの不利を低TbであるR−3
2、R−125を添加することにより補償するもので、
共沸系でないが、低Tb成分の循環が可能である。In the mixed medium shown in Table 2, R-134a was used in place of CFC-12, which is a specific CFC gas, and R-134a was used.
The disadvantages of low Tb, such as reduced refrigerant capacity, reduced power consumption, and reduced weight flow rate, due to the use of -134a
2. Compensation by adding R-125,
Although it is not an azeotropic system, it can circulate low Tb components.
【0012】[0012]
【発明が解決しようとする課題】R−32、R−125
とR−134aの3成分からなる混合媒体を冷凍機を含
む空調装置の凝縮器に通すと、沸点の高いR−134a
が早く凝縮し、凝縮器のパイプ内では、R−134aを
リッチとする液相と、R−32、R−125をリッチと
する気相との2相が作られ、管内の熱伝達と管壁からの
放熱の効率が下がる。液相の増大はパイプ内の流速を落
し凝縮効率を下げることになる。それ故に、本発明は前
述した従来技術の不具合を解消させることを解決すべき
課題とする。Problems to be Solved by the Invention R-32, R-125
When a mixed medium composed of three components of R-134a and R-134a is passed through a condenser of an air conditioner including a refrigerator, R-134a having a high boiling point is obtained.
Rapidly condense, and two phases, a liquid phase rich in R-134a and a gas phase rich in R-32 and R-125, are formed in the pipe of the condenser, and the heat transfer in the pipe and the pipe The efficiency of heat dissipation from the wall is reduced. The increase in the liquid phase reduces the flow velocity in the pipe and reduces the condensation efficiency. Therefore, an object of the present invention is to solve the above-mentioned disadvantages of the related art.
【0013】[0013]
【課題を解決するための手段】本発明は、前述した課題
を解決するために、圧縮機と膨脹弁との間に配されかつ
3成分混合媒体を凝縮させる冷凍機を含む空調機用熱交
換器において、該熱交換器が圧縮機に接続される第1凝
縮器と、該第1凝縮器に接続された液ガス分離器と、該
液ガス分離器内のガス成分を受ける第2凝縮器と、第2
凝縮器の吐出口と膨脹弁の吸入口とに接続される過冷却
熱交換器とを有し、液ガス分離器内の液成分を過冷却熱
交換器の吸入口に供給する熱交換器を提供する。さら
に、本発明は、圧縮機と膨脹弁との間に配されかつ3成
分混合媒体を凝縮させる冷凍機を含む空調機用熱交換器
において、該熱交換器が圧縮機に接続される第1凝縮器
と、該第1凝縮器に接続された液ガス分離器と、該液ガ
ス分離器内のガス成分を受ける第2凝縮器とを有し、液
ガス分離器内の液成分を膨脹弁の吸入側に供給する熱交
換器を提供する。SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a heat exchange for an air conditioner including a refrigerator arranged between a compressor and an expansion valve and condensing a three-component mixed medium. , A first condenser having the heat exchanger connected to a compressor, a liquid gas separator connected to the first condenser, and a second condenser for receiving a gas component in the liquid gas separator And the second
A heat exchanger having a supercooling heat exchanger connected to the discharge port of the condenser and the suction port of the expansion valve, and supplying the liquid component in the liquid-gas separator to the suction port of the subcooling heat exchanger. provide. Furthermore, the present invention provides a heat exchanger for an air conditioner, which includes a refrigerator arranged between a compressor and an expansion valve and for condensing a three-component mixed medium, wherein the heat exchanger is connected to the compressor. A condenser, a liquid gas separator connected to the first condenser, and a second condenser for receiving a gas component in the liquid gas separator, and an expansion valve for expanding the liquid component in the liquid gas separator. Provide a heat exchanger for supplying to the suction side of.
【0014】好ましくは、第1凝縮器の管径が第2凝縮
器の管径より大であり、3成分混合媒体がR−32、R
−125、R−134aからなる。Preferably, the pipe diameter of the first condenser is larger than the pipe diameter of the second condenser, and the three-component mixed medium is R-32, R.
It consists of -125 and R-134a.
【0015】[0015]
【作用】凝縮器内の管の途中で液相を抜きとり、圧縮機
からの高圧流体の流速を上げて管の残部にて該高圧流体
を凝縮させるので、高圧流体と管との接触熱伝達率を向
上させ得る。[Function] The liquid phase is withdrawn in the middle of the tube in the condenser, the flow velocity of the high-pressure fluid from the compressor is increased, and the high-pressure fluid is condensed in the remainder of the tube, so that the contact heat transfer between the high-pressure fluid and the tube Can improve the rate.
【0016】[0016]
【実施例】図1を用いて、本発明による空調機10の一
例を示す。圧縮機12は、四方弁13を介して、室外側
熱交換器14に接続され、次いで、逆止弁セット18を
介して、過冷却熱交換器11に接続される。過冷却熱交
換器11を膨脹弁15に接続させる。膨脹弁15は、逆
止弁セット18を介して室内側熱交換器16に接続さ
れ、室内側熱交換器16を、四方弁13を介して、アキ
ュムレータ17に接続する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An example of an air conditioner 10 according to the present invention is shown in FIG. The compressor 12 is connected to the outdoor heat exchanger 14 via a four-way valve 13, and then to the subcooling heat exchanger 11 via a check valve set 18. The subcooling heat exchanger 11 is connected to the expansion valve 15. The expansion valve 15 is connected to the indoor heat exchanger 16 via the check valve set 18, and the indoor heat exchanger 16 is connected to the accumulator 17 via the four-way valve 13.
【0017】室外側熱交換器14は、第1凝縮器19と
第2凝縮器20とからなり、両凝縮器19、20の間に
液ガス分離器21を介在させ、第1凝縮器19で凝縮し
た液相分は、液ガス分離器21に入れられ、過冷却熱交
換器11の吸入口側に逆止弁18を介して供給可能とす
る。液ガス分離器21内のガス相分は第2凝縮器20に
送られ、ここで凝縮して、過冷却熱交換器11内に逆止
弁セット18を介して入る。室内側熱交換器16は、第
1凝縮器19′と第2凝縮器20′とからなり、両凝縮
器19′、20′の間に液ガス分離器21′を介在さ
せ、暖房時、第1凝縮器19′で凝縮した液相分を液ガ
ス分離器21′に入れ、過冷却熱交換器11の吸入口側
に逆止弁18を介して供給可能とする。液ガス分離器2
1′内のガス相分は第2凝縮器20′に送られ、ここで
凝縮して逆止弁18を介して過冷却熱交換器11内に入
る。液ガス分離器21、21′の液相分を膨脹弁15の
吸入側に入れ、過冷却熱交換器11を省略してもよい。The outdoor heat exchanger 14 comprises a first condenser 19 and a second condenser 20, a liquid gas separator 21 is interposed between the condensers 19 and 20, and the first condenser 19 is used. The condensed liquid phase component is put into the liquid gas separator 21, and can be supplied to the suction port side of the supercooling heat exchanger 11 via the check valve 18. The gas phase component in the liquid-gas separator 21 is sent to the second condenser 20, where it is condensed and enters the subcooling heat exchanger 11 via the check valve set 18. The indoor heat exchanger 16 is composed of a first condenser 19 'and a second condenser 20', and a liquid gas separator 21 'is interposed between the condensers 19' and 20 'to heat the first condenser 19' and the second condenser 20 '. The liquid phase component condensed in the first condenser 19 'is put into the liquid gas separator 21' and can be supplied to the suction port side of the subcooling heat exchanger 11 via the check valve 18. Liquid gas separator 2
The gas phase component in 1'is sent to the second condenser 20 ', where it is condensed and enters the subcooling heat exchanger 11 via the check valve 18. The liquid phase components of the liquid gas separators 21 and 21 'may be placed on the suction side of the expansion valve 15 and the subcooling heat exchanger 11 may be omitted.
【0018】室外側熱交換器14内の両凝縮器19、2
0と液ガス分離器21との間に第1と第2の逆止弁2
2、23を介在させる。第1の逆止弁22は、冷房時の
み、液ガス分離器21から第2凝縮器20への気相分の
供給を可能にし、第2逆止弁23が、暖房時のみ、第2
凝縮器20から第1凝縮器19への気液2相分の供給を
可能にする。室内側熱交換器16の両凝縮器19′、2
0′と液ガス分離器21′との間に、第1と第2の逆止
弁22′、23′を介在させる。第1の逆止弁22′
は、暖房時のみ、液ガス分離器21′から第2の凝縮器
20′への気相分の供給を可能にし、第2逆止弁23′
が、冷房時のみ、第2凝縮器20′から第1凝縮器1
9′への気液2相分の供給を可能にする。液ガス分離器
21、21′の液成分は第3逆止弁24、24′を介し
て、逆止弁セット18側へ供給される。Both condensers 19 and 2 in the outdoor heat exchanger 14
0 and the liquid gas separator 21 between the first and second check valves 2
2, 23 are interposed. The first check valve 22 makes it possible to supply the gas phase component from the liquid-gas separator 21 to the second condenser 20 only during cooling, and the second check valve 23 makes the second check only during heating.
It is possible to supply two gas-liquid phases from the condenser 20 to the first condenser 19. Both condensers 19 ', 2 of the indoor heat exchanger 16
First and second check valves 22 'and 23' are interposed between 0'and the liquid gas separator 21 '. First check valve 22 '
Makes it possible to supply the gas phase component from the liquid gas separator 21 'to the second condenser 20' only during heating, and the second check valve 23 '.
However, only during cooling, the second condenser 20 'to the first condenser 1
It is possible to supply two gas-liquid phases to 9 '. The liquid components of the liquid-gas separators 21 and 21 'are supplied to the check valve set 18 side via the third check valves 24 and 24'.
【0019】冬期中の低温雰囲気下での暖房時は、室外
側熱交換器14の気化能力が劣るため、エンジン25の
廃熱を、熱交換器26を介して、混合媒体に伝熱させ、
圧縮機12への気相分の供給を確保するとよい。During heating in a low temperature atmosphere during the winter season, since the vaporizing capacity of the outdoor heat exchanger 14 is poor, the waste heat of the engine 25 is transferred to the mixed medium via the heat exchanger 26.
It is advisable to secure the supply of the gas phase component to the compressor 12.
【0020】冷房又は冷凍サイクルについて述べるが、
基本的には図3に示すサイクルと同じであるので一部説
明が重複する。圧縮機12より吐出された高温高圧の3
成分(R−32、23%(30wt%);R−125、2
5%(10wt%);R−134a、52%(60wt
%))の混合媒体は、四方弁13を介して、室外側熱交
換器14に入り、放熱し凝縮する。凝縮過程は、先ず
は、第1凝縮器19内で沸点の高いR−134aがリッ
チな凝縮相を作り、その液化分を液ガス分離器21内に
貯え、これを過冷却熱交換器11の吸入口側に第3逆止
弁24を介して送り、ガス成分を第1逆止弁22を介し
て第2凝縮器20内に送る。第2凝縮器20内の管路に
液相がなく流速を上げて効率よく凝縮行程を行なう。凝
縮相は、次いで、過冷却熱交換器11に入り、混合媒体
が完全に液化する。液化相は、膨脹弁15により低温低
圧の気液2相となって、室内側熱交換器16に入り、第
2凝縮器20′、第2逆止弁23′と第1凝縮器19′
を介し吸熱して蒸発し低温低圧ガスとなって四方弁13
を介してアキュムレータ17に入る。The cooling or refrigerating cycle will be described below.
Since the cycle is basically the same as that shown in FIG. 3 of high temperature and high pressure discharged from the compressor 12
Component (R-32, 23% (30 wt%); R-125, 2
5% (10 wt%); R-134a, 52% (60 wt
%)) Enters the outdoor heat exchanger 14 through the four-way valve 13 and radiates heat to be condensed. In the condensation process, first, a condensed phase rich in R-134a having a high boiling point is formed in the first condenser 19, and the liquefied portion thereof is stored in the liquid gas separator 21, which is stored in the subcooling heat exchanger 11. It is sent to the suction port side via the third check valve 24, and the gas component is sent to the inside of the second condenser 20 via the first check valve 22. There is no liquid phase in the conduit in the second condenser 20, and the flow velocity is increased to efficiently perform the condensation process. The condensed phase then enters the subcooling heat exchanger 11 and the mixed medium is completely liquefied. The liquefaction phase becomes a low-temperature low-pressure gas-liquid two-phase by the expansion valve 15, enters the indoor heat exchanger 16, and the second condenser 20 ', the second check valve 23', and the first condenser 19 '.
The four-way valve 13
Enter the accumulator 17 via.
【0021】暖房サイクルは、図4の例と実質的に同じ
サイクルをなし、室内側熱交換器16が凝縮器として機
能する。凝縮過程は、先ずは、第1凝縮器19′内で沸
点の高いR−134aがリッチな凝縮相を作り、その液
化分を液ガス分離器21′内に貯え、第3逆止弁24′
を介して、これを過冷却熱交換器11′の吸入口側に送
り、ガス成分を第1逆止弁22′を介して第2凝縮器2
0′内に送る。第2凝縮器20′内の管路に液相がなく
流速を上げて効率よく凝縮行程を行なう。凝縮相は、次
いで、過冷却熱交換器11に入り、混合媒体が完全に液
化する。液化相は、膨脹弁15により低温低圧の気液2
相となって、室内側熱交換器16に入り、吸熱して蒸発
し、低温低圧ガスとなって四方弁13を介してアキュム
レータ17に入る。The heating cycle is substantially the same as the example of FIG. 4, and the indoor heat exchanger 16 functions as a condenser. In the condensation process, first, R-134a having a high boiling point forms a condensed phase rich in the first condenser 19 ', and the liquefied portion thereof is stored in the liquid gas separator 21', and the third check valve 24 '.
It is sent to the suction port side of the subcooling heat exchanger 11 'through the second condenser 2 through the first check valve 22'.
Send in 0 '. Since there is no liquid phase in the conduit in the second condenser 20 ', the flow velocity is increased to efficiently perform the condensation process. The condensed phase then enters the subcooling heat exchanger 11 and the mixed medium is completely liquefied. The liquefaction phase is the low temperature low pressure gas-liquid 2 by the expansion valve 15.
As a phase, it enters the indoor heat exchanger 16, absorbs heat and evaporates, becomes a low-temperature low-pressure gas, and enters the accumulator 17 via the four-way valve 13.
【0022】第1凝縮器19、19′の管径は、第2凝
縮器20、20′の管径より大とする。たとえば、前者
の管径を9.52φとすれば、後者の管径を6.35φとす
る。液ガス分離器21、21′は凝縮器14、16の途
中で液相を抜き、第2凝縮器20、20′の細い管路で
流速を上げて凝縮させるので、沸点の異る3成分の混合
媒体を効率よく凝縮できる。The pipe diameter of the first condensers 19 and 19 'is larger than that of the second condensers 20 and 20'. For example, if the former tube diameter is 9.52φ, the latter tube diameter is 6.35φ. The liquid-gas separators 21 and 21 'extract the liquid phase in the middle of the condensers 14 and 16 and increase the flow rate through the narrow pipes of the second condensers 20 and 20' to condense the liquid phase, so that the three components having different boiling points are separated. The mixed medium can be condensed efficiently.
【0023】図2に示す例は、室外側熱交換器14内の
第2凝縮器20、20、20、…と液ガス分離器21、
21、21、…、第1と第2逆止弁22、23、…を複
数個直列に配したもので、さらに、室内側熱交換器16
内の第2凝縮器20′、20′、20′、…と液ガス分
離器21′、21′、21′、…、第1と第2逆止弁2
2、23、…を複数個直列に配したもので、他の構成は
図1の例のものと同じである。第2凝縮器20、20、
…20′、20′、…は、液ガス分離器21、21、…
21′、21′、…とともに、混合媒体の気相分を多段
に亘って凝縮させる。In the example shown in FIG. 2, the second condensers 20, 20, 20, ... In the outdoor heat exchanger 14 and the liquid gas separator 21,
, 21, a plurality of first and second check valves 22, 23, ... Are arranged in series, and further, the indoor heat exchanger 16
Second condensers 20 ', 20', 20 ', ... And liquid gas separators 21', 21 ', 21', ..., First and second check valves 2
.. are arranged in series, and other configurations are the same as those in the example of FIG. The second condensers 20, 20,
... 20 ', 20', ... are liquid gas separators 21, 21, ...
Along with 21 ', 21', ..., The gas phase component of the mixed medium is condensed in multiple stages.
【0024】[0024]
【効果】凝縮器の凝縮過程で液相分を抜きとり、気相分
の凝縮を促進させることは、圧縮機の負荷を下げ、駆動
トルクを小さくさせ得る。又、熱交換器を小さくするこ
とができ、コストの低減を図ることができる。[Effect] Extracting the liquid phase component in the condensation process of the condenser and promoting the condensation of the gas phase component can reduce the load on the compressor and reduce the driving torque. Further, the heat exchanger can be downsized, and the cost can be reduced.
【図1】本発明の一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
【図2】凝縮器を多段とした例の説明図である。FIG. 2 is an explanatory diagram of an example in which a condenser has multiple stages.
【図3】従来例の冷房サイクルを示す説明図である。FIG. 3 is an explanatory diagram showing a cooling cycle of a conventional example.
【図4】従来例の暖房サイクルを示す説明図である。FIG. 4 is an explanatory diagram showing a heating cycle of a conventional example.
10 空調機 11 過冷却熱交換器 12 圧縮機 13 四方弁 14、16 熱交換器 15 膨脹弁 17 アキュムレータ 19、19′ 第1熱交換器 20、20′ 第2熱交換器 21 液ガス分離器 10 Air Conditioner 11 Supercooling Heat Exchanger 12 Compressor 13 Four-way Valve 14, 16 Heat Exchanger 15 Expansion Valve 17 Accumulator 19, 19 'First Heat Exchanger 20, 20' Second Heat Exchanger 21 Liquid Gas Separator
Claims (9)
分混合媒体を凝縮させる冷凍機を含む空調機用熱交換器
において、該熱交換器が圧縮機に接続される第1凝縮器
と、該第1凝縮器に接続された液ガス分離器と、該液ガ
ス分離器内のガス成分を受ける第2凝縮器と、第2凝縮
器の吐出口と膨脹弁の吸入口とに接続される過冷却熱交
換器とを有し、液ガス分離器内の液成分を過冷却熱交換
器の吸入口に供給する熱交換器。1. A heat exchanger for an air conditioner, comprising a refrigerator arranged between a compressor and an expansion valve and condensing a three-component mixed medium, wherein the heat exchanger is connected to the compressor. And a liquid gas separator connected to the first condenser, a second condenser for receiving gas components in the liquid gas separator, a discharge port of the second condenser and a suction port of an expansion valve. A heat exchanger having a supercooling heat exchanger connected thereto and supplying the liquid component in the liquid gas separator to the suction port of the supercooling heat exchanger.
り大である請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein the tube diameter of the first condenser is larger than the tube diameter of the second condenser.
5、R−134aからなる請求項2記載の熱交換器。3. The three-component mixed medium is R-32 or R-12.
The heat exchanger according to claim 2, which comprises R-134a.
分混合媒体を凝縮させる冷凍機を含む空調機用熱交換器
において、該熱交換器が圧縮機に接続される第1凝縮器
と、該第1凝縮器に接続された液ガス分離器と、該液ガ
ス分離器内のガス成分を受ける第2凝縮器とを有し、液
ガス分離器内の液成分と第2凝縮器で凝縮した液成分を
膨脹弁の吸入側に供給する熱交換器。4. A heat exchanger for an air conditioner, comprising a refrigerator arranged between a compressor and an expansion valve and condensing a ternary mixed medium, wherein the heat exchanger is connected to the compressor. A liquid gas separator connected to the first condenser, and a second condenser for receiving a gas component in the liquid gas separator, and a liquid component in the liquid gas separator and a second condenser. A heat exchanger that supplies the liquid component condensed in the vessel to the suction side of the expansion valve.
り大である請求項4記載の熱交換器。5. The heat exchanger according to claim 4, wherein the tube diameter of the first condenser is larger than the tube diameter of the second condenser.
5、R−134aからなる請求項5記載の熱交換器。6. The three-component mixed medium is R-32 or R-12.
5. The heat exchanger according to claim 5, which is composed of R-134a.
分を第2凝縮器に供給し、第2逆止弁が第2凝縮器から
第1凝縮器への混合媒体の供給を可能にし、第3の逆止
弁が液ガス分離器内の液相分を膨張弁側へ供給可能とさ
せる請求項1又は4記載の熱交換器。7. The first check valve supplies the gas component in the liquid-gas separator to the second condenser, and the second check valve supplies the mixed medium from the second condenser to the first condenser. The heat exchanger according to claim 1, wherein the third check valve enables the liquid phase component in the liquid gas separator to be supplied to the expansion valve side.
縮器間に第2逆止弁と液ガス分離器とを配し、各液ガス
分離器のガス成分を下流側の第2凝縮器へ供給可能とす
る請求項7記載の熱交換器。8. A plurality of second condensers are provided, a second check valve and a liquid gas separator are arranged between the respective second condensers, and a gas component of each liquid gas separator is placed on the downstream side. The heat exchanger according to claim 7, which can be supplied to two condensers.
熱を混合媒体に供給する熱交換器を配した請求項8記載
の熱交換器。9. The heat exchanger according to claim 8, further comprising a heat exchanger for supplying the waste heat of the vehicle between the four-way valve and the outdoor heat exchanger to the mixed medium.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6522695A JPH08233386A (en) | 1995-03-01 | 1995-03-01 | Heat exchanger |
US08/580,600 US5647224A (en) | 1995-01-19 | 1995-12-29 | Air conditioner and heat exchanger therefor |
US08/772,902 US5752392A (en) | 1995-01-19 | 1996-12-24 | Air conditioner and heat exchanger therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6522695A JPH08233386A (en) | 1995-03-01 | 1995-03-01 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08233386A true JPH08233386A (en) | 1996-09-13 |
Family
ID=13280801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6522695A Pending JPH08233386A (en) | 1995-01-19 | 1995-03-01 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08233386A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006513283A (en) * | 2003-01-16 | 2006-04-20 | プロトコル リソース マネージメント インコーポレイテッド | Refrigerant composition |
JP2006220351A (en) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | Freezer |
JP4208982B2 (en) * | 1997-06-09 | 2009-01-14 | グリーンアース株式会社 | Heat pump air conditioner |
JP2009300021A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device |
CN103486761A (en) * | 2013-10-11 | 2014-01-01 | 肖强 | Industrial waste heat recycling device |
CN104142032A (en) * | 2014-06-12 | 2014-11-12 | 无锡商业职业技术学院 | Single-stage compression low-temperature refrigeration system |
-
1995
- 1995-03-01 JP JP6522695A patent/JPH08233386A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4208982B2 (en) * | 1997-06-09 | 2009-01-14 | グリーンアース株式会社 | Heat pump air conditioner |
JP2006513283A (en) * | 2003-01-16 | 2006-04-20 | プロトコル リソース マネージメント インコーポレイテッド | Refrigerant composition |
JP2006220351A (en) * | 2005-02-10 | 2006-08-24 | Hitachi Ltd | Freezer |
JP2009300021A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device |
CN103486761A (en) * | 2013-10-11 | 2014-01-01 | 肖强 | Industrial waste heat recycling device |
CN104142032A (en) * | 2014-06-12 | 2014-11-12 | 无锡商业职业技术学院 | Single-stage compression low-temperature refrigeration system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001221517A (en) | Supercritical refrigeration cycle | |
JPH10332212A (en) | Refrigeration cycle of air conditioner | |
US5752392A (en) | Air conditioner and heat exchanger therefor | |
JPH10318614A (en) | Air conditioner | |
JPH08233386A (en) | Heat exchanger | |
JPH08166172A (en) | Refrigerating equipment | |
JP4651255B2 (en) | Refrigerant composition and refrigeration circuit using the same | |
WO1997029162A1 (en) | Difluoromethane/hydrocarbon refrigerant mixture and refrigeration cycle plant using the same | |
CN114058334A (en) | Mixed refrigerant and refrigerating system | |
JPH08200866A (en) | Air conditioner | |
US6951115B2 (en) | Refrigerant composition and refrigerating circuit using the same | |
JP3334418B2 (en) | Refrigeration equipment | |
JPH08178445A (en) | Heat pump type air conditioner | |
JP2562723B2 (en) | Refrigerant composition and refrigeration system | |
JPH10185341A (en) | Heat pump type cooling-heating machine using new alternative refrigerant gas hfc | |
JP2004002492A (en) | Refrigerant compsition and ultra-deep freezer | |
JPH11281207A (en) | Vapor compression chiller | |
JP3448377B2 (en) | Refrigeration system using non-azeotropic refrigerant mixture | |
JP3480205B2 (en) | Air conditioner | |
JPH08303882A (en) | Method of operating heat pump using new alternative refrigerant gas hfc | |
JPH10153352A (en) | Refrigerating device | |
JPH09318182A (en) | Absorption room cooler | |
JPH08176537A (en) | Hydraulic fluid | |
JP2000257974A (en) | Refrigerating system | |
JP3674974B2 (en) | Water cooler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040817 |