JPH08233379A - Refrigerator - Google Patents
RefrigeratorInfo
- Publication number
- JPH08233379A JPH08233379A JP3662195A JP3662195A JPH08233379A JP H08233379 A JPH08233379 A JP H08233379A JP 3662195 A JP3662195 A JP 3662195A JP 3662195 A JP3662195 A JP 3662195A JP H08233379 A JPH08233379 A JP H08233379A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- valve
- solenoid valve
- compressor
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は冷凍庫内等を冷却するた
めの冷凍装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating device for cooling the inside of a freezer or the like.
【0002】[0002]
【従来の技術】図3は従来の冷凍装置の冷媒系統図であ
る。同図において、1は圧縮機、2は凝縮器、3は電磁
弁、4は膨張弁、5は蒸発器で、配管により順次に接続
されており、さらに蒸発器5で冷却された空気を庫内に
送風するための送風機6と、凝縮器2を流れる高温の冷
媒を冷却するための風を送るための送風機7を備えてい
る。同図において、8は凝縮器2から電磁弁3へ接続さ
れた高圧液管、8aは電磁弁3から膨張弁4へ接続され
た高圧液管、9は膨張弁4から蒸発器5へ接続された低
圧ガス配管、10は蒸発器5が置かれている冷凍庫内の
温度調節用サーモスタットである。2. Description of the Related Art FIG. 3 is a refrigerant system diagram of a conventional refrigeration system. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electromagnetic valve, 4 is an expansion valve, 5 is an evaporator, which are connected in sequence by piping, and the air cooled by the evaporator 5 is stored. A blower 6 for blowing air inside and a blower 7 for blowing air for cooling the high temperature refrigerant flowing through the condenser 2 are provided. In the figure, 8 is a high-pressure liquid pipe connected from the condenser 2 to the solenoid valve 3, 8a is a high-pressure liquid pipe connected from the solenoid valve 3 to the expansion valve 4, and 9 is connected from the expansion valve 4 to the evaporator 5. The low-pressure gas pipe 10 is a thermostat for adjusting the temperature in the freezer in which the evaporator 5 is placed.
【0003】サーモスタット10で感知した温度が所定
の温度以上の時には、サーモスタット10のスイッチ作
用により、圧縮機1は作動状態、電磁弁3は開路状態に
なっている。圧縮機1から吐出された高温高圧のガス冷
媒は凝縮器2内で送風機7から送風された空気と熱交換
され、凝縮され高圧の液冷媒となる。その高圧の液冷媒
は膨張弁4を通過することにより減圧され、低圧の液冷
媒となる。その低圧の液冷媒は蒸発器5内で送風機6か
ら送風された空気と熱交換され、蒸発され低圧のガス冷
媒となる。その低圧のガス冷媒は圧縮機1へ吸入され
る。When the temperature sensed by the thermostat 10 is equal to or higher than a predetermined temperature, the compressor 1 is in the operating state and the solenoid valve 3 is in the open circuit state due to the switch action of the thermostat 10. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is heat-exchanged with the air blown from the blower 7 in the condenser 2 and condensed to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is decompressed by passing through the expansion valve 4, and becomes low-pressure liquid refrigerant. The low-pressure liquid refrigerant is heat-exchanged with the air blown from the blower 6 in the evaporator 5, and evaporated to become a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the compressor 1.
【0004】サーモスタット10で感知した温度が所定
の温度以下になった時には、サーモスタット10のスイ
ッチ作用により、電磁弁3は閉路状態になり、圧縮機1
から凝縮器2そして高圧液管8の間が高圧状態となり、
高圧液管8aから膨張弁4そして低圧ガス配管9そして
蒸発器5そして圧縮機1の間が低圧状態になってから圧
縮機1は停止する。(以下、電磁弁3が閉路状態にな
り、圧縮機1から凝縮器2そして高圧液管8の間が高圧
状態となり、高圧液管8aから膨張弁4そして低圧ガス
配管9そして蒸発器5そして圧縮機1の間が低圧状態に
なってから圧縮機1が停止することをポンプダウンと表
現する。) また、前記従来の冷凍装置の使用者が、前記従来の冷凍
装置の運転中に電磁弁3を閉路状態にした時にも、前記
ポンプダウンを行なう。When the temperature sensed by the thermostat 10 falls below a predetermined temperature, the solenoid valve 3 is closed due to the switch action of the thermostat 10, and the compressor 1
Between the condenser 2 and the high pressure liquid pipe 8 is in a high pressure state,
After the high pressure liquid pipe 8a, the expansion valve 4, the low pressure gas pipe 9, the evaporator 5 and the compressor 1 are in a low pressure state, the compressor 1 is stopped. (Hereinafter, the electromagnetic valve 3 is closed, the pressure between the compressor 1 to the condenser 2 and the high pressure liquid pipe 8 is high, and the high pressure liquid pipe 8a to the expansion valve 4 to the low pressure gas pipe 9 to the evaporator 5 to the compression The stop of the compressor 1 after the pressure between the machines 1 becomes low is referred to as pump down.) Further, the user of the conventional refrigeration system operates the solenoid valve 3 while the conventional refrigeration system is in operation. The pump is down even when the circuit is closed.
【0005】また、タイマなどを用いて運転時間が所定
の時間以上になった時に前記タイマのスイッチ作用によ
り、前記従来の冷凍装置の運転を停止させる時にも、前
記ポンプダウンを行なう。The pump down is also performed when the operation of the conventional refrigeration system is stopped by the switch action of the timer when the operation time exceeds a predetermined time using a timer or the like.
【0006】[0006]
【発明が解決しようとする課題】上記従来の冷凍装置に
は解決すべき次の課題があった。The above conventional refrigeration system has the following problems to be solved.
【0007】即ち、従来の冷凍装置は上述のように構成
されているので、前記ポンプダウンした後にサーモスタ
ット10で感知した温度が所定の温度以上になった場
合、あるいは前記使用者が前記従来の冷凍装置を再起動
させる場合、あるいは前記タイマにより、停止時間が所
定の時間以上になり、前記タイマのスイッチ作用によ
り、前記従来の冷凍装置が運転状態になる場合に、前記
従来の冷凍装置の高圧液管8内部の高圧と高圧液管8a
内部の低圧との圧力差が大きい状態で電磁弁3を開路状
態にするので、高圧液管8内の高圧の液冷媒が高圧液管
8aを通って膨張弁4へ急激に流れ込むために液冷媒が
膨張弁4に衝突する。(以下、液冷媒が膨張弁4へ急激
に流れ込み、膨張弁4に衝突する現象を液ハンマー現象
と表現する。)前記液ハンマー現象が発生すると、液冷
媒が膨張弁4に衝突する時に衝撃音を発生したり、膨張
弁4を破壊するなどの解決すべき課題があった。That is, since the conventional refrigerating apparatus is configured as described above, when the temperature sensed by the thermostat 10 becomes higher than a predetermined temperature after the pump down, or the user freezes the conventional refrigerating apparatus. When restarting the device, or when the timer causes the stop time to become a predetermined time or more and the conventional refrigerating device enters an operating state due to the switching action of the timer, the high pressure liquid of the conventional refrigerating device High pressure inside the pipe 8 and high pressure liquid pipe 8a
Since the solenoid valve 3 is opened in a state where the pressure difference from the low pressure inside is large, the high-pressure liquid refrigerant in the high-pressure liquid pipe 8 rapidly flows into the expansion valve 4 through the high-pressure liquid pipe 8a, so that the liquid refrigerant is Collides with the expansion valve 4. (Hereinafter, a phenomenon in which the liquid refrigerant rapidly flows into the expansion valve 4 and collides with the expansion valve 4 is referred to as a liquid hammer phenomenon.) When the liquid hammer phenomenon occurs, an impact sound is generated when the liquid refrigerant collides with the expansion valve 4. There is a problem to be solved, such as the occurrence of the above or destruction of the expansion valve 4.
【0008】本発明は上記のような課題を解決するため
に提案されたもので、電磁弁3が閉路状態にあって高圧
液管8内の高圧と高圧液管8a内の低圧との圧力差が大
きい状態で電磁弁3を開路状態にすることが必要となっ
た時に、電磁弁3を開路状態にする前に、電磁弁3をバ
イパスし、高圧液管8内の高圧の液冷媒を減圧機構を通
すことにより減圧して高圧液管8aへ送りこみ、高圧液
管8内の圧力と高圧液管8a内の圧力との圧力差を減少
させてから電磁弁3を開路状態にすることにより、液ハ
ンマー現象を小さくすることのできる冷凍装置を提供す
ることを目的とする。The present invention has been proposed in order to solve the above problems, and the pressure difference between the high pressure in the high pressure liquid pipe 8 and the low pressure in the high pressure liquid pipe 8a when the solenoid valve 3 is closed. When it is necessary to open the solenoid valve 3 in a large state, the solenoid valve 3 is bypassed and the high pressure liquid refrigerant in the high pressure liquid pipe 8 is depressurized before the solenoid valve 3 is opened. By reducing the pressure by passing through the mechanism and sending it to the high-pressure liquid pipe 8a, and reducing the pressure difference between the pressure in the high-pressure liquid pipe 8 and the pressure in the high-pressure liquid pipe 8a, the solenoid valve 3 is opened. An object of the present invention is to provide a refrigerating device that can reduce the liquid hammer phenomenon.
【0009】[0009]
【課題を解決するための手段】本発明は上記課題の解決
手段として、次の(1)〜(3)に記載の冷凍装置を提
供しようとするものである。As a means for solving the above problems, the present invention is to provide a refrigerating apparatus as described in (1) to (3) below.
【0010】(1).圧縮機、凝縮器、電磁弁、膨張弁
及び蒸発器が配管により順次に接続されて冷凍サイクル
を構成する冷凍装置において、前記電磁弁をバイパスす
るバイパス配管と、同バイパス配管に直列に介装された
開閉弁及び減圧機構とを具備してなることを特徴とする
冷凍装置。(1). In a refrigerating apparatus in which a compressor, a condenser, a solenoid valve, an expansion valve, and an evaporator are sequentially connected by pipes to form a refrigeration cycle, a bypass pipe that bypasses the solenoid valve and a bypass pipe that is interposed in series. A refrigeration system comprising an opening / closing valve and a pressure reducing mechanism.
【0011】(2).上記(1)記載の冷凍装置におい
て、圧縮機の始動信号でバイパス配管の開閉弁を開き、
前記電磁弁の入口・出口間の圧力差が所定値以下になっ
た時、前記圧縮機を始動させると同時に前記電磁弁を開
き、前記バイパス配管の開閉弁を閉じるよう構成してな
ることを特徴とする冷凍装置。(2). In the refrigeration apparatus described in (1) above, the on / off valve of the bypass pipe is opened by a start signal of the compressor,
When the pressure difference between the inlet and the outlet of the solenoid valve becomes equal to or less than a predetermined value, the compressor is started and the solenoid valve is opened at the same time, and the opening / closing valve of the bypass pipe is closed. Refrigeration equipment to be.
【0012】(3).上記(1)記載の冷凍装置におい
て、圧縮機の始動信号で前記バイパス配管の開閉弁を開
き、所定時間経過後、前記圧縮機を始動させると同時に
前記電磁弁を開き、前記バイパス配管の開閉弁を閉じる
よう構成してなることを特徴とする冷凍装置。(3). In the refrigerating apparatus according to (1) above, an opening / closing valve of the bypass pipe is opened by a start signal of a compressor, and after a predetermined time, the compressor is started and the solenoid valve is opened at the same time to open / close the bypass pipe. A refrigerating apparatus, characterized in that the refrigerating apparatus is configured to be closed.
【0013】[0013]
【作用】本発明は上記のように構成されるので次の作用
を有する。Since the present invention is constructed as described above, it has the following actions.
【0014】(1).上記(1)の構成にあっては電磁
弁をバイパスするバイパス配管を設け、同バイパス配管
に直列に介装された開閉弁及び減圧機構を備えるため、
電磁弁を開く前に予めバイパス配管の開閉弁を開けば一
方の高圧液冷媒が他方(膨張弁のある側)の低圧側に減
圧機構を経て流れ、両方の間の圧力差が解消に向うの
で、従来のように高圧液冷媒が低圧側の膨張弁に高圧差
で流れて衝突し、大きな衝撃音を発生したり、膨張弁を
破壊したりすることがなくなる。(1). In the configuration of (1) above, since the bypass pipe that bypasses the solenoid valve is provided, and the on-off valve and the pressure reducing mechanism that are interposed in series in the bypass pipe are provided,
If the on-off valve of the bypass pipe is opened before opening the solenoid valve, one high-pressure liquid refrigerant will flow to the other low-pressure side (the side with the expansion valve) via the pressure reducing mechanism, and the pressure difference between the two will be eliminated. The high-pressure liquid refrigerant does not flow into the expansion valve on the low-pressure side at a high pressure difference and collide with each other as in the conventional case, so that a large impact noise is generated or the expansion valve is not destroyed.
【0015】(2).上記(2)の構成にあっては上記
(1)の圧縮機の始動信号でバイパス配管の開閉弁を開
き、電磁弁の入口・出口間の圧力差が所定値以下になっ
たとき、圧縮機を始動させると同時に電磁弁を開き、し
かる後、バイパス配管の開閉弁を閉じるので、上記
(1)の作用が適確に果たされる。(2). In the configuration of the above (2), when the opening / closing valve of the bypass pipe is opened by the start signal of the compressor of the above (1) and the pressure difference between the inlet and the outlet of the solenoid valve becomes a predetermined value or less, the compressor The solenoid valve is opened at the same time when the engine is started, and then the on-off valve of the bypass pipe is closed. Therefore, the action of the above (1) can be properly performed.
【0016】(3).上記(3)の構成にあっては上記
(1)の構成の圧縮機の始動信号でバイパス配管の開閉
弁を開き、所定時間経過後、圧縮機を始動させると同時
に電磁弁を開き、しかる後、開閉弁を閉じるので、バイ
パス配管を経て所定時間中に圧力差が十分に解消し、し
かる後、電磁弁が開かれ、かつ、役目を終えた開閉弁が
閉じることとなり、上記(1)の作用が適確に果たされ
る。(3). In the configuration of (3) above, the opening / closing valve of the bypass pipe is opened by the start signal of the compressor of the above configuration (1), and after a lapse of a predetermined time, the compressor is started and simultaneously the solenoid valve is opened. Since the on-off valve is closed, the pressure difference is sufficiently eliminated through the bypass pipe within a predetermined time, and then the solenoid valve is opened and the on-off valve that has finished its function is closed. The action is performed properly.
【0017】[0017]
【実施例】本発明の第1実施例を図1により、第2実施
例を図2により説明する。なお、第2実施例の構成(図
2)は、第1実施例の構成(図1)との相違が、電磁弁
12とキャピラリチューブ13の直列順序が入れ替って
いるのみで、構成部材、作用効果とも全く同様につき、
第1実施例の説明をそのまま適用することとし、第2実
施例としての説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. 1 and a second embodiment will be described with reference to FIG. The configuration of the second embodiment (FIG. 2) is different from the configuration of the first embodiment (FIG. 1) only in that the solenoid valve 12 and the capillary tube 13 are switched in series order. It is exactly the same as the effect,
The description of the first embodiment is applied as it is, and the description of the second embodiment is omitted.
【0018】図1は第1実施例の冷媒系統図で、従来例
の第3図と同様の構成部材には同符号を付し、必要ある
場合の他は説明を省略する。FIG. 1 is a refrigerant system diagram of the first embodiment. The same components as those in FIG. 3 of the conventional example are designated by the same reference numerals, and the description thereof will be omitted except when necessary.
【0019】図において、11は電磁弁3をバイパスす
るように設けられたバイパス配管、12はバイパス配管
11の途中に設けられたバイパス配管11の通路を開閉
するバイパス配管用電磁弁、13はバイパス配管用電磁
弁12が開路状態の時に流れる液冷媒の圧力を減少させ
る減圧機構をなすキャピラリチューブである。その他の
構成は従来例と同様である。In the figure, 11 is a bypass pipe provided to bypass the solenoid valve 3, 12 is a bypass pipe solenoid valve that opens and closes a passage of the bypass pipe 11 provided in the middle of the bypass pipe 11, and 13 is a bypass pipe. It is a capillary tube that forms a pressure reducing mechanism that reduces the pressure of the liquid refrigerant flowing when the piping solenoid valve 12 is in the open state. Other configurations are similar to those of the conventional example.
【0020】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.
【0021】図1においてサーモスタット10で感知し
た温度が所定の温度以上で、圧縮機1が作動状態、送風
機6及び送風機7が作動状態、電磁弁3が開路状態、バ
イパス配管用電磁弁12が閉路状態である時、冷凍運転
を行なう。冷凍運転状態でサーモスタット10が所定の
温度以下の温度を感知した時、サーモスタット10のス
イッチ作用により、電磁弁3は閉路状態になり、圧縮機
1から凝縮器2そして高圧液管8の間が高圧状態とな
り、高圧液管8aから膨張弁4そして低圧ガス配管9そ
して蒸発器5そして圧縮機1の間が低圧状態になってか
ら圧縮機1は停止する(以下、電磁弁3が閉路状態にな
り、圧縮機1から凝縮器2そして高圧液管8の間が高圧
状態となり、高圧液管8aから膨張弁4そして低圧ガス
配管9そして蒸発器5そして圧縮機1の間が低圧状態に
なってから圧縮機1が停止することをポンプダウンと表
現する。)。上記の状態で、サーモスタット10が所定
の温度以上の温度を感知した時、バイパス配管用電磁弁
12を開路状態にして電磁弁3をバイパスし、高圧液管
8内の高圧の液冷媒をキャピラリチューブ13を通して
減圧して、高圧液管8aへ送り込む。送り込まれた液冷
媒は減圧されるので、液冷媒の圧力と高圧液管8a内の
圧力の圧力差は小さく、送り込まれた液冷媒が高圧液管
8aを通って膨張弁4へ流れ込む勢いは小さく、液冷媒
と膨張弁4との衝突による衝撃は小さくなり、その時発
生する衝突音も小さくなる。このように液冷媒が高圧液
管8a内へ流れ込み、高圧液管8内部の高圧と高圧液管
8a内部の低圧との圧力差が小さくなってからバイパス
配管用電磁弁12を閉路状態、電磁弁3を開路状態にす
る。この時、高圧液管8内部の高圧と高圧液管8a内部
の低圧との圧力差はすでに小さくなっているので、高圧
液管8から高圧液管8aへ送り込まれる液冷媒が高圧液
管8aを通って膨張弁4へ流れ込む勢いは小さく、液冷
媒と膨張弁4との衝突による衝撃は小さくなり、その時
発生する衝突音も小さくなる。上記の動作を行なった
後、冷凍装置は運転状態になる。In FIG. 1, when the temperature sensed by the thermostat 10 is higher than a predetermined temperature, the compressor 1 is operating, the blowers 6 and 7 are operating, the solenoid valve 3 is open, and the bypass piping solenoid valve 12 is closed. When it is in the state, the freezing operation is performed. When the thermostat 10 detects a temperature lower than a predetermined temperature in the freezing operation state, the solenoid valve 3 is closed due to the switch action of the thermostat 10, and a high pressure occurs between the compressor 1, the condenser 2 and the high pressure liquid pipe 8. Then, the high pressure liquid pipe 8a, the expansion valve 4, the low pressure gas pipe 9, the evaporator 5 and the compressor 1 are in a low pressure state and then the compressor 1 is stopped (hereinafter, the solenoid valve 3 is closed). After the high pressure state between the compressor 1 and the condenser 2 and the high pressure liquid pipe 8 and the low pressure state between the high pressure liquid pipe 8a, the expansion valve 4, the low pressure gas pipe 9, the evaporator 5 and the compressor 1. Stopping the compressor 1 is referred to as pump down.) In the above state, when the thermostat 10 detects a temperature equal to or higher than a predetermined temperature, the bypass piping solenoid valve 12 is opened to bypass the solenoid valve 3 to bypass the high pressure liquid refrigerant in the high pressure liquid pipe 8. The pressure is reduced through 13 and fed into the high pressure liquid pipe 8a. Since the sent liquid refrigerant is decompressed, the pressure difference between the pressure of the liquid refrigerant and the pressure in the high-pressure liquid pipe 8a is small, and the force of the sent liquid refrigerant to flow into the expansion valve 4 through the high-pressure liquid pipe 8a is small. The impact caused by the collision between the liquid refrigerant and the expansion valve 4 is reduced, and the collision noise generated at that time is also reduced. In this way, the liquid refrigerant flows into the high-pressure liquid pipe 8a, and after the pressure difference between the high pressure inside the high-pressure liquid pipe 8 and the low pressure inside the high-pressure liquid pipe 8a becomes small, the bypass pipe solenoid valve 12 is closed and the solenoid valve is closed. 3 is opened. At this time, since the pressure difference between the high pressure inside the high-pressure liquid pipe 8 and the low pressure inside the high-pressure liquid pipe 8a has already become small, the liquid refrigerant sent from the high-pressure liquid pipe 8 to the high-pressure liquid pipe 8a flows through the high-pressure liquid pipe 8a. The momentum flowing through the expansion valve 4 through the expansion valve 4 is small, the impact due to the collision between the liquid refrigerant and the expansion valve 4 is small, and the collision noise generated at that time is also small. After performing the above operation, the refrigeration system is in operation.
【0022】また、使用者が前記ポンプダウンをした状
態で停止した冷凍装置を起動させる時はバイパス配管用
電磁弁12を開路状態にして、電磁弁3をバイパスし、
高圧液管8内の高圧の液冷媒をキャピラリチューブ13
を通して減圧して、高圧液管8aへ送り込む。送り込ま
れた液冷媒は減圧されるので、液冷媒の圧力と高圧液管
8a内の圧力の圧力差は小さく、送り込まれた液冷媒が
高圧液管8aを通って膨張弁4へ流れ込む勢いは小さ
く、液冷媒と膨張弁4との衝突による衝撃は小さくな
り、その時発生する衝突音も小さくなる。このように液
冷媒が高圧液管8a内へ流れ込み、高圧液管8内部の高
圧と高圧液管8a内部の低圧との圧力差が小さくなって
からバイパス配管用電磁弁12を閉路状態、電磁弁3を
開路状態にする。この時、高圧液管8内部の高圧と高圧
液管8a内部の低圧との圧力差はすでに小さくなってい
るので、高圧液管8から高圧液管8aへ送り込まれる液
冷媒が高圧液管8aを通って膨張弁4へ流れ込む勢いは
小さく、液冷媒と膨張弁4との衝突による衝撃は小さく
なり、その時発生する衝突音も小さくなる。上記の動作
を行なった後、冷凍装置は運転状態になる。When the user activates the refrigerating apparatus stopped in the pump down state, the bypass piping solenoid valve 12 is opened and the solenoid valve 3 is bypassed.
The high pressure liquid refrigerant in the high pressure liquid pipe 8 is transferred to the capillary tube 13
It is decompressed through and sent to the high pressure liquid pipe 8a. Since the sent liquid refrigerant is decompressed, the pressure difference between the pressure of the liquid refrigerant and the pressure in the high-pressure liquid pipe 8a is small, and the force of the sent liquid refrigerant to flow into the expansion valve 4 through the high-pressure liquid pipe 8a is small. The impact caused by the collision between the liquid refrigerant and the expansion valve 4 is reduced, and the collision noise generated at that time is also reduced. In this way, the liquid refrigerant flows into the high-pressure liquid pipe 8a, and after the pressure difference between the high pressure inside the high-pressure liquid pipe 8 and the low pressure inside the high-pressure liquid pipe 8a becomes small, the bypass pipe solenoid valve 12 is closed and the solenoid valve is closed. 3 is opened. At this time, since the pressure difference between the high pressure inside the high-pressure liquid pipe 8 and the low pressure inside the high-pressure liquid pipe 8a has already become small, the liquid refrigerant sent from the high-pressure liquid pipe 8 to the high-pressure liquid pipe 8a flows through the high-pressure liquid pipe 8a. The momentum flowing through the expansion valve 4 through the expansion valve 4 is small, the impact due to the collision between the liquid refrigerant and the expansion valve 4 is small, and the collision noise generated at that time is also small. After performing the above operation, the refrigeration system is in operation.
【0023】また、使用者が、蒸発器5についた霜や氷
をとり除くなどの目的で電磁弁3を閉路状態にして前記
ポンプダウンした後、サーモスタット10が所定の温度
以上の温度を感知した時、バイパス配管用電磁弁12を
開路状態にして電磁弁3をバイパスし、高圧液管8内の
高圧の液冷媒をキャピラリチューブ13を通して減圧し
て、高圧液管8aへ送り込む。送り込まれた液冷媒は減
圧されるので、液冷媒の圧力と高圧液管8a内の圧力の
圧力差は小さく、送り込まれた液冷媒が高圧液管8aを
通って膨張弁4へ流れ込む勢いは小さく、液冷媒と膨張
弁4との衝突による衝撃は小さくなり、その時発生する
衝突音も小さくなる。このように液冷媒が高圧液管8a
内へ流れ込み、高圧液管8内部の高圧と高圧液管8a内
部の低圧との圧力差が小さくなってからバイパス配管用
電磁弁12を閉路状態、電磁弁3を開路状態にする。こ
の時、高圧液管8内部の高圧と高圧液管8a内部の低圧
との圧力差はすでに小さくなっているので、高圧液管8
から高圧液管8aへ送り込まれる液冷媒が高圧液管8a
を通って膨張弁4へ流れ込む勢いは小さく、液冷媒と膨
張弁4との衝突による衝撃は小さくなり、その時発生す
る衝突音も小さくなる。上記の動作を行なった後冷凍装
置は運転状態になる。When the thermostat 10 detects a temperature higher than a predetermined temperature after the user shuts down the solenoid valve 3 for the purpose of removing frost or ice on the evaporator 5 and pumps down. The solenoid valve 12 for bypass piping is opened to bypass the solenoid valve 3, and the high-pressure liquid refrigerant in the high-pressure liquid pipe 8 is decompressed through the capillary tube 13 and sent to the high-pressure liquid pipe 8a. Since the sent liquid refrigerant is decompressed, the pressure difference between the pressure of the liquid refrigerant and the pressure in the high-pressure liquid pipe 8a is small, and the force of the sent liquid refrigerant to flow into the expansion valve 4 through the high-pressure liquid pipe 8a is small. The impact caused by the collision between the liquid refrigerant and the expansion valve 4 is reduced, and the collision noise generated at that time is also reduced. In this way, the liquid refrigerant is the high pressure liquid pipe 8a.
When the pressure difference between the high pressure inside the high pressure liquid pipe 8 and the low pressure inside the high pressure liquid pipe 8a becomes small, the bypass pipe solenoid valve 12 is closed and the solenoid valve 3 is opened. At this time, since the pressure difference between the high pressure inside the high pressure liquid pipe 8 and the low pressure inside the high pressure liquid pipe 8a has already become small, the high pressure liquid pipe 8
The liquid refrigerant sent from the high pressure liquid pipe 8a to the high pressure liquid pipe 8a
The momentum flowing through the expansion valve 4 through the expansion valve 4 is small, the impact due to the collision between the liquid refrigerant and the expansion valve 4 is small, and the collision noise generated at that time is also small. After performing the above operation, the refrigeration system is in an operating state.
【0024】また、タイマなどを用いて、運転時間が所
定の時間以上になり、前記ポンプダウンを行なった後、
サーモスタット10が所定の温度以上の温度を感知した
時、バイパス配管用電磁弁12を開路状態にして、電磁
弁3をバイパスし、高圧液管8内の高圧の液冷媒をキャ
ピラリチューブ13を通して減圧して、高圧液管8aへ
送り込む。送り込まれた液冷媒は減圧されるので、液冷
媒の圧力と高圧液管8a内の圧力の圧力差は小さく、送
り込まれた液冷媒が高圧液管8aを通って膨張弁4へ流
れ込む勢いは小さく、液冷媒と膨張弁4との衝突による
衝撃は小さくなり、その時発生する衝突音も小さくな
る。このように液冷媒が高圧液管8a内へ流れ込み、高
圧液管8内部の高圧と高圧液管8a内部の低圧との圧力
差が小さくなってからバイパス配管用電磁弁12を閉路
状態、電磁弁3を開路状態にする。この時、高圧液管8
内部の高圧と高圧液管8a内部の低圧との圧力差はすで
に小さくなっているので、高圧液管8から高圧液管8a
へ送り込まれる液冷媒が高圧液管8aを通って膨張弁4
へ流れ込む勢いは小さく、液冷媒と膨張弁4との衝突に
よる衝撃は小さくなり、その時発生する衝突音も小さく
なる。上記の動作を行なった後冷凍装置は運転状態にな
る。Further, after the operation time exceeds a predetermined time by using a timer or the like and the pump down is performed,
When the thermostat 10 detects a temperature higher than a predetermined temperature, the bypass piping solenoid valve 12 is opened, the solenoid valve 3 is bypassed, and the high pressure liquid refrigerant in the high pressure liquid pipe 8 is depressurized through the capillary tube 13. And sends it to the high pressure liquid pipe 8a. Since the sent liquid refrigerant is decompressed, the pressure difference between the pressure of the liquid refrigerant and the pressure in the high-pressure liquid pipe 8a is small, and the force of the sent liquid refrigerant to flow into the expansion valve 4 through the high-pressure liquid pipe 8a is small. The impact caused by the collision between the liquid refrigerant and the expansion valve 4 is reduced, and the collision noise generated at that time is also reduced. In this way, the liquid refrigerant flows into the high-pressure liquid pipe 8a, and after the pressure difference between the high pressure inside the high-pressure liquid pipe 8 and the low pressure inside the high-pressure liquid pipe 8a becomes small, the bypass pipe solenoid valve 12 is closed and the solenoid valve is closed. 3 is opened. At this time, the high pressure liquid pipe 8
Since the pressure difference between the high pressure inside and the low pressure inside the high pressure liquid pipe 8a has already become small, the high pressure liquid pipe 8 to the high pressure liquid pipe 8a
The liquid refrigerant sent to the expansion valve 4 passes through the high pressure liquid pipe 8a.
The momentum of flowing into is small, the impact due to the collision between the liquid refrigerant and the expansion valve 4 is small, and the collision noise generated at that time is also small. After performing the above operation, the refrigeration system is in an operating state.
【0025】なお、以上はバイパス配管11の電磁弁1
2を開いた後の電磁弁3入口・出口間の圧力差が所定値
以下になった時、圧縮機1を始動する方式について説明
したが、圧力差の代りに所定時間経過した後に圧縮機1
を始動するようにしてもよい。The above is the solenoid valve 1 of the bypass pipe 11.
Although the method of starting the compressor 1 when the pressure difference between the inlet and the outlet of the solenoid valve 3 after opening the valve 2 becomes equal to or less than a predetermined value has been described, the compressor 1 is started after a predetermined time has elapsed instead of the pressure difference.
May be started.
【0026】以上の通り、本実施例によれば電磁弁3が
閉じてその両側流路間、即ち、高圧液管8と、同8a間
に高圧力差が生じているときは、予めバイパス配管11
の電磁弁12を開き、キャピラリチューブ13を通して
減圧した液冷媒を高圧液管8から同8aに送って圧力差
を小さくした後、電磁弁3を開いて液冷媒を流すので液
ハンマー現象が殆ど生じず、従って大きな衝撃音が発生
したり、膨張弁4を破壊したりする不具合が解消すると
いう利点がある。As described above, according to the present embodiment, when the solenoid valve 3 is closed and a high pressure difference is generated between the flow passages on both sides of the solenoid valve 3, that is, between the high pressure liquid pipe 8 and the high pressure liquid pipe 8a, the bypass piping is previously set. 11
The electromagnetic valve 12 is opened, and the liquid refrigerant decompressed through the capillary tube 13 is sent from the high-pressure liquid pipe 8 to the same 8a to reduce the pressure difference, and then the electromagnetic valve 3 is opened to allow the liquid refrigerant to flow. Therefore, there is an advantage that a problem that a large impact sound is generated or the expansion valve 4 is broken is solved.
【0027】[0027]
【発明の効果】本発明は上記のように構成されるので次
の効果を有する。The present invention has the following effects because it is configured as described above.
【0028】即ち、本発明によれば、電磁弁をバイパス
するバイパス配管を設け、それに開閉弁及び減圧機構を
直列に介装するので電磁弁の入口、出口間の圧力差が大
きい時、電磁弁を開く前にその電磁弁をバイパスするバ
イパス配管の開閉弁を開き、電磁弁の入口側の高圧の液
冷媒を減圧して電磁弁の出口側へ送り込むことにより、
バイパス配管を通って電磁弁の出口側へ送られた液冷媒
と膨張弁との衝突の衝撃は小さくなり、その時に発生す
る衝突音を小さくし、上記衝撃による膨張弁の破壊を回
避する効果がある。That is, according to the present invention, the bypass pipe for bypassing the solenoid valve is provided, and the opening / closing valve and the pressure reducing mechanism are interposed in series therewith. Therefore, when the pressure difference between the inlet and the outlet of the solenoid valve is large, the solenoid valve is By opening the on-off valve of the bypass piping that bypasses the solenoid valve before opening, and depressurizing the high pressure liquid refrigerant at the inlet side of the solenoid valve and sending it to the outlet side of the solenoid valve,
The impact of the collision between the liquid refrigerant sent to the outlet side of the solenoid valve through the bypass pipe and the expansion valve is reduced, and the impact noise generated at that time is reduced, and the effect of avoiding the destruction of the expansion valve due to the impact is reduced. is there.
【0029】また、上記バイパス配管、即ち開閉弁を開
き、電磁弁の入口、出口間の圧力差を小さくした後、電
磁弁を開き電磁弁の入口側の液冷媒を電磁弁の出口側へ
送り込むことにより、この送り込まれた液冷媒と膨張弁
との衝突の衝撃は小さくなり、その時に発生する衝撃音
を小さくし、上記衝撃による膨張弁の破壊を回避する効
果がある。Further, after opening the bypass pipe, that is, the on-off valve to reduce the pressure difference between the inlet and the outlet of the solenoid valve, the solenoid valve is opened and the liquid refrigerant at the inlet side of the solenoid valve is sent to the outlet side of the solenoid valve. As a result, the impact of the collision between the fed liquid refrigerant and the expansion valve is reduced, the impact noise generated at that time is reduced, and the expansion valve is prevented from being destroyed by the impact.
【図1】本発明の第1実施例に係る冷凍装置の冷媒系統
図、FIG. 1 is a refrigerant system diagram of a refrigerating apparatus according to a first embodiment of the present invention,
【図2】本発明の第2実施例に係る冷凍装置の冷媒系統
図、FIG. 2 is a refrigerant system diagram of a refrigeration system according to a second embodiment of the present invention,
【図3】従来の冷凍装置を示す冷媒系統図である。FIG. 3 is a refrigerant system diagram showing a conventional refrigeration system.
【符号の説明】 1 圧縮機 2 凝縮器 3 電磁弁 4 膨張弁 5 蒸発器 6,7 送風機 8,8a 高圧液管 9 低圧ガス配管 10 サーモスタット 11 バイパス配管 12 電磁弁(開閉弁) 13 キャピラリチューブ(減圧機構)[Explanation of Codes] 1 Compressor 2 Condenser 3 Solenoid valve 4 Expansion valve 5 Evaporator 6,7 Blower 8,8a High pressure liquid pipe 9 Low pressure gas pipe 10 Thermostat 11 Bypass pipe 12 Solenoid valve (open / close valve) 13 Capillary tube ( Decompression mechanism)
Claims (3)
発器が配管により順次に接続されて冷凍サイクルを構成
する冷凍装置において、前記電磁弁をバイパスするバイ
パス配管と、同バイパス配管に直列に介装された開閉弁
及び減圧機構とを具備してなることを特徴とする冷凍装
置。1. A refrigerating apparatus in which a compressor, a condenser, a solenoid valve, an expansion valve, and an evaporator are sequentially connected by pipes to form a refrigeration cycle, and a bypass pipe bypassing the solenoid valve and a bypass pipe A refrigeration system comprising an on-off valve and a pressure reducing mechanism which are interposed in series.
機の始動信号でバイパス配管の開閉弁を開き、前記電磁
弁の入口・出口間の圧力差が所定値以下になった時、前
記圧縮機を始動させると同時に前記電磁弁を開き、前記
バイパス配管の開閉弁を閉じるよう構成してなることを
特徴とする冷凍装置。2. The refrigerating apparatus according to claim 1, wherein the opening / closing valve of the bypass pipe is opened by a start signal of the compressor, and when the pressure difference between the inlet and the outlet of the solenoid valve becomes a predetermined value or less, the compression is performed. A refrigerating apparatus characterized in that the solenoid valve is opened and the on-off valve of the bypass pipe is closed at the same time when the machine is started.
機の始動信号で前記バイパス配管の開閉弁を開き、所定
時間経過後、前記圧縮機を始動させると同時に前記電磁
弁を開き、前記バイパス配管の開閉弁を閉じるよう構成
してなることを特徴とする冷凍装置。3. The refrigeration apparatus according to claim 1, wherein an opening / closing valve of the bypass pipe is opened by a start signal of a compressor, and after a lapse of a predetermined time, the compressor is started and at the same time the solenoid valve is opened to open the bypass valve. A refrigeration system configured to close an on-off valve of a pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3662195A JPH08233379A (en) | 1995-02-24 | 1995-02-24 | Refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3662195A JPH08233379A (en) | 1995-02-24 | 1995-02-24 | Refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08233379A true JPH08233379A (en) | 1996-09-13 |
Family
ID=12474886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3662195A Withdrawn JPH08233379A (en) | 1995-02-24 | 1995-02-24 | Refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08233379A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267236A (en) * | 2001-03-13 | 2002-09-18 | Mitsubishi Electric Corp | Thermal storage air-conditioning apparatus |
WO2012172599A1 (en) * | 2011-06-14 | 2012-12-20 | 三菱電機株式会社 | Air conditioner |
JP2013053813A (en) * | 2011-09-05 | 2013-03-21 | Mitsubishi Electric Corp | Cooling apparatus |
JP2016133238A (en) * | 2015-01-16 | 2016-07-25 | 株式会社富士通ゼネラル | Heat pump cycle device |
WO2016174874A1 (en) * | 2015-04-28 | 2016-11-03 | ダイキン工業株式会社 | Refrigeration apparatus |
WO2018011841A1 (en) * | 2016-07-11 | 2018-01-18 | 三菱電機株式会社 | Refrigerating and air-conditioning apparatus |
JP2018021723A (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigerating device |
-
1995
- 1995-02-24 JP JP3662195A patent/JPH08233379A/en not_active Withdrawn
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267236A (en) * | 2001-03-13 | 2002-09-18 | Mitsubishi Electric Corp | Thermal storage air-conditioning apparatus |
US9638443B2 (en) | 2011-06-14 | 2017-05-02 | Mitsubishi Electric Corporation | Air-conditioning apparatus |
CN104204691A (en) * | 2011-06-14 | 2014-12-10 | 三菱电机株式会社 | Air conditioner |
JP5665981B2 (en) * | 2011-06-14 | 2015-02-04 | 三菱電機株式会社 | Air conditioner |
EP2722616A4 (en) * | 2011-06-14 | 2015-02-25 | Mitsubishi Electric Corp | Air conditioner |
WO2012172599A1 (en) * | 2011-06-14 | 2012-12-20 | 三菱電機株式会社 | Air conditioner |
CN104204691B (en) * | 2011-06-14 | 2017-07-28 | 三菱电机株式会社 | Air-conditioning device |
JP2013053813A (en) * | 2011-09-05 | 2013-03-21 | Mitsubishi Electric Corp | Cooling apparatus |
JP2016133238A (en) * | 2015-01-16 | 2016-07-25 | 株式会社富士通ゼネラル | Heat pump cycle device |
WO2016174874A1 (en) * | 2015-04-28 | 2016-11-03 | ダイキン工業株式会社 | Refrigeration apparatus |
JP2016211839A (en) * | 2015-04-28 | 2016-12-15 | ダイキン工業株式会社 | Refrigerating device |
WO2018011841A1 (en) * | 2016-07-11 | 2018-01-18 | 三菱電機株式会社 | Refrigerating and air-conditioning apparatus |
JP2018021723A (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigerating device |
WO2018025614A1 (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigeration device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003240391A (en) | Air conditioner | |
JP2002022295A (en) | Ejector cycle | |
JPH08233379A (en) | Refrigerator | |
JP2001235245A (en) | Freezer | |
JPH09159288A (en) | Refrigerating device | |
JPH05340619A (en) | Low pressure stage refrigerant system in double-pressure type freezer device | |
JP2007147274A (en) | Refrigerating device | |
JPH05106944A (en) | Refrigerating device | |
JP2001263832A (en) | Refrigerating cycle of refrigerator | |
JPH0519724Y2 (en) | ||
JPH06331202A (en) | Heat pump type air conditioner | |
JPH05308943A (en) | Freezing equipment | |
JPH051868A (en) | Refrigerating device | |
JP2757689B2 (en) | Refrigeration equipment | |
JPH08200862A (en) | Refrigerator | |
JPH07243726A (en) | Two-stage cooler | |
JP2003004346A (en) | Cooling equipment | |
JP3407867B2 (en) | Operation control method of air conditioner | |
JPH03170758A (en) | Air conditioner | |
JPH09196479A (en) | Mechanism for protecting compressor of cooling apparatus and circuit therefor | |
JPH07324849A (en) | Refrigerator | |
JPH10267438A (en) | Freezing cycle | |
KR20060069191A (en) | Defrosting cycle of heat pump using diverging pipe for hot gas | |
JP2882172B2 (en) | Air conditioner | |
JP2002081778A (en) | Refrigerating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020507 |