[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08234255A - Optical dispersion compensation circuit - Google Patents

Optical dispersion compensation circuit

Info

Publication number
JPH08234255A
JPH08234255A JP7038806A JP3880695A JPH08234255A JP H08234255 A JPH08234255 A JP H08234255A JP 7038806 A JP7038806 A JP 7038806A JP 3880695 A JP3880695 A JP 3880695A JP H08234255 A JPH08234255 A JP H08234255A
Authority
JP
Japan
Prior art keywords
optical
dispersion
wavelength
signal
demultiplexer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7038806A
Other languages
Japanese (ja)
Inventor
Kouji Fukutoku
光師 福徳
Masaki Fukui
將樹 福井
Kazuhiro Oda
一弘 織田
Hiroshi Toba
弘 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7038806A priority Critical patent/JPH08234255A/en
Publication of JPH08234255A publication Critical patent/JPH08234255A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • G02B6/29377Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties controlling dispersion around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To enable a long-distance and high-speed transmission by compensating the wavelength dispersion of optical fiber which is the cause to limit the transmission speed and transmission distance, in an optical frequency multiplex transmission system for multiplexing and transmitting light signals of plural frequencies. CONSTITUTION: The dispersion quantity for every wavelength is compensated by optical fiber in such a manner that the desired total dispersion quantity is obtd. for every wavelength by demultiplexing 8 the transmitted optical wavelength multiplex signals and the optical signals of the respective wavelengths are multiplexed. The dispersion quantity of every wavelength is otherwise adjusted by the optical fiber and the light signals thereof are respectively received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光波長(周波数)多重
通信システムで利用される。本発明は、群速度分散値の
傾きである二次分散、またその波長による微分値である
三次分散等、高次の分散による光信号の劣化を補償する
光分散補償回路に関するものである。
The present invention is used in optical wavelength (frequency) multiplex communication systems. The present invention relates to an optical dispersion compensating circuit that compensates for deterioration of an optical signal due to higher-order dispersion, such as second-order dispersion, which is the slope of the group velocity dispersion value, and third-order dispersion, which is the differential value depending on its wavelength.

【0002】[0002]

【従来の技術】図10に、従来の光波長多重通信システ
ムの構成例を示す。この光波長多重伝送システムは、
1.55μmの光信号を1.55μm零分散ファイバで
伝送を行う例である。
2. Description of the Related Art FIG. 10 shows a configuration example of a conventional optical wavelength division multiplexing communication system. This optical WDM transmission system
In this example, an optical signal of 1.55 μm is transmitted by a 1.55 μm zero dispersion fiber.

【0003】この図10において、符号1および2は送
信側、符号3および4は光中継区間、符号5および6は
受信側を示す。すなわち、符号1(1)〜1(M)は、
それぞれ波長多重のための波長の異なる光信号を送信す
るための光送信器、符号2は、この送信器1(1)〜1
(M)から送信されたそれぞれの波長の光信号を合波す
るための合波器である。光中継区間の3(1)〜3
(K)は伝送路の損失を補償するための光増幅器であ
り、4(1)〜4(K)は光信号を伝送するための光フ
ァイバである。受信側の符号5は、合波されて伝送され
た送信器1(1)〜1(M)の光信号を分波する分波器
であり、符号6(1)〜6(M)は、この分波器5で分
波された光信号を受信する光受信器である。
In FIG. 10, reference numerals 1 and 2 indicate a transmitting side, reference numerals 3 and 4 indicate an optical relay section, and reference numerals 5 and 6 indicate a receiving side. That is, reference numerals 1 (1) to 1 (M) are
Optical transmitters for transmitting optical signals of different wavelengths for wavelength multiplexing, reference numeral 2 are transmitters 1 (1) to 1
It is a multiplexer for multiplexing optical signals of respective wavelengths transmitted from (M). Optical relay section 3 (1) to 3
(K) is an optical amplifier for compensating the loss of the transmission path, and 4 (1) to 4 (K) are optical fibers for transmitting an optical signal. Reference numeral 5 on the receiving side is a demultiplexer that demultiplexes the optical signals of the transmitters 1 (1) to 1 (M) that are multiplexed and transmitted, and reference numerals 6 (1) to 6 (M) are The optical receiver receives the optical signal demultiplexed by the demultiplexer 5.

【0004】図11に、図10に示す従来の光波長多重
信号の波長配置と、1.55μmの零分散ファイバの群
速度分散の関係を示す。ここで、零分散波長は、154
5nm、波長数を波長λ1 からλ15まで15とし、光波
長多重信号の波長λ1 よりλ15は、1531nmより1
559nmの28nmに2nm間隔で配置されたものと
する。
FIG. 11 shows the relationship between the wavelength distribution of the conventional optical wavelength division multiplexing signal shown in FIG. 10 and the group velocity dispersion of a 1.55 μm zero-dispersion fiber. Here, the zero dispersion wavelength is 154
5 nm, the number of wavelengths and 15 from the wavelength lambda 1 to lambda 15, lambda 15 than the wavelength lambda 1 of the optical wavelength multiplexing signal is 1 than 1531nm
It is assumed that they are arranged at 28 nm of 559 nm at 2 nm intervals.

【0005】1.55μm零分散ファイバを用い、1.
55μm帯の光信号を伝送する場合でも、図11に示す
ように、群速度分散の傾き、つまり、二次分散は、0.
07ps/nm/km/nm程度あり、光波長多重信号
のすべての波長において、群速度分散値をなくすること
はできない。
Using a 1.55 μm zero dispersion fiber, 1.
Even when transmitting an optical signal in the 55 μm band, as shown in FIG. 11, the slope of the group velocity dispersion, that is, the second-order dispersion is 0.
Since it is about 07 ps / nm / km / nm, the group velocity dispersion value cannot be eliminated at all wavelengths of the optical wavelength division multiplexed signal.

【0006】図12に、図11の波長配置の場合の距離
に対する各波長での総群速度分散量を示す。この図12
に示すように、二次分散のために距離の増加に伴い、群
速度分散値の距離による積分値である総分散量が大きく
なっていることがわかる。
FIG. 12 shows the total group velocity dispersion amount at each wavelength with respect to the distance in the wavelength arrangement of FIG. This FIG.
As shown in, it can be seen that the total dispersion amount, which is the integral value of the group velocity dispersion value with the distance, increases as the distance increases due to the secondary dispersion.

【0007】このため、長距離、高伝送速度の光波長多
重信号を伝送する場合には、二次分散の影響により、総
分散量の波長依存性が生じ、光波長多重通信を行う場合
のすべての波長において群速度分散による信号の劣化を
なくすことはできなかった。この群速度分散による信号
の劣化は伝送距離を制限する要因になっていた。この点
は、文献:光増幅中継系における伝送性能限界 斉藤
茂 電子情報学会技術研究報告OCS94−26で説明
されている。
Therefore, in the case of transmitting an optical wavelength division multiplexed signal having a long distance and a high transmission rate, the wavelength dependency of the total dispersion amount occurs due to the influence of the secondary dispersion, and all the cases in which the optical wavelength division multiplexing communication is performed are performed. It was not possible to eliminate the signal deterioration due to group velocity dispersion at the wavelength of. The signal deterioration due to the group velocity dispersion has been a factor limiting the transmission distance. This point is related to literature: Limitation of transmission performance in optical amplification repeater Saito
Shigeru, The Institute of Electronics, Information and Communication Engineers Technical Report OCS94-26.

【0008】[0008]

【発明が解決しようとする課題】以上のように、従来
は、二次分散以上の高次の分散を補償するものはなく、
光波長多重信号を長距離、高伝送速度で伝送する場合に
は、すべての波長で群速度分散を補償することができな
かったので、群速度分散による波形劣化を招き、伝送距
離を制限する要因になっていた。
As described above, conventionally, there is nothing that compensates for higher-order dispersion higher than the second-order dispersion.
When transmitting an optical wavelength division multiplexed signal over a long distance and at a high transmission speed, group velocity dispersion could not be compensated for at all wavelengths, which causes waveform deterioration due to group velocity dispersion and is a factor that limits the transmission distance. It was.

【0009】本発明の目的は、光波長多重信号を長距
離、高伝送速度で伝送するときに、高次の分散による信
号の劣化を抑圧し、長距離、高速度の光波長多重信号の
伝送を可能とする光分散補償回路を提供することにあ
る。
An object of the present invention is to suppress the deterioration of a signal due to higher-order dispersion when transmitting an optical wavelength division multiplexed signal at a long distance and a high transmission rate, and to transmit an optical wavelength division multiplexed signal at a long distance and a high speed. An object of the present invention is to provide an optical dispersion compensation circuit that enables the above.

【0010】また、本発明の他の目的は、1台の導波路
型アレー合分波器を用いることで、分波器および合波器
の構成を簡単にした光分散補償回路を提供することにあ
る。
Another object of the present invention is to provide an optical dispersion compensating circuit having a simple structure of the demultiplexer and the multiplexer by using one waveguide type array multiplexer / demultiplexer. It is in.

【0011】[0011]

【課題を解決するための手段】本発明の第一の観点は、
複数の波長の光信号が多重化された光波長多重信号の群
速度分散を補償する光分散補償回路において、入力され
た光波長信号を各波長に分波する分波手段と、この分波
手段により分波された各波長の光信号を入力し、所望の
総分散量になるようにそれぞれ分散を与える複数の光フ
ァイバと、この光ファイバを通過した光信号を合波する
合波手段とを備えたことを特徴とする。
The first aspect of the present invention is to:
In an optical dispersion compensating circuit for compensating the group velocity dispersion of an optical wavelength division multiplexed signal in which optical signals of a plurality of wavelengths are multiplexed, demultiplexing means for demultiplexing the input optical wavelength signal into respective wavelengths, and this demultiplexing means A plurality of optical fibers for inputting the optical signals of the respective wavelengths demultiplexed by the above and giving dispersions so as to obtain a desired total dispersion amount, and a multiplexing means for multiplexing the optical signals that have passed through the optical fibers. It is characterized by having.

【0012】なお、分波手段および合波手段は、合分波
を行う一つの導波路型アレー合分波器で構成することが
できる。
The demultiplexing means and the demultiplexing means can be composed of one waveguide type array multiplexer / demultiplexer that performs demultiplexing.

【0013】また、導波路型アレー合分波器は、一つの
入力端子に光波長多重信号が入力され、一つの出力端子
に合波された光波長多重信号が出力され、他のn個の出
力端子(nは自然数)とn個の入力端子とが分散を与え
るn本の分散を与える光ファイバにより接続された(n
+1)×(n+1)合分波器とすることができる。
In the waveguide type array multiplexer / demultiplexer, the optical wavelength division multiplexed signal is input to one input terminal, the multiplexed optical wavelength division multiplexed signal is output to one output terminal, and the other n wavelength division multiplexing signals are output. An output terminal (n is a natural number) and n input terminals are connected to each other by n optical fibers that provide dispersion (n
It can be a +1) × (n + 1) multiplexer / demultiplexer.

【0014】また、導波路型アレー合分波器は、2n
(nは自然数)個の入力端子および出力端子を備え、2
n個の出力端子がn本の分散を与える光ファイバにより
接続され、一つの入力端子に分散補償する光波長多重信
号を伝送する光ファイバが接続され、一つの入力端子に
分散補償された光波長多重信号を伝送する光ファイバが
接続された2n×2n合分波器とすることができる。
The waveguide type array multiplexer / demultiplexer is 2n
(N is a natural number) with 2 input terminals and 2 output terminals
n output terminals are connected by n optical fibers that provide dispersion, one input terminal is connected to an optical fiber that transmits dispersion-compensated optical wavelength multiplexed signals, and one input terminal is dispersion-compensated optical wavelengths. A 2n × 2n multiplexer / demultiplexer to which optical fibers for transmitting multiple signals are connected can be used.

【0015】また、本発明の第二の観点は、入力された
光波長信号を各波長に分波する分波手段と、この分波手
段により分波された各波長の光信号を入力し、所望の総
分散量になるようにそれぞれ分散を与える複数の光ファ
イバとを備え、この各光ファイバの出力が各波長の光信
号を受信する光受信器に導かれたことを特徴とする。
A second aspect of the present invention is to input the demultiplexing means for demultiplexing the input optical wavelength signal into each wavelength and the optical signal of each wavelength demultiplexed by the demultiplexing means, A plurality of optical fibers for giving respective dispersions to obtain a desired total dispersion amount, and the output of each optical fiber is led to an optical receiver for receiving an optical signal of each wavelength.

【0016】なお、光波長多重信号を伝送する伝送路は
1.55μmを零分散波長とする光ファイバであり、零
分散波長より低い周波数の光信号に分散を与える光ファ
イバは、1.3μmを零分散とする光ファイバであり、
零分散波長より高い周波数の光信号に分散を与える光フ
ァイバは負の分散値を有する分散補償ファイバであるこ
とが好ましい。
The transmission line for transmitting the optical wavelength division multiplexed signal is an optical fiber having a zero dispersion wavelength of 1.55 μm, and the optical fiber for giving dispersion to an optical signal having a frequency lower than the zero dispersion wavelength is 1.3 μm. An optical fiber with zero dispersion,
The optical fiber that gives dispersion to an optical signal having a frequency higher than the zero dispersion wavelength is preferably a dispersion compensating fiber having a negative dispersion value.

【0017】[0017]

【作用】まず、第一の観点の発明の作用を説明する。伝
送路(光ファイバ)により伝送された光波長多重信号
は、分波器の入力端子から入力され、分波器により分波
され1波長ごとに出力される。伝送路の分散は各波長で
高次の分散のため、補償すべき総分散量が異なる。その
ため分波器の出力に各波長での伝送路の総分散量の正負
が逆の総分散量を有する光ファイバを接続することによ
り、すべての波長の信号で分散を補償することができ
る。そして、分散補償された各波長の光信号を合波器に
より合波することにより、高次の分散が補償された光波
長多重信号を得ることができる。この光分散補償回路を
伝送路に挿入することにより、高次の分散による信号の
劣化を軽減し、長距離、高伝送速度の光波長多重伝送を
可能とする。
First, the operation of the invention of the first aspect will be described. The optical wavelength division multiplexed signal transmitted through the transmission line (optical fiber) is input from the input terminal of the demultiplexer, demultiplexed by the demultiplexer, and output for each wavelength. Since the dispersion of the transmission line is high-order dispersion at each wavelength, the total amount of dispersion to be compensated is different. Therefore, by connecting to the output of the demultiplexer an optical fiber having a total dispersion amount in which the positive and negative signs of the total dispersion amount of the transmission lines at each wavelength are connected, the dispersion can be compensated for in signals of all wavelengths. Then, by multiplexing the dispersion-compensated optical signals of the respective wavelengths by the multiplexer, it is possible to obtain an optical wavelength division multiplexed signal in which higher-order dispersion is compensated. By inserting this optical dispersion compensating circuit in the transmission line, it is possible to reduce signal deterioration due to high-order dispersion and enable long-distance, high-speed optical WDM transmission.

【0018】なお、分波器、合波器として1台の導波路
型アレー合分波器を用いて、1入力端子より入力した光
波長多重信号を複数の出力端子に分波し、波長ごとに各
波長での伝送路の総分散量の正負が逆の総分散量を有す
る光ファイバを接続し、再度、導波路型アレー合分波器
に入力し1端子に合波することにより、高次の分散が補
償された光波長多重信号を得ることができる。これによ
り、分波器および合波器を1台のものにできるため、分
波機構および合波機構の設定を簡易化でき、光分散補償
回路の構成をシンプルにできる。
It should be noted that, using one waveguide type array multiplexer / demultiplexer as a demultiplexer and a multiplexer, an optical wavelength division multiplexed signal input from one input terminal is demultiplexed to a plurality of output terminals, and By connecting an optical fiber having a total dispersion amount in which the positive and negative values of the total dispersion amount of each wavelength are opposite to each other, and inputting again to the waveguide array multiplexer / demultiplexer and multiplexing to one terminal, It is possible to obtain an optical wavelength division multiplexed signal in which the following dispersion is compensated. As a result, since the single demultiplexer and the multiplexer can be used, the setting of the demultiplexing mechanism and the multiplexing mechanism can be simplified, and the configuration of the optical dispersion compensation circuit can be simplified.

【0019】第二の観点の発明は、合波器を取り除き、
各波長ごとに光ファイバによって高次の分散が補償され
た光信号をそのまま、各波長ごとの光受信器に導くもの
である。すなわち、伝送路により伝送された光波長多重
信号は分波器の入力端子から入力され、分波器により分
波され1波長ごとに出力される。伝送路の分散は各波長
で高次の分散のため、補償すべき総分散量が異なる。そ
のため、分波器の出力に各波長での伝送路の分散量を補
償する正負が逆の分散量を有する光ファイバを接続する
ことにより、すべての波長の信号で分散を補償すること
ができる。この分散を補償したそれぞれの波長の信号は
光受信器に導かれて受信される。
The invention of the second aspect is to remove the multiplexer,
An optical signal in which higher-order dispersion is compensated by an optical fiber for each wavelength is directly guided to an optical receiver for each wavelength. That is, the optical wavelength division multiplexed signal transmitted through the transmission line is input from the input terminal of the demultiplexer, demultiplexed by the demultiplexer, and output for each wavelength. Since the dispersion of the transmission line is high-order dispersion at each wavelength, the total amount of dispersion to be compensated is different. Therefore, by connecting to the output of the demultiplexer an optical fiber having a dispersion amount of positive and negative, which compensates the dispersion amount of the transmission line at each wavelength, it is possible to compensate the dispersion of signals of all wavelengths. The signals of the respective wavelengths that have compensated for this dispersion are guided to the optical receiver and received.

【0020】なお、各波長での伝送路の分散量を補償す
る正負が逆の分散量を有する光ファイバとしては、1.
55μm零分散ファイバを伝送路として用いた場合に、
零分散波長より低い周波数の光信号に対しては、1.3
μm零分散ファイバを、零分散波長より高い周波数の光
信号に対しては、1.55μmで負の分散値を有する分
散補償ファイバを用い、それぞれ所望の分散量を与える
長さのファイバを通過させて伝送路で生じた分散を補償
すれば、それぞれの波長の総分散量を容易に抑圧でき
る。
As an optical fiber having a dispersion amount of positive and negative, which compensates for the dispersion amount of the transmission line at each wavelength,
When using a 55 μm zero-dispersion fiber as a transmission line,
For optical signals with a frequency lower than the zero-dispersion wavelength, 1.3
For the optical signal with a frequency higher than the zero-dispersion wavelength, use a dispersion-compensating fiber having a negative dispersion value of 1.55 μm and pass a fiber having a length that gives a desired dispersion amount. By compensating the dispersion generated in the transmission line, the total dispersion amount of each wavelength can be easily suppressed.

【0021】[0021]

【実施例】以下図面を参照して、本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】(第一実施例)図1は、本発明第一実施例
の光分散補償回路の構成を示すブロック図である。この
本第一実施例の光分散補償回路は、複数n個の波長の光
信号が多重化された光波長多重信号の群速度分散を補償
する光分散補償回路において、入力された光波長信号を
各波長に分波する分波手段としての分波器8と、この分
波手段により分波された各波長の光信号を入力し、所望
の総分散量になるようにそれぞれ分散を与える複数の光
ファイバとしての分散補償用の光ファイバ9(1)〜9
(n)と、この分散補償用の光ファイバ9(1)〜9
(n)を通過した光信号を合波する合波手段としての合
波器10とを備えたことを特徴とする。なお、符号7お
よび11は、光波長多重信号を伝送する光ファイバであ
る。
(First Embodiment) FIG. 1 is a block diagram showing the arrangement of an optical dispersion compensating circuit according to the first embodiment of the present invention. The optical dispersion compensating circuit according to the first embodiment of the present invention uses an optical dispersion compensating circuit for compensating for group velocity dispersion of an optical wavelength multiplexed signal in which optical signals of a plurality of n wavelengths are multiplexed, A demultiplexer 8 as demultiplexing means for demultiplexing into each wavelength and a plurality of optical signals of respective wavelengths demultiplexed by the demultiplexing means are inputted and a plurality of dispersions are given so as to obtain desired total dispersion amounts. Optical fibers 9 (1) to 9 for dispersion compensation as optical fibers
(N) and the optical fibers 9 (1) to 9 for dispersion compensation
And a multiplexer 10 as a multiplexer for multiplexing the optical signals that have passed through (n). Reference numerals 7 and 11 are optical fibers for transmitting the optical wavelength division multiplexed signal.

【0023】この光分散補償回路での分散補償動作を説
明する。光波長多重信号を伝送する光ファイバ7で波長
λ1 からλn までのn波多重信号が伝送されているとす
る。このn波多重信号は分波器8の入力端子に入力さ
れ、分波器8においてλ1 からλn までの各波長の信号
が分波されて出力端子8(1)〜8(n)に出力され
る。この各波長ごとの出力端子に接続された分散補償用
のn個の分散補償用の光ファイバ9(1)から9(n)
により各波長ごとに総分散量が補償される。分散補償用
の光ファイバ9(1)〜9(n)は、合波器10に接続
され、合波器でλ1〜λn の光信号は合波され、伝送路
を構成する光ファイバ11により光波長多重信号として
伝送される。
The dispersion compensating operation in this optical dispersion compensating circuit will be described. It is assumed that n-wave multiplexed signals of wavelengths λ 1 to λ n are transmitted by the optical fiber 7 that transmits the optical wavelength multiplexed signal. This n-wave multiplexed signal is input to the input terminal of the demultiplexer 8, and the demultiplexer 8 demultiplexes the signals of each wavelength from λ 1 to λ n to output terminals 8 (1) to 8 (n). Is output. Dispersion compensating optical fibers 9 (1) to 9 (n) connected to the output terminals for each wavelength.
Thus, the total dispersion amount is compensated for each wavelength. The dispersion compensating optical fibers 9 (1) to 9 (n) are connected to a multiplexer 10, and optical signals of λ 1 to λ n are multiplexed by the multiplexer to form an optical fiber 11 forming a transmission line. Is transmitted as an optical wavelength division multiplexed signal.

【0024】なお、分波器8、合波器10は、具体的に
は、多段のマッハツェンダ型の分波器、回折格子、導波
路型アレー分波器等で構成される。
The demultiplexer 8 and the demultiplexer 10 are specifically composed of multi-stage Mach-Zehnder type demultiplexers, diffraction gratings, waveguide type array demultiplexers, and the like.

【0025】次に図2に、光波長多重信号の波長配置と
図1の伝送路の光ファイバ7として1.55μm零分散
ファイバを500km伝送した場合の各波長の総群速度
分散量を示す。ここで、零分散波長を1545nmと
し、波長数は15、光波長多重信号は、λ1 からλ15
1531nmから1559nmの28nmの間に2nm
間隔で配置し、高次の分散は、0.07ps/nm/k
m/nmの二次分散を考慮したものとする。
Next, FIG. 2 shows the wavelength arrangement of the optical wavelength division multiplexed signal and the total group velocity dispersion amount of each wavelength when a 1.55 μm zero-dispersion fiber is transmitted for 500 km as the optical fiber 7 of the transmission line of FIG. Here, the zero-dispersion wavelength is 1545 nm, the number of wavelengths is 15, and the wavelength division multiplexed optical signal is 2 nm between 28 nm of 1531 nm to 1559 nm from λ 1 to λ 15.
Spaced, higher order dispersion is 0.07 ps / nm / k
The secondary dispersion of m / nm is taken into consideration.

【0026】ここで、図2に示すように、波長1531
nmで−490ps/nm、波長1559nmで490
ps/nmの総群速度分散量がある。これを補償するた
めに補償用の光ファイバ9(1)から9(15)とし
て、図3に示す長さの1.3μm零分散ファイバと1.
55μmで光ファイバの分散値を有する分散補償ファイ
バを接続し、その後に合波器10により合波すること
で、図4に示すように各波長で高次の分散を補償した光
波長多重信号を得ることが可能である。図4に示すよう
に、光分波器8の2nm帯域内で総分散量は±35ps
/nm抑圧でき、さらに信号の伝送帯域を±10GHz
とする総分散量を±2.8ps/nmに抑圧できる。こ
のように、分散補償用の光ファイバ9(1)〜9(1
5)の長さは、その波長によってリニアに決定できる。
Here, as shown in FIG.
-490 ps / nm in nm, 490 in wavelength 1559 nm
There is a total group velocity dispersion of ps / nm. In order to compensate for this, as compensation optical fibers 9 (1) to 9 (15), a 1.3 μm zero-dispersion fiber having a length shown in FIG.
By connecting a dispersion compensating fiber having a dispersion value of an optical fiber of 55 μm and then multiplexing by a multiplexer 10, an optical wavelength division multiplexed signal in which higher-order dispersion is compensated at each wavelength as shown in FIG. 4 is obtained. It is possible to obtain. As shown in FIG. 4, the total dispersion amount within the 2 nm band of the optical demultiplexer 8 is ± 35 ps.
/ Nm can be suppressed, and the signal transmission band is ± 10 GHz
The total dispersion amount can be suppressed to ± 2.8 ps / nm. In this way, the dispersion compensating optical fibers 9 (1) to 9 (1
The length of 5) can be linearly determined by the wavelength.

【0027】ここで、1.3μm零分散ファイバの1.
55nmでの分散値は17ps/nm/kmであり、分
散補償ファイバについては、文献:分散補償ファイバの
性能指数の向上 大西 正志他 1994年電子情報通
信学会春季大会C−366に記述されており、その分散
値は−82ps/nm/kmとした。
Here, 1. of the 1.3 μm zero dispersion fiber is used.
The dispersion value at 55 nm is 17 ps / nm / km, and the dispersion compensating fiber is described in Reference: Improving the figure of merit of dispersion compensating fiber Masashi Onishi et al., 1994 Spring Meeting of the Institute of Electronics, Information and Communication Engineers C-366. The dispersion value was -82 ps / nm / km.

【0028】この光分散補償回路は、図10に示す光波
長多重通信システムの光中継区間に配置される。また、
伝送路の終端に伝送路で生ずる分散を等化するために配
置される。
This optical dispersion compensating circuit is arranged in the optical repeater section of the optical wavelength division multiplexing communication system shown in FIG. Also,
It is arranged at the end of the transmission line to equalize the dispersion generated in the transmission line.

【0029】(第二実施例)次に第二実施例を図5を用
いて説明する。本第二実施例は、図5に示すように、第
一実施例の分波器8と合波器10を1台の(n+1)×
(n+1)導波路型アレー合分波器13に置き換えたも
のである。すなわち、n個の波長が多重化された光波長
多重信号を伝送する光ファイバ7が導波路型アレー合分
波器13の一つの入力端子13(1)iに導かれ、一つ
の出力端子13(1)oから合波された光波長多重信号
が分散補償用の光ファイバ11により伝送される。出力
端子13(2)oにはλ1 が出力され分散補償用の光フ
ァイバ9(1)により入力端子13(n+1)iに接続
される。順次、出力端子と入力端子とが接続され、λn
までは分散補償用の光ファイバ9(n)で入力端子13
(n)iに接続される。
(Second Embodiment) Next, a second embodiment will be described with reference to FIG. In the second embodiment, as shown in FIG. 5, one (n + 1) × the demultiplexer 8 and the multiplexer 10 of the first embodiment are used.
It is replaced with the (n + 1) waveguide type array multiplexer / demultiplexer 13. That is, the optical fiber 7 for transmitting an optical wavelength division multiplexed signal in which n wavelengths are multiplexed is guided to one input terminal 13 (1) i of the waveguide type array multiplexer / demultiplexer 13 and one output terminal 13 (1) The optical wavelength division multiplexed signal multiplexed from o is transmitted through the dispersion compensating optical fiber 11. Λ 1 is output to the output terminal 13 (2) o and is connected to the input terminal 13 (n + 1) i by the optical fiber 9 (1) for dispersion compensation. The output terminal and the input terminal are sequentially connected, and λ n
Up to the input terminal 13 with an optical fiber 9 (n) for dispersion compensation
(N) is connected to i.

【0030】図6に、この導波路型アレー合分波器13
の合分波特性を示す。この図6に示すように、入力端子
13(n+1)oより入力した光波長多重信号λ1 から
λnは、それぞれ出力端子13(2)oから13(n+
1)oより出力される。出力端子13(2)oから13
(n+1)oに高次の分散を補償するための分散補償用
の光ファイバ9(1)から9(n)を接続し、それぞれ
を入力端子13(n+1)iから13(2)iに接続す
ることによって、信号λ1 からλn は再び合波されて、
出力端子13(1)oより出力される。このような過程
により各波長で高次の分散を補償した光波長多重信号を
得ることが可能である。
FIG. 6 shows this waveguide type array multiplexer / demultiplexer 13
2 shows the multiplexing / demultiplexing characteristic of As shown in FIG. 6, the optical wavelength multiplexed signals λ 1 to λ n input from the input terminal 13 (n + 1) o are output terminals 13 (2) o to 13 (n +), respectively.
1) Output from o. Output terminal 13 (2) o to 13
Optical fibers 9 (1) to 9 (n) for dispersion compensation for compensating for higher-order dispersion are connected to (n + 1) o, and connected to input terminals 13 (n + 1) i to 13 (2) i, respectively. The signals λ 1 to λ n are recombined by
It is output from the output terminal 13 (1) o. Through such a process, it is possible to obtain an optical wavelength division multiplexed signal in which higher-order dispersion is compensated for at each wavelength.

【0031】(第三実施例)次に本発明の第三実施例を
図7を用いて説明する。本第三実施例は、第二実施例と
同様に、第一実施例の分波器8と合波器10とを2n×
2n導波路型アレー合分波器14で置き換えたものであ
る。
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, similar to the second embodiment, the demultiplexer 8 and the multiplexer 10 of the first embodiment are 2n ×.
It is replaced with a 2n waveguide type array multiplexer / demultiplexer 14.

【0032】この2n×2n導波路型アレー合分波器1
4の合分波特性を図8に示す。この図8に示すように、
入力端子14(1)iより入力した波長多重信号λ1
らλn はそれぞれ出力端子14(1)oから出力端子1
4(n)oより出力される。出力端子14(1)oから
出力端子(n)oに高次の分散を補償するための分散補
償用の光ファイバ9(1)から9(n)を接続し、それ
ぞれ出力端子14(n+1)oから出力端子14(2
n)oに接続するすることにより、信号λ1 から信号λ
n は再び合波され、出力端子13(n+1)iより光波
長多重信号として、光ファイバ11に出力される。この
ような過程により各波長で高次の分散を補償した光波長
多重信号を得ることが可能である。
This 2n × 2n waveguide array multiplexer / demultiplexer 1
FIG. 8 shows the multiplexing / demultiplexing characteristic of No. 4. As shown in this FIG.
The wavelength division multiplexed signals λ 1 to λ n input from the input terminal 14 (1) i are output terminal 14 (1) o to output terminal 1 respectively.
4 (n) o. Optical fibers 9 (1) to 9 (n) for dispersion compensation for compensating for higher-order dispersion are connected from the output terminal 14 (1) o to the output terminal (n) o, and the output terminals 14 (n + 1) are respectively connected. output terminal 14 (2
n) from signal λ 1 to signal λ by connecting to o
n is multiplexed again, and is output to the optical fiber 11 from the output terminal 13 (n + 1) i as an optical wavelength division multiplexed signal. Through such a process, it is possible to obtain an optical wavelength division multiplexed signal in which higher-order dispersion is compensated for at each wavelength.

【0033】(第四実施例)次に本の第四実施例を図9
を用いて説明する。この第四実施例は、基本的には図1
に示す第一実施例と同じ分散補償を行うものであるが、
分波した光波長多重信号を合波することなく、各波長ご
とに分散補償用の光ファイバ9(1)〜9(n)によっ
て総分散量を補償した後、そのまま光受信器12(1)
〜12(n)に導く構成である。すなわち、分波器8に
より分波された各波長の信号λ1 〜λn をそれぞれ長さ
が異なる分散補償ファイバおよび1.3μm零分散ファ
イバに導いて、各信号を合波せずにそれぞれ光受信器1
2(1)〜12(n)で受信する。この場合も、分波器
8にそれぞれ接続される分散補償ファイバ、1.3μ零
分散ファイバの長さをそれぞれ調整することにより、高
次の分散を補償した光信号を受信することが可能であ
る。
(Fourth Embodiment) Next, a fourth embodiment of the book is shown in FIG.
Will be explained. This fourth embodiment is basically shown in FIG.
The same dispersion compensation as in the first embodiment shown in
Instead of multiplexing the demultiplexed optical wavelength division multiplexed signals, the total amount of dispersion is compensated by the dispersion compensating optical fibers 9 (1) to 9 (n) for each wavelength, and then the optical receiver 12 (1) is used as it is.
This is a configuration leading to ~ 12 (n). That is, the signals λ 1 to λ n of the respective wavelengths demultiplexed by the demultiplexer 8 are guided to the dispersion compensating fiber and the 1.3 μm zero-dispersion fiber having different lengths, and the respective signals are optically multiplexed without being multiplexed. Receiver 1
It is received at 2 (1) to 12 (n). Also in this case, by adjusting the lengths of the dispersion compensating fiber and the 1.3 μ-zero dispersion fiber respectively connected to the demultiplexer 8, it is possible to receive the optical signal in which higher-order dispersion is compensated. .

【0034】この第四実施例の光分散補償回路は、図1
0に示す光波長多重通信システムの分波器5に代えて挿
入して、伝送路で生じた分散を補償する。
The optical dispersion compensation circuit of the fourth embodiment is shown in FIG.
It is inserted in place of the demultiplexer 5 of the optical wavelength division multiplexing communication system shown in 0 to compensate for the dispersion generated in the transmission line.

【0035】なお、以上の実施例では、光波長多重信号
波長帯の中央に零分散波長を設定した場合で説明した
が、零分散波長が信号波長帯域にない場合は、1.3μ
零分散ファイバまたは分散補償ファイバの長さを調節す
ることにより、高次の分散を補償することが可能であ
る。
In the above embodiments, the case where the zero-dispersion wavelength is set in the center of the optical wavelength division multiplexing signal wavelength band has been described. However, when the zero-dispersion wavelength is not in the signal wavelength band, 1.3 μm is set.
By adjusting the length of the zero-dispersion fiber or the dispersion-compensating fiber, it is possible to compensate higher-order dispersion.

【0036】[0036]

【発明の効果】本発明は、上述のように、光ファイバの
有する群速度の相違による総分散量を補償することがで
きるため、高次の分散による信号の劣化を抑止できる。
このため、光波長多重信号を長距離、高伝送速度で伝送
することができる光波長多重伝送を可能とする。
As described above, according to the present invention, the total amount of dispersion due to the difference in the group velocities of the optical fibers can be compensated, so that the deterioration of the signal due to the higher order dispersion can be suppressed.
Therefore, it is possible to perform optical wavelength division multiplexing transmission capable of transmitting an optical wavelength division multiplexing signal over a long distance at a high transmission rate.

【0037】また、1台の導波路型アレー合分波器を用
いることで、分波器および合波器の構成をシンプルにで
き、全光的構成の光分散補償回路を提供できる効果があ
る。
Further, by using one waveguide type array multiplexer / demultiplexer, the configurations of the demultiplexer and the multiplexer can be simplified, and an optical dispersion compensation circuit having an all-optical configuration can be provided. .

【0038】また、光受信器の入力信号を各波長ごとに
総分散量を補償をすることができるため、受信品質のよ
い信号で受信することができる。
Further, since the total dispersion amount can be compensated for each wavelength of the input signal of the optical receiver, it is possible to receive the signal with good reception quality.

【0039】さらに、分散補償用ファイバが与える分散
量は、波長ごとにその長さのみで調整できるため、伝送
路を伝送される全波長の総分散量を小さなものに抑圧で
きる。
Furthermore, since the dispersion amount provided by the dispersion compensating fiber can be adjusted for each wavelength only by its length, the total dispersion amount of all wavelengths transmitted through the transmission path can be suppressed to a small value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の光分散補償回路の構成を示
すブロック図。
FIG. 1 is a block diagram showing a configuration of an optical dispersion compensation circuit according to a first embodiment of the present invention.

【図2】第一実施例の伝送路の総分散量と信号配置との
関係を説明する図。
FIG. 2 is a diagram illustrating a relationship between a total dispersion amount of a transmission line and a signal arrangement according to the first embodiment.

【図3】第一実施例の分散補償用光ファイバの長さを説
明する図。
FIG. 3 is a diagram illustrating the length of a dispersion compensating optical fiber according to the first embodiment.

【図4】第一実施例の分散補償回路により得られる群速
度分散特性を示す図。
FIG. 4 is a diagram showing group velocity dispersion characteristics obtained by the dispersion compensation circuit of the first embodiment.

【図5】本発明第二実施例の光分散補償回路の構成を示
すブロック図。
FIG. 5 is a block diagram showing a configuration of an optical dispersion compensation circuit according to a second embodiment of the present invention.

【図6】本発明第二実施例の導波路型アレー合分波器の
合分波特性を示す図。
FIG. 6 is a diagram showing a multiplexing / demultiplexing characteristic of the waveguide array multiplexer / demultiplexer according to the second embodiment of the present invention.

【図7】本発明第三実施例の光分散補償回路の構成を示
すブロック図。
FIG. 7 is a block diagram showing a configuration of an optical dispersion compensation circuit according to a third embodiment of the present invention.

【図8】本発明第三実施例の導波路型アレー合分波器の
合分波特性を示す図。
FIG. 8 is a diagram showing a multiplexing / demultiplexing characteristic of the waveguide array multiplexer / demultiplexer according to the third embodiment of the present invention.

【図9】本発明第四実施例の光分散補償回路の構成を示
すブロック図。
FIG. 9 is a block diagram showing a configuration of an optical dispersion compensation circuit according to a fourth embodiment of the present invention.

【図10】従来の光波長多重通信システムの構成を示す
図。
FIG. 10 is a diagram showing a configuration of a conventional optical wavelength multiplexing communication system.

【図11】1545nmを零分散波長とする1.55μ
m零分散ファイバの群速度分散特性と光波長信号の配置
との関係を説明する図。
FIG. 11: 1.55μ with a zero dispersion wavelength of 1545 nm
The figure explaining the relationship between the group velocity dispersion characteristic of m zero dispersion fiber, and arrangement | positioning of an optical wavelength signal.

【図12】従来の光ファイバを用いた場合の距離に対す
る総分散量を示す図。
FIG. 12 is a diagram showing a total dispersion amount with respect to a distance when a conventional optical fiber is used.

【符号の説明】[Explanation of symbols]

1(1)〜1(M) 光送信器 2、5、10 合波器 3(1)〜3N(n)、31(1)〜3N(n) 光増
幅器 4(1)〜4(K) 光ファイバ 6(1)〜6(M)、12(1)〜12(n) 光受信
器 7、11 伝送用の光ファイバ 8 分波器 8(1)〜8(n) 合波器の出力端子 9(1)〜9(n) 分散補償用の光ファイバ 13、14 導波路型アレー合分波器、 13(1)i〜13(n+1)i、14i〜14(n+
1)i 入力端子 13(1)o〜13(n+1)o、14o〜14(n+
1)o 出力端子
1 (1) to 1 (M) Optical transmitter 2, 5, 10 Multiplexer 3 (1) to 3N (n), 31 (1) to 3N (n) Optical amplifier 4 (1) to 4 (K) Optical fiber 6 (1) to 6 (M), 12 (1) to 12 (n) Optical receiver 7, 11 Optical fiber for transmission 8 Demultiplexer 8 (1) to 8 (n) Output of multiplexer Terminals 9 (1) to 9 (n) Dispersion compensation optical fibers 13 and 14 Waveguide type array multiplexer / demultiplexer, 13 (1) i to 13 (n + 1) i, 14i to 14 (n +)
1) i input terminal 13 (1) o to 13 (n + 1) o, 14o to 14 (n +
1) o Output terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥羽 弘 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Toba 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数の波長の光信号が多重化された光波
長多重信号の群速度分散を補償する光分散補償回路にお
いて、 入力された光波長信号を各波長に分波する分波手段と、 この分波手段により分波された各波長の光信号を入力
し、所望の総分散量になるようにそれぞれ分散を与える
複数の光ファイバと、 この光ファイバを通過した光信号を合波する合波手段と
を備えたことを特徴とする光分散補償回路。
1. An optical dispersion compensating circuit for compensating for group velocity dispersion of an optical wavelength division multiplexed signal in which optical signals of a plurality of wavelengths are multiplexed, and demultiplexing means for demultiplexing the input optical wavelength signal into respective wavelengths. , The optical signals of the respective wavelengths demultiplexed by the demultiplexing means are input, and a plurality of optical fibers that give respective dispersions to obtain a desired total dispersion amount and the optical signals that have passed through the optical fibers are multiplexed. An optical dispersion compensating circuit comprising: a multiplexing unit.
【請求項2】 前記分波手段および合波手段は、合分波
を行う一つの導波路型アレー合分波器で構成された請求
項1記載の光分散補償回路。
2. The optical dispersion compensating circuit according to claim 1, wherein the demultiplexing means and the demultiplexing means are composed of one waveguide type array multiplexer / demultiplexer that performs demultiplexing.
【請求項3】 導波路型アレー合分波器は、一つの入力
端子に光波長多重信号が入力され、一つの出力端子に合
波された光波長多重信号が出力され、他のn個の出力端
子(nは自然数)とn個の入力端子とが分散を与えるn
本の分散を与える光ファイバにより接続された(n+
1)×(n+1)合分波器である請求項2記載の光分散
補償回路。
3. A waveguide type array multiplexer / demultiplexer receives an optical wavelength division multiplexed signal at one input terminal, outputs the optical wavelength division multiplexed signal at one output terminal, and outputs n other optical wavelength division multiplexed signals. An output terminal (n is a natural number) and n input terminals give variance n
Connected by optical fiber giving book dispersion (n +
The optical dispersion compensating circuit according to claim 2, wherein the optical dispersion compensating circuit is 1) × (n + 1) multiplexer / demultiplexer.
【請求項4】 導波路型アレー合分波器は、2n(nは
自然数)個の入力端子および出力端子を備え、2n個の
出力端子がn本の分散を与える光ファイバにより接続さ
れ、一つの入力端子に分散補償する光波長多重信号を伝
送する光ファイバが接続され、一つの入力端子に分散補
償された光波長多重信号を伝送する光ファイバが接続さ
れた2n×2n合分波器である請求項2記載の光分散補
償回路。
4. A waveguide type array multiplexer / demultiplexer has 2n (n is a natural number) input terminals and output terminals, and 2n output terminals are connected by an optical fiber giving n dispersions. A 2n × 2n multiplexer / demultiplexer in which one input terminal is connected to an optical fiber that transmits a dispersion-compensated optical wavelength division multiplexed signal, and one input terminal is connected to an optical fiber that transmits a dispersion-compensated optical wavelength division multiplexed signal The optical dispersion compensation circuit according to claim 2.
【請求項5】 複数の波長の光信号が多重化された光波
長多重信号の群速度分散を補償する光分散補償回路にお
いて、 入力された光波長信号を各波長に分波する分波手段と、 この分波手段により分波された各波長の光信号を入力
し、所望の総分散量になるようにそれぞれ分散を与える
複数の光ファイバとを備え、 この各光ファイバの出力が各波長の光信号を受信する光
受信器に導かれたことを特徴とする光分散補償回路。
5. An optical dispersion compensating circuit for compensating for group velocity dispersion of an optical wavelength division multiplexed signal in which optical signals of a plurality of wavelengths are multiplexed, and demultiplexing means for demultiplexing the input optical wavelength signal into respective wavelengths. The optical signal of each wavelength demultiplexed by the demultiplexing means is input, and a plurality of optical fibers are provided which respectively provide dispersion so as to obtain a desired total dispersion amount, and the output of each optical fiber is An optical dispersion compensating circuit which is guided to an optical receiver for receiving an optical signal.
【請求項6】 光波長多重信号を伝送する伝送路は1.
55μmを零分散波長とする光ファイバであり、零分散
波長より低い周波数の光信号に分散を与える光ファイバ
は、1.3μmを零分散とする光ファイバであり、零分
散波長より高い周波数の光信号に分散を与える光ファイ
バは負の分散値を有する分散補償ファイバである請求項
1または5のいずれか記載の光分散補償回路。
6. A transmission line for transmitting an optical wavelength division multiplexed signal is 1.
An optical fiber having a zero-dispersion wavelength of 55 μm, and an optical fiber giving dispersion to an optical signal having a frequency lower than the zero-dispersion wavelength is an optical fiber having a zero-dispersion wavelength of 1.3 μm, and an optical fiber having a frequency higher than the zero-dispersion wavelength. 6. The optical dispersion compensating circuit according to claim 1, wherein the optical fiber that gives dispersion to the signal is a dispersion compensating fiber having a negative dispersion value.
JP7038806A 1995-02-27 1995-02-27 Optical dispersion compensation circuit Pending JPH08234255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038806A JPH08234255A (en) 1995-02-27 1995-02-27 Optical dispersion compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038806A JPH08234255A (en) 1995-02-27 1995-02-27 Optical dispersion compensation circuit

Publications (1)

Publication Number Publication Date
JPH08234255A true JPH08234255A (en) 1996-09-13

Family

ID=12535545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038806A Pending JPH08234255A (en) 1995-02-27 1995-02-27 Optical dispersion compensation circuit

Country Status (1)

Country Link
JP (1) JPH08234255A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956440A (en) * 1996-01-10 1999-09-21 Nec Corporation Optical transmission line for wavelength division multiplexed optical signals
WO2001006682A1 (en) * 1999-07-19 2001-01-25 Sumitomo Electric Industries, Ltd. Dispersion compensation system
US6480312B1 (en) 1997-12-16 2002-11-12 Sumitomo Electric Industries, Ltd. Dispersion compensating system used for bi-directional optical communication
US6619867B1 (en) 1999-06-02 2003-09-16 Nec Corporation Optical transmission system
JP2006025373A (en) * 2004-07-09 2006-01-26 Fujitsu Ltd Apparatus and method for compensating polarization mode distribution in optical wavelength multiplex transmission system
KR100795576B1 (en) * 2001-11-20 2008-01-21 주식회사 케이티 Wideband dispersion compensation amplifier using negative dispersion flattened fiber
US7359645B2 (en) 2004-04-30 2008-04-15 Fujitsu Limited Dispersion compensating method, optical transmission system, and optical transmission apparatus
KR100844379B1 (en) * 2001-11-20 2008-07-07 주식회사 케이티 Wideband dispersion compensation device using negative dispersion flattened fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5956440A (en) * 1996-01-10 1999-09-21 Nec Corporation Optical transmission line for wavelength division multiplexed optical signals
US6480312B1 (en) 1997-12-16 2002-11-12 Sumitomo Electric Industries, Ltd. Dispersion compensating system used for bi-directional optical communication
US6619867B1 (en) 1999-06-02 2003-09-16 Nec Corporation Optical transmission system
WO2001006682A1 (en) * 1999-07-19 2001-01-25 Sumitomo Electric Industries, Ltd. Dispersion compensation system
US7079769B1 (en) 1999-07-19 2006-07-18 Sumitomo Electric Industries, Ltd. Dispersion-compensating system
US7292748B2 (en) 1999-07-19 2007-11-06 Sumitomo Electric Industries, Ltd. Dispersion-compensating system
KR100795576B1 (en) * 2001-11-20 2008-01-21 주식회사 케이티 Wideband dispersion compensation amplifier using negative dispersion flattened fiber
KR100844379B1 (en) * 2001-11-20 2008-07-07 주식회사 케이티 Wideband dispersion compensation device using negative dispersion flattened fiber
US7359645B2 (en) 2004-04-30 2008-04-15 Fujitsu Limited Dispersion compensating method, optical transmission system, and optical transmission apparatus
JP2006025373A (en) * 2004-07-09 2006-01-26 Fujitsu Ltd Apparatus and method for compensating polarization mode distribution in optical wavelength multiplex transmission system

Similar Documents

Publication Publication Date Title
USRE38289E1 (en) Chromatic dispersion compensation in wavelength division multiplexed optical transmission systems
AU721002B2 (en) A method of selectively compensating for the chromatic dispersion of optical signals
US6459516B1 (en) Dense WDM add/drop multiplexer
JP4870169B2 (en) Optical communication between a central terminal and a plurality of client terminals via an optical network
CA2198503C (en) Dispersion-tolerant 10 gb/s optical transceiver
US6043914A (en) Dense WDM in the 1310 nm band
MXPA00008184A (en) Ring/mesh optical network.
JPH08265299A (en) Optical fiber communication of a plurality of channels
JPH1155181A (en) Wavelength multiplexing optical transmission system
US6373609B1 (en) Wavelength tailored dispersion compensation apparatus
US6567577B2 (en) Method and apparatus for providing chromatic dispersion compensation in a wavelength division multiplexed optical transmission system
US20040175187A1 (en) Single fiber duplex optical transport
JPH08234255A (en) Optical dispersion compensation circuit
GB2330026A (en) WDM optical signal dispersion compensation
US20020159119A1 (en) Method and system for providing dispersion and dispersion slope compensation
US20040028319A1 (en) Optical communication system and method
CA2379871A1 (en) Dispersion compensation system
WO2002089363A1 (en) Method and system for providing dispersion and dispersion slope compensation
US6952509B2 (en) Wavelength dispersion compensator and optical transmission line
US6522455B1 (en) WDM optical communication system having a dispersion slope compensating element
US7406264B2 (en) Systems, devices, and methods for controlling non-linear optical interactions
JPH09116493A (en) Wavelength multiplex transmission system
CA2302683A1 (en) Dispersion compensating element having substantially uniform spectral nonlinearity
JP3339277B2 (en) Optical transmission system
US6571032B1 (en) Apparatus and method for multiplexing and/or demultiplexing optical signals having substantially equal dispersion