JPH08222705A - Complementary semiconductor device - Google Patents
Complementary semiconductor deviceInfo
- Publication number
- JPH08222705A JPH08222705A JP7024941A JP2494195A JPH08222705A JP H08222705 A JPH08222705 A JP H08222705A JP 7024941 A JP7024941 A JP 7024941A JP 2494195 A JP2494195 A JP 2494195A JP H08222705 A JPH08222705 A JP H08222705A
- Authority
- JP
- Japan
- Prior art keywords
- film
- semiconductor device
- region
- conductivity type
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は相補型半導体装置に係
り、特に、絶縁膜上に構成された低消費電力で、且つ高
速動作可能な高性能相補型MOSトランジスタに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a complementary semiconductor device, and more particularly to a high performance complementary MOS transistor formed on an insulating film with low power consumption and high speed operation.
【0002】[0002]
【従来の技術】絶縁膜上の単結晶半導体層にトランジス
タを構成する手法はSOI(シリコン・オン・インシュ
レータ;Silicon On Insulator)構造と称されて公知で
あり、図2及び図3で示される構造を有している。2. Description of the Related Art A method of forming a transistor in a single crystal semiconductor layer on an insulating film is known as an SOI (Silicon On Insulator) structure and is well known. The structure shown in FIGS. have.
【0003】図2は例えば1993年シンポジウム・オ
ン・ブイエルエスアイ・テクノロジ(1993 Symposi
um on VLSI Technology),p.27等で報告されている
通常構造のSOIであり、支持基板(図示せず)上の厚
いシリコン酸化膜(以降、単に酸化膜と称する。)1上
に構成された100nm以下の極めて薄い単結晶 Si
膜41及び42に相補型MOSトランジスタが構成され
ている。9,10はN型ソース、及びドレイン拡散領
域、11及び12はP型ドレイン,ソース拡散領域、6
はゲート酸化膜、8はゲート電極、13,14、及び1
5は各々、接地電位線,出力端子、及び電源電位線であ
る。51は素子間分離酸化膜である。FIG. 2 shows, for example, the 1993 Symposium on BLS Technology (1993 Symposi
um on VLSI Technology), p.27, etc., and is formed on a thick silicon oxide film (hereinafter simply referred to as an oxide film) 1 on a supporting substrate (not shown). Very thin single crystal Si of 100 nm or less
Complementary MOS transistors are formed on the films 41 and 42. Reference numerals 9 and 10 denote N-type source and drain diffusion regions, 11 and 12 denote P-type drain and source diffusion regions, 6
Is a gate oxide film, 8 is a gate electrode, 13, 14 and 1
Reference numerals 5 are a ground potential line, an output terminal, and a power supply potential line, respectively. Reference numeral 51 is an element isolation oxide film.
【0004】図2で示される公知のSOI構造トランジ
スタでは薄い単結晶Si膜41及び42に構成されるチ
ャネル領域を高不純物濃度に設定しない限り0.2μm
以下と超微細なゲート長を有するトランジスタではパン
チスルー現象を抑えることができず、従って高不純物濃
度に基づく移動度の低下のために、電流駆動能力が低下
する問題があった。In the known SOI structure transistor shown in FIG. 2, the channel region formed by the thin single crystal Si films 41 and 42 is 0.2 μm unless a high impurity concentration is set.
A transistor having an ultra-fine gate length as described below cannot suppress the punch-through phenomenon, and thus has a problem that the current driving capability is reduced due to the reduction in mobility due to the high impurity concentration.
【0005】図3は二重ゲート構造と称されており、例
えば特開平5−167073 号公報等で公知である。絶縁膜1
00上の超薄膜単結晶Si膜41及び42を上下から挟
み込むごとくゲート電極8及び81,ゲート酸化膜6及
び61が構成されている。ゲート電極8と81は図示さ
れていない素子間分離酸化膜領域で互いに電気的に接続
してもよく、また独立の電位を与えてもよい。図3で示
されるSOI構造は大電流特性が期待され、超微細なゲ
ート長まで閾電圧値がゲート長によらず制御でき、パン
チスルー現象の抑制効果も優れている等、理想構造に近
いが、ゲート電極81,ゲート酸化膜61を余分に製造
する必要があり、製造工程が複雑で実用的でなかった。
また、ゲート電極8と81は互いに自己整合の関係で構
成することができず、余分な寄生容量が生じ、高速動作
に支障が生じる等の欠点も生じた。FIG. 3 is called a double gate structure and is known, for example, from Japanese Patent Laid-Open No. 5-167073. Insulation film 1
The gate electrodes 8 and 81 and the gate oxide films 6 and 61 are formed so that the ultrathin single crystal Si films 41 and 42 on 00 are sandwiched from above and below. Gate electrodes 8 and 81 may be electrically connected to each other in a device isolation oxide film region (not shown), or may have independent potentials. The SOI structure shown in FIG. 3 is expected to have a large current characteristic, the threshold voltage value can be controlled to an ultra-fine gate length regardless of the gate length, and the punch-through phenomenon can be effectively suppressed. The gate electrode 81 and the gate oxide film 61 need to be additionally manufactured, and the manufacturing process is complicated and impractical.
Further, the gate electrodes 8 and 81 cannot be formed in a self-aligned relationship with each other, and extra parasitic capacitance is generated, which causes a problem such as a hindrance to high-speed operation.
【0006】[0006]
【発明が解決しようとする課題】図2及び図3で示され
る従来公知のSOI構造のMOSトランジスタに共通す
る問題はチャネルを構成する超薄膜単結晶膜内に高濃度
不純物を導入しておかない限り、電荷量が限定されるた
めにnチャネルトランジスタでは閾電圧値が負値に、p
チャネルトランジスタでは正値に設定されることであ
る。即ち、前記SOIトランジスタで相補型トランジスタ
を構成するとゼロ電圧で漏洩電流が流れてしまう問題が
あった。従って、チャネルを構成する超薄膜単結晶膜を
高濃度不純物に設定する必要があるが、これにより移動
度が低下し、駆動電流を大きくできない問題が生じた。The problem common to the conventionally known MOS transistors of SOI structure shown in FIGS. 2 and 3 is that high concentration impurities are not introduced into the ultra-thin single crystal film forming the channel. As long as the charge amount is limited, the threshold voltage value becomes a negative value in the n-channel transistor,
It is set to a positive value in the channel transistor. That is, if the SOI transistor is a complementary transistor, there is a problem that a leakage current flows at zero voltage. Therefore, it is necessary to set the ultra-thin single crystal film forming the channel to a high-concentration impurity, but this causes a problem that mobility decreases and the drive current cannot be increased.
【0007】また、図3で示すSOI構造では、ゲート
電極81に所望電位を与えることにより閾電圧値を制御
できるが、前述のごとく製造工程が複雑なため製造歩留
が悪く、高価となり、且つ制御回路も複雑となる等の欠
点のため実用にはいたっていない。Further, in the SOI structure shown in FIG. 3, the threshold voltage value can be controlled by applying a desired potential to the gate electrode 81, but as described above, the manufacturing process is complicated, so that the manufacturing yield is low and the cost is high. The control circuit has not been put into practical use due to its drawbacks such as complexity.
【0008】本発明は前記した従来SOI構造の問題
点、ゼロ電圧での漏洩電流の問題が生じず、閾電圧値の
所望電圧値への設定が簡単な製造工程により実現でき
る、従って廉価で実用的な相補型半導体装置を提供する
ものである。併せてチャネルを構成する超薄膜単結晶膜
を高濃度不純物に設定する必要もなく、従って大きな電
流駆動能力を実現するものである。The present invention does not have the problems of the conventional SOI structure described above and the problem of leakage current at zero voltage, and the threshold voltage value can be set to a desired voltage value by a simple manufacturing process. The present invention provides a complementary semiconductor device. At the same time, it is not necessary to set the ultra-thin single crystal film forming the channel to a high-concentration impurity, and therefore a large current driving capability is realized.
【0009】本発明が解決しようとする他の課題はNチ
ャネルトランジスタの閾電圧値は正値の、Pチャネルト
ランジスタの閾電圧値は負値の、限りなくゼロに近い値
に設定することにより1V以下と低電圧電源でも十分に
動作可能な低消費電力の相補型半導体装置を実現するも
のである。Another problem to be solved by the present invention is to set the threshold voltage value of the N-channel transistor to a positive value, and the threshold voltage value of the P-channel transistor to a negative value, which is as close to zero as possible by setting it to 1V. The following is to realize a low power consumption complementary semiconductor device that can sufficiently operate even with a low voltage power supply.
【0010】[0010]
【課題を解決するための手段】前記課題を解決するため
に、本発明の相補型半導体装置では基板として、支持基
板上に厚い絶縁膜,多結晶Si膜,薄い酸化膜,超薄膜
の単結晶Si膜が順に構成された多層構造のSOI基板
を用い、前記超薄膜単結晶Si膜に形成するNチャネル
トランジスタ下部の多結晶Si膜はP型高不純物濃度
に、超薄膜単結晶Si膜のPチャネルトランジスタ下部
の多結晶Si膜はN型高不純物濃度に構成する。更に、
N及びPチャネルトランジスタの両ゲート電極に関し、
少なくともゲート酸化膜を介して超薄膜単結晶Si膜に
接する領域を仕事関数が前記P型高不純物濃度SiとN
型高不純物濃度Siの中間となるごとき導電性材料で構
成する。前記導電性材料としてはタングステン(W)
膜,モリブデン(Mo)膜,タンタル(Ta)膜,タン
グステン窒化膜,チタン窒化膜(TiN),タングステ
ン珪化膜,モリブデン珪化膜,ニッケル珪化膜,コバル
ト珪化膜,ゲルマニウム混合Si膜,アルミニウム(A
l)膜等がある。In order to solve the above-mentioned problems, in the complementary semiconductor device of the present invention, as a substrate, a thick insulating film, a polycrystalline Si film, a thin oxide film, and an ultrathin single crystal are formed on a supporting substrate. Using a multi-layered SOI substrate in which Si films are sequentially formed, the polycrystalline Si film under the N-channel transistor formed in the ultra-thin single crystal Si film has a P-type high impurity concentration, and the ultra-thin single-crystal Si film P The polycrystalline Si film below the channel transistor is formed to have an N-type high impurity concentration. Furthermore,
Regarding both gate electrodes of N and P channel transistors,
At least the region in contact with the ultra-thin single crystal Si film through the gate oxide film has the work functions of P-type high impurity concentration Si and N
The mold is made of a conductive material such that it is in the middle of high impurity concentration Si. Tungsten (W) as the conductive material
Film, molybdenum (Mo) film, tantalum (Ta) film, tungsten nitride film, titanium nitride film (TiN), tungsten silicide film, molybdenum silicide film, nickel silicide film, cobalt silicide film, germanium mixed Si film, aluminum (A
l) There are membranes and the like.
【0011】[0011]
【作用】本発明に基づけば従来の超薄膜SOI構造相補
型半導体装置の欠点であるNチャネルトランジスタにお
ける閾電圧の負値化、Pチャネルトランジスタにおける
閾電圧の正値化の問題をトランジスタ直下の高濃度不純
物多結晶Si層と、ゲート電極の仕事関数の両作用によ
り解消することができる。ゲート電極材料、及び多結晶
Si層の不純物濃度の設定によってNチャネルトランジ
スタでは0.5V以下の小さな正値、Pチャネルトラン
ジスタでは−0.5V 以下の小さな負値に閾電圧値を制
御することができる。従って待機時の漏洩電流が無視で
きて、且つ低電源電圧での動作が可能となる。トランジ
スタ直下の高濃度不純物多結晶Si層の他の役割はチャ
ネル不純物濃度を上昇させなくともパンチスルー現象を
抑止するものである。前記目的のためには単結晶Si膜
直下の酸化膜厚を10nm程度と薄く構成し、薄い酸化
膜内でのドレイン電界集中を実効的に抑えれば良い。According to the present invention, the problems of the negative threshold voltage in the N-channel transistor and the positive threshold voltage in the P-channel transistor, which are the drawbacks of the conventional ultra-thin film SOI structure complementary semiconductor device, are solved. It can be eliminated by both actions of the concentration impurity polycrystalline Si layer and the work function of the gate electrode. By setting the gate electrode material and the impurity concentration of the polycrystalline Si layer, the threshold voltage value can be controlled to a small positive value of 0.5 V or less in the N-channel transistor and a small negative value of −0.5 V or less in the P-channel transistor. it can. Therefore, the leakage current during standby can be ignored and the operation can be performed with a low power supply voltage. Another role of the high-concentration impurity polycrystalline Si layer directly under the transistor is to suppress the punch-through phenomenon without increasing the channel impurity concentration. For the above-mentioned purpose, the oxide film thickness just under the single crystal Si film may be made as thin as about 10 nm, and the drain electric field concentration in the thin oxide film may be effectively suppressed.
【0012】図2で示されるSOI構造Nチャネルトラ
ンジスタのゲート電極材料として高濃度P型Si膜を、
Pチャネルトランジスタのゲート電極材料として高濃度
N型Si膜を用いればNチャネルトランジスタにおける
閾電圧の負値化、Pチャネルトランジスタにおける閾電
圧の正値化を達成できるが、閾電圧値は約±1Vと大き
くなりすぎ、電源電圧1V以下での低電圧動作は不可能
となる。A high-concentration P-type Si film is used as the gate electrode material of the SOI structure N-channel transistor shown in FIG.
If a high-concentration N-type Si film is used as the gate electrode material of the P-channel transistor, a negative threshold voltage of the N-channel transistor and a positive threshold voltage of the P-channel transistor can be achieved, but the threshold voltage value is about ± 1V. Becomes too large, and low voltage operation at a power supply voltage of 1 V or less becomes impossible.
【0013】本発明に基づけば従来の超薄膜SOI構造
の特徴である接合容量、及び配線容量の低減効果は損な
われない。更に、本発明では、ソース,ドレイン拡散層
直下の多結晶Si膜を高抵抗化することにより接合容量
を更に低減することができる。即ち、多結晶Si膜では
結晶粒界に基づくエネルギ準位のために抵抗値の不純物
濃度依存性は単結晶Siに比べて遥かに急峻であり、従
って高抵抗多結晶Si膜は完全空乏化している。本発明
に基づけばトランジスタに必ず付随する寄生素子領域は
電気的に劣悪な多結晶膜で置換された構造になってお
り、従って寄生素子である接合容量素子の容量は下地の
厚い酸化膜との直列接続効果とも相まって低減される。
この低負荷容量特性に基づいて更なる高速,低電力動作
が可能となる。According to the present invention, the effect of reducing the junction capacitance and wiring capacitance, which is a feature of the conventional ultra-thin film SOI structure, is not impaired. Further, in the present invention, the junction capacitance can be further reduced by increasing the resistance of the polycrystalline Si film immediately below the source / drain diffusion layers. That is, in the polycrystalline Si film, the dependence of the resistance value on the impurity concentration is much steeper than that of the single crystal Si because of the energy level based on the crystal grain boundaries, so that the high resistance polycrystalline Si film is completely depleted. There is. According to the present invention, the parasitic element region necessarily associated with the transistor has a structure in which the electrically inferior polycrystalline film is replaced. Therefore, the capacitance of the junction capacitive element, which is a parasitic element, is different from that of the underlying thick oxide film. It is reduced in combination with the effect of series connection.
Based on this low load capacity characteristic, further high speed and low power operation becomes possible.
【0014】[0014]
【実施例】以下、本発明を実施例によりさらに詳細に説
明する。理解を容易にするため、図面を用いて説明し、
要部は他の部分よりも拡大して示されている。各部の材
質,導電型、及び製造条件などは本実施例の記載に限定
されるものではなく、それぞれ多くの変形が可能であ
る。EXAMPLES The present invention will now be described in more detail with reference to examples. To make it easier to understand, we will explain using the drawings,
The main part is shown in a larger scale than the other parts. The material, conductivity type, manufacturing conditions, and the like of each part are not limited to those described in the present embodiment, and many variations are possible.
【0015】(実施例1)図4から図6は本発明の第一
の実施例による相補型半導体装置の製造工程順を示す断
面図、図1はその完成断面図である。本発明の相補型半
導体装置は図4に示すごとき酸化膜間に多結晶Si膜を
有する多層構造SOIウエハを用いて製造する。図4
で、1は単結晶Siウエハからなる支持基板(図示せ
ず)上に形成された500nm厚さのシリコン熱酸化
膜、2は化学気相反応により形成された200nm厚さ
の多結晶Si膜、3は単結晶Siウエハの熱酸化により
形成された10nm厚さの酸化膜、4は抵抗率20Ωc
m,p導電型,結晶面方位(100)厚さ100nmの単
結晶Si膜である。ウエハ直径は12.5cm である。(Embodiment 1) FIGS. 4 to 6 are sectional views showing the order of manufacturing steps of a complementary semiconductor device according to the first embodiment of the present invention, and FIG. 1 is a completed sectional view thereof. The complementary semiconductor device of the present invention is manufactured using a multi-layer structure SOI wafer having a polycrystalline Si film between oxide films as shown in FIG. FIG.
1, 1 is a 500 nm thick silicon thermal oxide film formed on a supporting substrate (not shown) made of a single crystal Si wafer, 2 is a 200 nm thick polycrystalline Si film formed by chemical vapor reaction, 3 is an oxide film with a thickness of 10 nm formed by thermal oxidation of a single crystal Si wafer, 4 is a resistivity of 20 Ωc
It is a single crystal Si film with m, p conductivity type and crystal plane orientation (100) thickness of 100 nm. The wafer diameter is 12.5 cm.
【0016】図4の多層構造SOIウエハは直接貼合せ
技術により製造された。即ち、薄い酸化膜4とSi堆積
膜が形成されたSiウエハ4と、厚い酸化膜1が形成さ
れた支持基板Siウエハを無塵環境下で接着剤なしで直
接貼合せた後、接合強度を強めるための熱処理を酸素雰
囲気中1100℃,2時間の条件で行い、Siウエハ4
の裏面側から研削、及び研磨を施して単結晶Si層4の
厚さを約4μmにまで薄くした。次にウエハ内の単結晶
Si層4の厚さ分布を光学的手法により測定し、直径1
mm程度の収束プラズマビームを用いたSiエッチング装
置により厚さ分布に従って、分布が解消されるように制
御しながらエッチングを施した。Si層厚さ分布の測定
とエッチングの処理を数回行うことにより単結晶Si膜
4の膜厚を最終的にウエハ内で100±10nmになる
ごとく制御した。The multi-layered SOI wafer of FIG. 4 was manufactured by the direct bonding technique. That is, the Si wafer 4 having the thin oxide film 4 and the Si deposited film formed thereon and the supporting substrate Si wafer having the thick oxide film 1 formed thereon are directly bonded to each other without an adhesive in a dust-free environment, and then the bonding strength is increased. The heat treatment for strengthening is performed in an oxygen atmosphere at 1100 ° C. for 2 hours, and the Si wafer 4
The single crystal Si layer 4 was thinned to about 4 μm by grinding and polishing from the back surface side. Next, the thickness distribution of the single crystal Si layer 4 in the wafer was measured by an optical method, and the diameter of 1
Etching was performed by a Si etching apparatus using a converged plasma beam of about mm according to the thickness distribution while controlling the distribution so as to be eliminated. By measuring the Si layer thickness distribution and performing the etching process several times, the film thickness of the single crystal Si film 4 was controlled so that the film thickness of the single crystal Si film 4 finally became 100 ± 10 nm in the wafer.
【0017】なお、多層構造SOIウエハの製造方法に
関しては前記手法に限定される必要はなく、又多結晶S
i膜2に高濃度の不純物が添加されていたり、酸化膜1
及び3の膜厚が異なったり、或いはシリコン窒化膜等の
他の絶縁膜であっても良い。The method of manufacturing the multi-layered SOI wafer is not limited to the above method, and the polycrystalline S
A high concentration of impurities is added to the i film 2 or the oxide film 1
And 3 may be different in film thickness, or may be another insulating film such as a silicon nitride film.
【0018】図4で示した多層SOIウエハにおいて、
活性領域以外の単結晶Si層4を選択的に除去し、除去
領域に350nmと厚い素子間分離絶縁膜5をLOCO
S法と称される公知の酸化手法により選択的に形成し
た。薄い酸化膜3は単結晶Si層4の選択除去のエッチ
ング阻止膜として作用し、選択除去の精度を向上させる
働きをする。次に、Nチャネルトランジスタ形成予定領
域には硼素(B)イオンを、又Pチャネルトランジスタ
形成予定領域には燐(P)イオンを加速エネルギを各々
150keV、及び250keVの条件でイオン注入を
施した。注入イオン量は多結晶Si膜2内での最大不純
物濃度が5×1018/cm3 となるごとく設定し、その後
の熱処理によりP型高濃度多結晶Si層21及びN型高
濃度多結晶Si層22を形成した。イオン注入は厚い素
子間分離絶縁膜5の形成前、更には単結晶Si層4の選
択除去前に行っても良い(図5)。In the multi-layer SOI wafer shown in FIG. 4,
The single crystal Si layer 4 other than the active region is selectively removed, and a device isolation insulating film 5 having a thickness of 350 nm and a thickness of LOCO is formed in the removed region.
It was selectively formed by a known oxidation method called S method. The thin oxide film 3 acts as an etching stopper film for the selective removal of the single crystal Si layer 4, and functions to improve the precision of the selective removal. Next, boron (B) ions were implanted into the N-channel transistor formation planned region, and phosphorus (P) ions were implanted into the P-channel transistor formation planned region under the conditions of acceleration energies of 150 keV and 250 keV, respectively. The amount of implanted ions is set so that the maximum impurity concentration in the polycrystalline Si film 2 is 5 × 10 18 / cm 3, and the subsequent heat treatment results in the P-type high-concentration polycrystalline Si layer 21 and the N-type high-concentration polycrystalline Si layer 21. Layer 22 was formed. The ion implantation may be performed before the formation of the thick element isolation insulating film 5 and further before the selective removal of the single crystal Si layer 4 (FIG. 5).
【0019】図5の状態より公知のMOSトランジスタ
製造方法に基づき5nm厚さのゲート酸化膜6を熱酸化
法により形成した後、ヘリコンプラズマ装置による50
nm厚さの窒化チタン(TiN)膜7の堆積を行い、続
けて200nm厚さのPが高濃度に添加されたSi膜8
を減圧化学気相反応により堆積した。この状態より所望
の回路構成に従いNチャネルトランジスタ、及びPチャ
ネルトランジスタのゲート電極を形成すべくSi膜8と
TiN膜7をパターニングした。最小ゲート長は0.2
μm であった。From the state shown in FIG. 5, a gate oxide film 6 having a thickness of 5 nm is formed by a thermal oxidation method based on a known MOS transistor manufacturing method, and then 50 by a helicon plasma device.
A titanium nitride (TiN) film 7 having a thickness of nm is deposited, and subsequently, a Si film 8 having a high concentration of P having a thickness of 200 nm is added.
Was deposited by vacuum chemical vapor reaction. From this state, the Si film 8 and the TiN film 7 were patterned to form the gate electrodes of the N-channel transistor and the P-channel transistor according to the desired circuit configuration. Minimum gate length is 0.2
was μm.
【0020】前記パターニングで、Si膜8上にゲート
保護絶縁膜を余分に形成しておき、ゲート保護絶縁膜ご
とパターニングしても良い。更に、前記ゲート電極の側
壁部に選択的に絶縁膜を残置するごとき構造としてもよ
い。It is also possible that an extra gate protection insulating film is formed on the Si film 8 by the patterning and the entire gate protection insulating film is patterned. Further, the insulating film may be selectively left on the side wall of the gate electrode.
【0021】次にパターニングしたゲート電極をマスク
にしたイオン注入を行った。Nチャネルトランジスタ領
域においてはPイオンを、Pチャネルトランジスタ領域
においてはBイオンを選択的に注入したが多結晶Si膜
2内に図5の状態で導入されている高不純物濃度領域を
補償し、高抵抗化するべく、加速エネルギ、及び注入量
を設定した。イオン注入によりNチャネルトランジスタ
のゲート電極8直下を除く多結晶Si膜はP型高抵抗領
域23に、Pチャネルトランジスタのゲート電極8直下
を除く多結晶Si膜はN型高抵抗領域24となった。Next, ion implantation was performed using the patterned gate electrode as a mask. Although P ions are selectively implanted in the N-channel transistor region and B ions are selectively implanted in the P-channel transistor region, the high impurity concentration region introduced in the state of FIG. The acceleration energy and the implantation amount were set to make the resistance. By the ion implantation, the polycrystalline Si film except under the gate electrode 8 of the N-channel transistor became the P-type high resistance region 23, and the polycrystalline Si film except under the gate electrode 8 of the P-channel transistor became the N-type high resistance region 24. .
【0022】前記イオン注入は、ゲート電極8直下以外
のソース,ドレイン拡散層形成予定領域直下の多結晶S
i膜を高抵抗化するのが目的であり、注入イオンは反対
導電型イオンではなく酸素(O)、又は窒素(N)等の
イオンであっても良い。なお、所望により前記イオン注
入を実施しなくとも良い(図6)。The ion implantation is performed on the polycrystalline S immediately below the regions where the source and drain diffusion layers are to be formed except under the gate electrode 8.
The purpose is to increase the resistance of the i film, and the implanted ions may be ions of oxygen (O), nitrogen (N), or the like, instead of ions of the opposite conductivity type. If desired, the ion implantation need not be performed (FIG. 6).
【0023】図6の状態より、ゲート電極8をマスクに
したイオン注入によりNチャネルトランジスタ形成予定
領域の単結晶Si層41にN型高不純物濃度のソース拡
散層9、及びドレイン拡散層10を、Pチャネルトラン
ジスタ形成予定領域の単結晶Si層42にP型高不純物
濃度のソース拡散層12、及びドレイン拡散層11を選
択的に形成した。その後、アルミニウム(Al)を主材
料とする金属配線製造工程により接地電位線13,出力
端子線14、及び電源線15を含む所望の配線を形成し
た(図1)。From the state of FIG. 6, the source diffusion layer 9 and the drain diffusion layer 10 having the N-type high impurity concentration are formed in the single crystal Si layer 41 in the N channel transistor formation planned region by ion implantation using the gate electrode 8 as a mask. The source diffusion layer 12 and the drain diffusion layer 11 having a P-type high impurity concentration were selectively formed in the single crystal Si layer 42 in the P-channel transistor formation planned region. After that, a desired wiring including the ground potential line 13, the output terminal line 14, and the power supply line 15 was formed by a metal wiring manufacturing process using aluminum (Al) as a main material (FIG. 1).
【0024】この製造工程を経て製造された本実施例に
基づく相補型半導体装置ではチャネル領域の不純物濃度
を上昇させていないにもかかわらず、0.2μm ゲート
長の超微細トランジスタでもパンチスルー現象は認めら
れず、閾電圧値もNチャネルトランジスタで0.2V 、
Pチャネルトランジスタで−0.15V となった。な
お、閾電圧値は、チャネル幅10μmで10nAのソー
ス,ドレイン電流が流れる時のゲート電圧として定義し
ている。また、0.2μm ゲート長,10μmゲート幅
のNチャネルトランジスタで、ゲート電圧,ドレイン電
圧が各々2Vの条件でソース,ドレイン電流は8.5m
A と極めて大きな電流値を示し、駆動能力でも優れて
いることが明らかとなった。In the complementary semiconductor device according to the present embodiment manufactured through this manufacturing process, the punch-through phenomenon does not occur even in an ultrafine transistor having a gate length of 0.2 μm, although the impurity concentration in the channel region is not increased. Not recognized, the threshold voltage value is 0.2V in the N-channel transistor,
The voltage of the P-channel transistor was -0.15V. The threshold voltage value is defined as a gate voltage when a source / drain current of 10 nA flows with a channel width of 10 μm. In addition, it is an N-channel transistor with a gate length of 0.2 μm and a gate width of 10 μm, and the source and drain currents are 8.5 m when the gate voltage and the drain voltage are 2 V each.
A shows a very large current value and shows that the driving ability is also excellent.
【0025】前記電流値は従来比で約1.5 倍の大電流
化に相当する。更に、N及びP型ドレイン接合容量は何
れも0.2fF/μm2と従来トランジスタの1/10程
度と極めて小さな値を示した。即ち本実施例に基づく相
補型半導体装置は1V以下の低電圧電源でも十分に高速
動作が可能であり、且つ製造方法も既存の装置による公
知の手法に基づくため廉価に提供できる特徴を有してい
る。The current value corresponds to an increase in current of about 1.5 times that of the conventional one. Further, the N-type and P-type drain junction capacitances are both 0.2 fF / μm 2, which is an extremely small value which is about 1/10 of that of the conventional transistor. That is, the complementary semiconductor device according to the present embodiment is capable of sufficiently high-speed operation even with a low voltage power source of 1 V or less, and has a feature that it can be provided at a low price because the manufacturing method is based on a known method using existing devices. There is.
【0026】(実施例2)図7は本発明の第二の実施例
による相補型半導体装置の完成断面図である。実施例1
ではゲート電極としてTiN膜7とSi膜8の積層構造
を用い、TiN膜7の仕事関数がトランジスタの閾電圧
値制御に関与する構成としたが、本実施例の相補型半導
体装置ではW膜71一層からなる材料でゲート電極を構
成した。(Embodiment 2) FIG. 7 is a completed sectional view of a complementary semiconductor device according to a second embodiment of the present invention. Example 1
Then, a laminated structure of the TiN film 7 and the Si film 8 is used as the gate electrode, and the work function of the TiN film 7 is involved in the control of the threshold voltage value of the transistor. However, in the complementary semiconductor device of this embodiment, the W film 71 is used. The gate electrode was composed of a single layer material.
【0027】本実施例に基づく相補型半導体装置では実
施例1の素子と同一寸法の素子で閾電圧値もNチャネル
トランジスタで0.1V 、Pチャネルトランジスタで−
0.25Vとなった。また、パンチスルー現象は認められ
ず、その他の電気特性、即ち、寄生容量や最大駆動電流
等はほぼ同等で優れた特性を示した。本実施例で、ゲー
ト材料はWに限定されず、モリブデン(Mo)膜,タン
タル(Ta)膜,タングステン窒化膜,タングステン珪化
膜,モリブデン珪化膜、ニッケル珪化膜,コバルト珪化
膜,ゲルマニウム混合Si膜,アルミニウム(Al)膜
等の単層膜、或いは前記材料がゲート酸化膜に接するよ
うに構成された多層重ね合せ膜であっても良い。In the complementary semiconductor device according to the present embodiment, the element having the same size as that of the first embodiment has a threshold voltage value of 0.1 V for the N-channel transistor and − for the P-channel transistor.
It became 0.25V. In addition, no punch-through phenomenon was observed, and other electrical characteristics, that is, parasitic capacitance, maximum drive current, etc., were almost the same and showed excellent characteristics. In this embodiment, the gate material is not limited to W, but molybdenum (Mo) film, tantalum (Ta) film, tungsten nitride film, tungsten silicide film, molybdenum silicide film, nickel silicide film, cobalt silicide film, germanium mixed Si film. , A single layer film such as an aluminum (Al) film, or a multi-layered film in which the above material is in contact with the gate oxide film.
【0028】(実施例3)他の実施例を図8により説明
する。本実施例は本発明に基づく相補型半導体装置によ
り構成された信号伝送処理装置に関し、特に非同期伝送
方式(ATM交換器と称される)に関する信号伝送処理
装置である。(Embodiment 3) Another embodiment will be described with reference to FIG. The present embodiment relates to a signal transmission processing device constituted by a complementary semiconductor device according to the present invention, and particularly to a signal transmission processing device relating to an asynchronous transmission system (called an ATM switch).
【0029】図8で、光信号は光ファイバにより超高速
で直列的に伝送され、電気信号に変換(O/E変換)し、
且つ並列化(S/P変換)させる装置を経て本発明の実施
例1に基づいて製造された相補型半導体装置で構成され
る集積回路(BFMLSI)に導入される。該集積回路で番地
付処理された電気信号は直列化(P/S変換)及び光信
号化(E/O変換)されて光ファイバで出力される。前
記BFMLSIは多重器(MUX),バッファメモリ(BF
M)、及び分離器(DMUX)により構成される。該BF
MLSIはメモリ制御LSI、及び空アドレス振分け制御の
機能を有するLSI(空アドレスFIFOメモリLS
I)により制御される。In FIG. 8, an optical signal is transmitted at a very high speed in series by an optical fiber and converted into an electric signal (O / E conversion),
Further, it is introduced into an integrated circuit (BFMLSI) including a complementary semiconductor device manufactured according to the first embodiment of the present invention through a device for parallelizing (S / P conversion). The electrical signal subjected to the addressing processing in the integrated circuit is serialized (P / S conversion) and converted into an optical signal (E / O conversion) and output through the optical fiber. The BFM LSI is a multiplexer (MUX), a buffer memory (BF).
M) and a separator (DMUX). The BF
The MLSI is a memory control LSI and an LSI (empty address FIFO memory LS) having a function of controlling the free address allocation.
Controlled by I).
【0030】本信号伝送処理装置は伝送すべき番地と無
関係に送られてくる超高速伝送信号を所望番地に超高速
で伝送するスイッチの機能を有する装置である。BFMLSI
は入力光信号の伝送速度に比べて著しく動作速度が遅い
為、入力信号を直接スイッチングできず、入力信号を一
時記憶させ、記憶された信号をスイッチングしてから超
高速な光信号に変換して所望番地に伝送する方式を用い
ている。BFMLSIの動作速度が遅ければ、大きな記憶容量
が要求される。The present signal transmission processing device is a device having a switch function for transmitting an ultra high speed transmission signal sent to a desired address at an ultra high speed regardless of an address to be transmitted. BFMLSI
Since the operating speed is significantly slower than the transmission speed of the input optical signal, the input signal cannot be directly switched.The input signal is temporarily stored, the stored signal is switched, and then converted to an ultra-high-speed optical signal. A method of transmitting to a desired address is used. If the operation speed of BFMLSI is slow, a large storage capacity is required.
【0031】本実施例に基づくATM交換器ではBFMLSI
が実施例1に基づき製造された相補型半導体装置で構成
されることにより従来のBFMLSIに比べて動作速度が1.
5 倍と高速で且つ廉価なため、BFMLSIの記憶容量を従
来比で約2/3倍に低減することが可能となった。これ
によりATM交換器の製造原価を低減することができ
た。In the ATM switch according to this embodiment, BFMLSI is used.
Since it is composed of the complementary semiconductor device manufactured according to the first embodiment, the operating speed is 1.
Since it is 5 times faster and less expensive, it has become possible to reduce the storage capacity of the BFM LSI to about 2/3 times that of the conventional one. As a result, the manufacturing cost of the ATM switch could be reduced.
【0032】[0032]
【発明の効果】本発明によれば接合容量や配線容量を大
幅に低減できるSOI構造で、Nチャネルトランジスタ
の閾電圧値は正の、Pチャネルトランジスタの閾電圧値
は負の極めて小さな値に設定できる。また、0.2μm
と超微細なゲート長の素子でもチャネル濃度を上昇させ
なくともパンチスルー現象が生じないため低チャネル濃
度に基づく高移動度により従来構造素子の約1.5 倍の
大電流化が図れる。更に接合寄生容量も従来構造比で1
/10以下にまで低減できる効果がある。従って、本発
明に基づけば1V以下の低電圧で動作可能で、且つ低消
費電力,高速動作可能な相補型半導体装置を従来製造装
置により廉価に製造し、提供することができる。According to the present invention, in the SOI structure capable of greatly reducing the junction capacitance and the wiring capacitance, the threshold voltage value of the N-channel transistor is set to a positive value and the threshold voltage value of the P-channel transistor is set to an extremely small value. it can. Also, 0.2 μm
Therefore, even if the device has an ultra-fine gate length, the punch-through phenomenon does not occur even if the channel concentration is not increased, so that the high mobility based on the low channel concentration can increase the current about 1.5 times that of the conventional structure device. Furthermore, the junction parasitic capacitance is 1 compared to the conventional structure.
There is an effect that it can be reduced to / 10 or less. Therefore, according to the present invention, a complementary semiconductor device capable of operating at a low voltage of 1 V or less, low power consumption, and capable of operating at high speed can be manufactured and provided at low cost by the conventional manufacturing apparatus.
【図1】本発明の第一の実施例による相補型半導体装置
の完成時の断面図。FIG. 1 is a sectional view of a complementary semiconductor device according to a first embodiment of the present invention when it is completed.
【図2】従来のSOI構造相補型半導体装置の断面図。FIG. 2 is a cross-sectional view of a conventional SOI structure complementary semiconductor device.
【図3】従来のSOI構造相補型半導体装置の断面図。FIG. 3 is a cross-sectional view of a conventional SOI structure complementary semiconductor device.
【図4】本発明の第一の実施例による相補型半導体装置
の製造工程を示す断面図。FIG. 4 is a cross-sectional view showing the manufacturing process of the complementary semiconductor device according to the first embodiment of the present invention.
【図5】本発明の第一の実施例による相補型半導体装置
の製造工程を示す断面図。FIG. 5 is a cross-sectional view showing the manufacturing process of the complementary semiconductor device according to the first embodiment of the present invention.
【図6】本発明の第一の実施例による相補型半導体装置
の製造工程を示す断面図。FIG. 6 is a cross-sectional view showing the manufacturing process of the complementary semiconductor device according to the first embodiment of the present invention.
【図7】本発明の第二の実施例による相補型半導体装置
の完成時の断面図。FIG. 7 is a sectional view of a complementary semiconductor device according to a second embodiment of the present invention when it is completed.
【図8】本発明の第三の実施例を説明する為の非同期伝
送モードシステムの説明図。FIG. 8 is an explanatory diagram of an asynchronous transmission mode system for explaining a third embodiment of the present invention.
1…厚い酸化膜、2…多結晶Si膜、3…薄い酸化膜、
4…単結晶Si膜、5…素子間分離酸化膜、6…ゲート
酸化膜、7…TiN膜、8…Siゲート膜、9…N型ソ
ース拡散層、10…N型ドレイン拡散層、11…P型ド
レイン拡散層、12…P型ソース拡散層、13…接地電
位線、14…出力端子、15…電源線、21…P型高濃
度多結晶Si層、22…N型高濃度多結晶Si層、23
…P型高抵抗多結晶Si層、24…N型高抵抗多結晶S
i層、71…W電極。1 ... Thick oxide film, 2 ... Polycrystalline Si film, 3 ... Thin oxide film,
4 ... Single crystal Si film, 5 ... Element isolation oxide film, 6 ... Gate oxide film, 7 ... TiN film, 8 ... Si gate film, 9 ... N type source diffusion layer, 10 ... N type drain diffusion layer, 11 ... P-type drain diffusion layer, 12 ... P-type source diffusion layer, 13 ... Ground potential line, 14 ... Output terminal, 15 ... Power line, 21 ... P-type high-concentration polycrystalline Si layer, 22 ... N-type high-concentration polycrystalline Si Layer, 23
... P-type high resistance polycrystalline Si layer, 24 ... N-type high resistance polycrystalline S
i layer, 71 ... W electrode.
Claims (7)
前記第一の絶縁膜上に形成され、第一の導電型を有する
第一の領域、及び第二の導電型を有する第二の領域から
なる第一の半導体膜と、前記半導体膜上に形成された第
二の絶縁膜と、前記第二の絶縁膜上に形成され、前記第
一の領域上では第一の導電型を有し、前記第二の領域上
では第二の導電型を有する単結晶半導体層と、前記単結
晶半導体層上に形成された第三の絶縁膜と、前記第三の
絶縁膜上に形成された電極とを有し、前記電極の少なく
とも前記第三の絶縁膜に接する領域は前記第一の領域、
及び前記第二の領域を構成する半導体膜の何れの仕事関
数とも異なり、その中間の値を有する同一の導電性材料
で構成されることを特徴とする相補型半導体装置。1. A first insulating film formed on a supporting substrate,
A first semiconductor film formed on the first insulating film, the first semiconductor film including a first region having a first conductivity type and a second region having a second conductivity type, and formed on the semiconductor film. Formed on the second insulating film, and has a first conductivity type on the first region and a second conductivity type on the second region. A single crystal semiconductor layer, a third insulating film formed on the single crystal semiconductor layer, and an electrode formed on the third insulating film, and at least the third insulating film of the electrode. The area in contact with is the first area,
And a complementary semiconductor device, which is different from any work function of the semiconductor film forming the second region and is made of the same conductive material having an intermediate value.
記単結晶半導体層には互いに分離された一対の第二の導
電型で、且つ低抵抗の第三の領域が、前記第二の領域上
の単結晶半導体層には互いに分離された一対の第一の導
電型で、且つ低抵抗の第四の領域が構成された相補型半
導体装置。2. A pair of second regions of a second conductivity type and a low resistance, which are separated from each other, are formed in the single crystal semiconductor layer on the first region, Complementary semiconductor device in which a pair of first conductivity type and low resistance fourth regions separated from each other is formed in the single crystal semiconductor layer on the region.
多結晶質であり、前記一対の第三の領域の直下における
前記第一の半導体膜は第一の導電型を有する高抵抗領域
であり、前記一対の第四の領域の直下における前記半導
体膜は第二の導電型を有する高抵抗領域で構成される相
補型半導体装置。3. The high resistance region according to claim 2, wherein the first semiconductor film is polycrystalline, and the first semiconductor film immediately below the pair of third regions has a first conductivity type. And the semiconductor film directly below the pair of fourth regions is a high-resistance region having a second conductivity type.
は高融点金属、又はその珪化膜、あるいは高融点金属窒
化膜で少なくとも一部が構成される相補型半導体装置。4. The complementary semiconductor device according to claim 1, wherein the electrode is at least partially formed of a refractory metal, a silicide film thereof, or a refractory metal nitride film.
第一の半導体膜は外部から高抵抗を介して一定電位に接
続される相補型半導体装置。5. The complementary semiconductor device according to claim 1, 2, 3, or 4, wherein the first semiconductor film is externally connected to a constant potential via a high resistance.
前記第一の半導体膜は雑音入力保護回路を介して接地電
位に接続される相補型半導体装置。6. The method according to claim 1, 2, 3, 4 or 5.
A complementary semiconductor device in which the first semiconductor film is connected to a ground potential via a noise input protection circuit.
おける第一の導電型を有する高抵抗領域、および前記第
一の半導体膜における第二の導電型を有する高抵抗領域
は前記電極端から一定の間隔となるように構成される相
補型半導体装置。7. The high resistance region having the first conductivity type in the first semiconductor film and the high resistance region having the second conductivity type in the first semiconductor film are the electrode ends. Complementary semiconductor device configured to be spaced at a fixed distance from.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7024941A JPH08222705A (en) | 1995-02-14 | 1995-02-14 | Complementary semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7024941A JPH08222705A (en) | 1995-02-14 | 1995-02-14 | Complementary semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08222705A true JPH08222705A (en) | 1996-08-30 |
Family
ID=12152070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7024941A Pending JPH08222705A (en) | 1995-02-14 | 1995-02-14 | Complementary semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08222705A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100335800B1 (en) * | 2000-07-04 | 2002-05-08 | 박종섭 | CMOS transistor and method for manufacturing the same |
US7115950B2 (en) | 1999-09-14 | 2006-10-03 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
WO2008001680A1 (en) * | 2006-06-27 | 2008-01-03 | National University Corporation Tohoku University | Semiconductor device |
KR100919938B1 (en) * | 1999-03-26 | 2009-10-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | A display device |
JP2009246364A (en) * | 2008-03-31 | 2009-10-22 | Commiss Energ Atom | Method for manufacturing microscopic electronic structure of semiconductor-on-insulator type having different pattern |
JP2017063098A (en) * | 2015-09-24 | 2017-03-30 | ラピスセミコンダクタ株式会社 | Semiconductor device and method of manufacturing the same |
-
1995
- 1995-02-14 JP JP7024941A patent/JPH08222705A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100919938B1 (en) * | 1999-03-26 | 2009-10-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | A display device |
US9035314B2 (en) | 1999-03-26 | 2015-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing an electrooptical device |
US7115950B2 (en) | 1999-09-14 | 2006-10-03 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
KR100335800B1 (en) * | 2000-07-04 | 2002-05-08 | 박종섭 | CMOS transistor and method for manufacturing the same |
WO2008001680A1 (en) * | 2006-06-27 | 2008-01-03 | National University Corporation Tohoku University | Semiconductor device |
JP2008010498A (en) * | 2006-06-27 | 2008-01-17 | Tohoku Univ | Semiconductor device |
US8643106B2 (en) | 2006-06-27 | 2014-02-04 | National University Corporation Tohoku University | Semiconductor device |
JP2009246364A (en) * | 2008-03-31 | 2009-10-22 | Commiss Energ Atom | Method for manufacturing microscopic electronic structure of semiconductor-on-insulator type having different pattern |
JP2017063098A (en) * | 2015-09-24 | 2017-03-30 | ラピスセミコンダクタ株式会社 | Semiconductor device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW530417B (en) | Semiconductor device | |
US6861304B2 (en) | Semiconductor integrated circuit device and method of manufacturing thereof | |
JP2940880B2 (en) | Semiconductor device and manufacturing method thereof | |
US6833308B2 (en) | Structure and method for dual gate oxide thicknesses | |
JP3265569B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4332925B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI392059B (en) | Planar back gate CMOS high performance capacitor | |
JPH039631B2 (en) | ||
JP3383219B2 (en) | SOI semiconductor device and manufacturing method thereof | |
US10896958B2 (en) | Silicon-on-insulator backside contacts | |
KR100294640B1 (en) | Silicon double membrane device with floating body effect and its manufacturing method | |
EP0031238B1 (en) | Semiconductor memory device | |
US5972744A (en) | Quantum effect device, method of manufacturing the same | |
JPH08222705A (en) | Complementary semiconductor device | |
JPH06268215A (en) | Mis type semiconductor device | |
US20210193692A1 (en) | Semiconductor device and method of forming the same | |
JPH11135799A (en) | Semiconductor integrated circuit and its manufacture | |
JPH05343686A (en) | Semiconductor device and manufacture thereof | |
JP2876866B2 (en) | Semiconductor device | |
JP3980670B2 (en) | Semiconductor device | |
US20120056273A1 (en) | Semiconductor device and method of manufacturing the same | |
JP2005116981A (en) | Semiconductor device | |
JPH0864827A (en) | Semiconductor device and method of fabrication thereof | |
JPH11307652A (en) | Logic operation circuit | |
JP4093072B2 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050712 |