[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08221823A - Magneto-optical recording medium and magneto-optical recording and reproducing device using the same - Google Patents

Magneto-optical recording medium and magneto-optical recording and reproducing device using the same

Info

Publication number
JPH08221823A
JPH08221823A JP2374195A JP2374195A JPH08221823A JP H08221823 A JPH08221823 A JP H08221823A JP 2374195 A JP2374195 A JP 2374195A JP 2374195 A JP2374195 A JP 2374195A JP H08221823 A JPH08221823 A JP H08221823A
Authority
JP
Japan
Prior art keywords
layer
magnetic
magneto
recording
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2374195A
Other languages
Japanese (ja)
Inventor
Hiroaki Nemoto
広明 根本
Hiroyuki Awano
博之 粟野
Jiichi Miyamoto
治一 宮本
正彦 ▲高▼橋
Masahiko Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2374195A priority Critical patent/JPH08221823A/en
Publication of JPH08221823A publication Critical patent/JPH08221823A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To unidirectionally magnetize a reproducing layer by using small magnetic fields by laminating the reproducing layer having small coercive force and having perpendicular magnetic anisotropy and a recording and holding layer across a nonmagnetic layer and cutting the exchange bond. CONSTITUTION: This magneto-optical recording medium has magnetic layers having the reproducing layer 9 and recording and holding layer 10 to be magnetically coupled onto the one surface of a transparent substrate. The recording and holding layer 10 is subjected to signal recording by an ordinary method and is irradiated with a light beam 11 from the reproducing layer 9 side to heat up the reproducing layer. While the magnetic signals recorded on the recording and holding layer 10 are transferred onto the reproducing layer 9, the magnetic signals are converted to optical signals by the magnet-optical effect possessed by the reproducing layer 9. These optical signals are read. Particularly, the reproducing layer 9 shifts from intra-surface magnetization to perpendicular magnetization in regions 13 of a prescribed temp, or above and the magnetic signals of the recording and holding layer 10 are transferred. The magneto-optical effect in the temp. regions exclusive thereof is low. Then, the parts of the prescribed temp. or below do not participate in the signals and are identical to that these parts are optically masked. The effective resolution of the spot of the light beam 11 is, therefore, enhanced and the reading out of the recording signals having a high line density and track density is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学特性によって
記録信号の読み出しを行う光磁気記録再生装置および光
磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording / reproducing apparatus and a magneto-optical recording medium for reading a recording signal according to magneto-optical characteristics.

【0002】[0002]

【従来の技術】光磁気記録方式は、レーザー光照射によ
り、磁性薄膜を部分的にキュリー点近傍まで昇温し、こ
の部分の保磁力を消滅させて外部から印加される記録磁
界の方向に反転させることによって行う。一方、再生は
記録時よりも小さいパワーでレーザー光を照射し、前記
磁性薄膜の持つ磁気光学効果(磁気カー効果、あるいは
ファラデー効果)により光学信号に変換して読みとるこ
とを基本原理とする。したがって光磁気記録媒体は、例
えばポリカーボネート等からなる透明基板に膜面と垂直
方向に磁化容易軸を有し、優れた磁気光学効果を有する
記録磁性層(例えば希土類−遷移金属合金非晶質薄膜)
や反射層、誘電体層を積層することにより構成され、こ
の媒体の透明基板側からレーザー光を記録膜に照射して
信号の記録および再生を行うようにしたものが知られて
いる。
2. Description of the Related Art In a magneto-optical recording method, a magnetic thin film is partially heated to near the Curie point by laser light irradiation, the coercive force of this part is extinguished, and the direction of a recording magnetic field applied from the outside is reversed. By doing. On the other hand, for reproduction, the basic principle is to irradiate a laser beam with a power smaller than that for recording, convert into an optical signal by the magneto-optical effect (magnetic Kerr effect or Faraday effect) of the magnetic thin film, and read. Therefore, the magneto-optical recording medium has a recording magnetic layer (for example, a rare earth-transition metal alloy amorphous thin film) having an excellent magneto-optical effect on a transparent substrate made of, for example, polycarbonate having an easy axis of magnetization in a direction perpendicular to the film surface.
It is known that a recording layer is formed by laminating a reflective layer and a dielectric layer, and a recording film is irradiated with laser light from the transparent substrate side of this medium to record and reproduce signals.

【0003】この光磁気ディスクを含め、光メモリ素子
の記録密度は光ビームのスポットの絞り込み限界に起因
した記録・再生時の分解能の限界がある。近年、光ビー
ムのスポットの大きさよりも小さい記録ビットを高分解
能に再生するために、記録磁性層に一定の性質を持つ磁
性層を再生専用層として加える方法が提案されている。
The recording density of optical memory devices including this magneto-optical disk has a limit of resolution at the time of recording / reproducing due to the limit of narrowing down the spot of a light beam. In recent years, a method has been proposed in which a magnetic layer having a certain property is added as a read-only layer to the recording magnetic layer in order to reproduce with high resolution a recording bit smaller than the spot size of the light beam.

【0004】ここで、図2および図3を参照しながらこ
の方法について以下に説明する。
Now, this method will be described below with reference to FIGS. 2 and 3.

【0005】図2に示した方式の光磁気記録媒体(例え
ば特開平5−12731)は透明な基板の一方の面上に
少なくとも磁気的に結合される再生層9と記録保持層1
0とを有した磁性層を有し、記録保持層10に対しては
通常の方法で信号記録を行うとともに、再生層9側から
光ビーム11を照射することによりこの再生層を昇温せ
しめ、記録保持層10に記録された磁気信号を再生層9
に転写しながら再生層9の持つ磁気光学効果により光学
信号に変換して読みとることを特徴とする。とくに、再
生層9は所定温度以上の領域13では面内磁化から垂直
磁化に移行して容易に記録保持層10の磁気信号を転写
し、それ以下の温度領域に置いては磁気光学効果は小さ
い。したがって、前記所定温度以下の部分は信号になん
ら関与せず、光学的にはマスクされているのと等価な状
態をなす。このために実効的な光ビーム11のスポット
の分解能が上がり、線記録密度とトラック密度の高い記
録信号を読み出すことができるようになる(磁気超解
像)。
A magneto-optical recording medium of the system shown in FIG. 2 (for example, Japanese Unexamined Patent Publication No. 5-12731) has a reproducing layer 9 and a recording holding layer 1 which are magnetically coupled to at least one surface of a transparent substrate.
0 is used to perform signal recording on the recording holding layer 10 by a normal method, and the reproducing layer 9 is irradiated with a light beam 11 to raise the temperature of the reproducing layer. The magnetic signal recorded in the recording holding layer 10 is reproduced in the reproducing layer 9
It is characterized in that it is converted into an optical signal by the magneto-optical effect of the reproducing layer 9 while being transferred to and read. In particular, in the reproducing layer 9 in a region 13 having a predetermined temperature or higher, the in-plane magnetization is changed to the perpendicular magnetization to easily transfer the magnetic signal of the recording holding layer 10, and in the temperature region lower than that, the magneto-optical effect is small. . Therefore, the portion below the predetermined temperature does not contribute to the signal at all, and is optically equivalent to being masked. For this reason, the resolution of the effective spot of the light beam 11 is increased, and it becomes possible to read a recording signal with high linear recording density and track density (magnetic super-resolution).

【0006】一方、図3に示した方式の光磁気記録媒体
(例えば特開平3−88156)は記録保持層15の磁
気信号を再生層14に転写するのは同じである。この再
生層14は垂直磁気異方性を持つので大きな磁界によっ
て一様に磁化される性質を備えたものであり、再生の際
にをあらかじめ補助磁界発生装置19により再生層14
の磁化の向きを所定の方向(図中、下向き)に揃えてお
く(初期化)。次に光ビーム16を照射し、局部的に温
度上昇させて記録保持層15の磁気信号を転写する。こ
うすると光ビーム16のスポット中心部において、温度
が上昇した領域18の情報のみが得られるため、前記方
式と同様に磁気超解像効果を得られる。
On the other hand, the magneto-optical recording medium of the system shown in FIG. 3 (for example, Japanese Patent Laid-Open No. 3-88156) transfers the magnetic signal of the recording holding layer 15 to the reproducing layer 14 in the same manner. Since the reproducing layer 14 has perpendicular magnetic anisotropy, it has a property of being uniformly magnetized by a large magnetic field.
The magnetization direction of is aligned in a predetermined direction (downward in the figure) (initialization). Next, the light beam 16 is irradiated to locally raise the temperature to transfer the magnetic signal of the recording holding layer 15. By doing so, only the information of the region 18 in which the temperature has risen is obtained at the spot central portion of the light beam 16, so that the magnetic super-resolution effect can be obtained as in the above method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図2に
示した方式では、面内磁化膜を使用しているために再生
層9に転写される磁区の形状がはっきりせず、これが高
いCN比を得る際の障害になる。また、面内磁化から垂
直磁化に移る温度を適当に設定しなければいけないこと
から、膜の作成の際の組成マージンが非常に厳しくなる
ことが考えられる。
However, in the method shown in FIG. 2, since the in-plane magnetized film is used, the shape of the magnetic domain transferred to the reproducing layer 9 is not clear, which results in a high CN ratio. It will be an obstacle to getting it. Further, since the temperature at which the in-plane magnetization shifts to the perpendicular magnetization has to be set appropriately, it is conceivable that the composition margin at the time of forming the film becomes extremely strict.

【0008】一方、図3に示した方式では、再生時に記
録保持層15から再生層14に磁化情報が転写されたビ
ットは、再生が終了してその部位の温度が下がっても残
ってしまう。このため、次のビットを再生するために光
ビームスポットの位置が移動しても、前のビットはまだ
スポット内に存在するので雑音の原因となるという問題
を有しており、記録密度を向上させる際の制限事項にな
る。また、再生層初期化用の補助磁界発生装置19を光
ビーム16のスポットの手前側に用意する必要がある。
On the other hand, in the system shown in FIG. 3, the bits whose magnetization information has been transferred from the recording holding layer 15 to the reproducing layer 14 during reproduction remain even after the reproduction is completed and the temperature of that portion is lowered. Therefore, even if the position of the light beam spot moves to reproduce the next bit, the previous bit still exists in the spot, which causes a problem of noise, which improves the recording density. It will be a limitation when making it. Further, it is necessary to prepare the auxiliary magnetic field generator 19 for initializing the reproducing layer on the front side of the spot of the light beam 16.

【0009】本発明はかかる従来の実状に鑑みて提案さ
れるものであって、上記方式に比べて比較的組成や構成
が容易で、分解能が高く、CN比の高い磁気超解像再生方
式を達成する光磁気記録媒体およびこれを用いた光磁気
記録再生装置を提供することを目的とする。
The present invention has been proposed in view of the above-mentioned conventional circumstances, and a magnetic super-resolution reproducing system having a relatively easy composition and structure, a high resolution, and a high CN ratio as compared with the above system is provided. An object is to provide a magneto-optical recording medium to be achieved and a magneto-optical recording / reproducing apparatus using the same.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明では以下のような手段を用いた。
In order to achieve the above object, the present invention uses the following means.

【0011】基板状に少なくとも磁気的に結合される再
生層と記録保持層とを有してなる磁性多層膜を持つ光磁
気記録媒体について、室温から再生温度にかけて小さい
保磁力と垂直磁気異方性とを有する再生層3を用い、さ
らに記録保持層4と再生層3の間に非磁性層5を挿入
し、これらの交換結合を切断した。ここで再生層3の垂
直磁気異方性は、室温(摂氏25度)において、いったん
磁化を飽和させたあとで磁界をゼロとしたときの残留磁
化が、飽和磁化の80%以上であるといった程度で十分で
ある。このような性質を持つ再生層としては、カー回転
角が大きい材料であることも考え合わせると、Gd-Fe
系、Gd-Fe-Co系、Gd-Tb-Fe-Co系、Gd-Dy-Fe-Co系合金の
非晶質薄膜等が好適である。
Regarding a magneto-optical recording medium having a magnetic multi-layered film having a reproducing layer and a recording holding layer which are at least magnetically coupled to each other on a substrate, a small coercive force and perpendicular magnetic anisotropy are obtained from room temperature to the reproducing temperature. Using the reproducing layer 3 having and the non-magnetic layer 5 was further inserted between the recording holding layer 4 and the reproducing layer 3 to break the exchange coupling between them. Here, the perpendicular magnetic anisotropy of the reproducing layer 3 is such that at room temperature (25 degrees Celsius), the residual magnetization when the magnetic field is zero after the magnetization is once saturated is 80% or more of the saturation magnetization. Is enough. Considering that the reproduction layer with such properties is a material with a large Kerr rotation angle, Gd-Fe
Amorphous thin films of Gd-Fe-Co-based, Gd-Tb-Fe-Co-based, Gd-Dy-Fe-Co-based alloys and the like are preferable.

【0012】ここで、情報の記録はこの光磁気記録媒体
に対して光ビーム7を照射し、記録保持層上のスポット
の温度をキュリー温度付近まで上昇させた上で、磁界発
生装置6を用いて記録保持層の磁化の向きを情報に応じ
て変化させて行う。
For recording information, the magneto-optical recording medium is irradiated with a light beam 7 to raise the temperature of the spot on the recording holding layer to near the Curie temperature, and then the magnetic field generator 6 is used. The magnetization direction of the recording holding layer is changed according to the information.

【0013】また、情報の再生は図4に示すように、前
記の光磁気記録媒体を用い、光ビームのスポット周辺に
磁界を加えることのできる磁界発生装置21によって、
再生層の保磁力よりも大きな磁界を消去方向にかけてあ
らかじめ一方向に磁化した状態で、光学ピックアップか
ら再生光ビームを照射する。記録保持層と再生層の交換
結合を非磁性層を加えることによって切断した場合にお
いても、記録保持層に磁気信号としてとして記録された
磁区マークからの漏洩磁界によって、再生層の磁化の向
きが記録保持層の磁化の向きに揃おうとする力(静磁結
合力)が働く。しかし、図5に示すように、小さな記録
磁区径のマークを転写する際には、転写した磁区27の
周りに磁壁28(影になっている部分の上)を形成する
必要がある。このときの磁壁エネルギーは転写する磁区
の半径をr、再生層の厚さをhとすると2πrhσwである。
ここでσwは単位面積当たりの磁壁エネルギーで温度が
上がると減少して、キュリー温度でゼロになる。したが
って、図6に示すように、再生層のキュリー温度Tcから
離れた温度では必要とするエネルギーの方が静磁結合力
と比較して大きいために、実際には転写が起こらない。
Further, as shown in FIG. 4, the reproduction of information uses the above-mentioned magneto-optical recording medium and a magnetic field generator 21 capable of applying a magnetic field around the spot of the light beam.
A reproducing light beam is emitted from the optical pickup in a state where a magnetic field larger than the coercive force of the reproducing layer is magnetized in one direction in the erasing direction in advance. Even if the exchange coupling between the recording layer and the reproducing layer is broken by adding a non-magnetic layer, the direction of magnetization of the reproducing layer is recorded by the leakage magnetic field from the magnetic domain mark recorded as a magnetic signal in the recording layer. A force (magnetostatic coupling force) that tries to align the magnetization direction of the holding layer works. However, as shown in FIG. 5, when transferring a mark having a small recording magnetic domain diameter, it is necessary to form a magnetic domain wall 28 (on a shaded portion) around the transferred magnetic domain 27. The domain wall energy at this time is 2πrhσw, where r is the radius of the magnetic domain to be transferred and h is the thickness of the reproducing layer.
Here, σw is the domain wall energy per unit area and decreases as the temperature rises, and becomes zero at the Curie temperature. Therefore, as shown in FIG. 6, at a temperature away from the Curie temperature Tc of the reproducing layer, the required energy is larger than the magnetostatic coupling force, so that the transfer does not actually occur.

【0014】光ビームのパワーをあげて、再生層を局所
的に昇温すると、スポット中心部において温度が上昇し
た部位では、転写の際に必要な磁壁のエネルギーが減少
し、記録転写温度Trを境に静磁結合力による転写が可能
となる。したがって上述の構成により、光スポットより
も小さい磁気記録信号を高分解能で再生できる。
When the power of the light beam is raised and the temperature of the reproducing layer is locally raised, the energy of the domain wall necessary for the transfer is reduced at the portion where the temperature rises in the center of the spot, and the recording transfer temperature Tr is reduced. It becomes possible to transfer by the magnetostatic coupling force at the boundary. Therefore, with the above configuration, a magnetic recording signal smaller than the light spot can be reproduced with high resolution.

【0015】静磁結合力は記録された磁区マークに近け
れば強くなるために、記録保持層に近い再生層ほど良好
な転写性を持つことになる。そこで、再生層と記録保持
層の間、および再生層の間に挿入する非磁性層として
は、出来るだけ薄い膜厚で均一に交換結合を切断ること
の出来るAu、Ag、Al、Cu等のうち少なくとも一種類以上
の低表面エネルギー金属を母体とする合金薄膜が好適で
ある。
Since the magnetostatic coupling force becomes stronger as it approaches the recorded magnetic domain mark, the reproducing layer closer to the recording holding layer has better transferability. Therefore, as the non-magnetic layer inserted between the reproducing layer and the recording holding layer, and between the reproducing layer, Au, Ag, Al, Cu, etc., which can break the exchange coupling uniformly with the thinnest possible film thickness, are used. Among them, an alloy thin film having at least one kind of low surface energy metal as a matrix is suitable.

【0016】あるいは、このような非磁性層と、それを
挿入することで切断した磁性層の持つ光学定数が異なる
ために起こる再生層以外の部位からの反射を極力抑えた
い場合は、この非磁性層として光学定数を磁性層に近い
ものにすればよい。このような非磁性層としてはキュリ
ー温度が室温以下の磁性物質であるDy-Cu系、Dy-Ni系、
もしくは前記磁性層にCrを混入させた系などが適してい
る。
Alternatively, if it is desired to suppress reflection from a portion other than the reproducing layer due to the difference in optical constants of the non-magnetic layer and the magnetic layer cut by inserting the non-magnetic layer as much as possible, the non-magnetic layer The layer may have an optical constant close to that of the magnetic layer. As such a non-magnetic layer, the Curie temperature is a magnetic substance at room temperature or lower Dy-Cu system, Dy-Ni system,
Alternatively, a system in which Cr is mixed in the magnetic layer is suitable.

【0017】[0017]

【作用】上記の構成により、再生時に、保磁力の小さ
く、垂直磁気異方性を持つ再生層は、光ビームのスポッ
トの部分にかけられた外部磁界によって消去方向に揃え
らる。
With the above structure, the reproducing layer having a small coercive force and perpendicular magnetic anisotropy during reproduction is aligned in the erasing direction by the external magnetic field applied to the spot portion of the light beam.

【0018】この磁性層に光ビームを照射すると、照射
された部位の温度分布はガウス分布となり、光ビームの
径より小さい領域のみの温度が上昇する。
When this magnetic layer is irradiated with a light beam, the temperature distribution of the irradiated portion becomes a Gaussian distribution, and the temperature rises only in the area smaller than the diameter of the light beam.

【0019】この温度上昇に伴って、所定温度以上に達
した部位の大きさが、記録保持層にある転写すべき磁区
よりも大きくなると、 (転写磁区の磁壁のエネルギー)<(静磁結合エネルギ
ー) となり、この部分に記録保持層の磁区が転写される。
When the size of the portion reaching the predetermined temperature or higher becomes larger than the magnetic domain to be transferred in the recording holding layer due to this temperature increase, (energy of domain wall of transferred magnetic domain) <(magnetostatic coupling energy) ), The magnetic domain of the recording layer is transferred to this portion.

【0020】そして、光ビームが移動して磁性層におけ
る次の情報が記録された磁区を再生する時には先の再生
部位の温度は低下し、転写された磁区は外部からかかっ
ている外部磁界により、消去される。
Then, when the light beam moves to reproduce the magnetic domain in the magnetic layer in which the following information is recorded, the temperature of the previously reproduced portion is lowered, and the transferred magnetic domain is affected by an external magnetic field applied from the outside. Erased.

【0021】これにより、所定温度以上の温度を有する
領域のみを再生に関与させるので、隣接ビットからの信
号の混入を防ぐことができ、比較的広い組成マージン
と、単純な装置および媒体の構成を持ち、静磁結合力を
用いて磁気超解像用再生方式を実現する、光磁気記録再
生装置および光磁気記録媒体を得ることができた。
As a result, only the region having a temperature equal to or higher than the predetermined temperature is involved in the reproduction, so that the mixing of the signal from the adjacent bit can be prevented, and the relatively wide composition margin and the simple structure of the device and the medium can be realized. Thus, it was possible to obtain a magneto-optical recording / reproducing apparatus and a magneto-optical recording medium which realize a magnetic super-resolution reproducing system by using magnetostatic coupling force.

【0022】[0022]

【実施例】【Example】

〔実施例1〕以下に本発明の実施例を示しさらに詳細に
説明する。
[Embodiment 1] An embodiment of the present invention will be described below in more detail.

【0023】図1は本発明の実施例の記録媒体の積層構
造を示したものである。まず、トラッキング用の案内溝
を設けた5.25インチポリカーボネート製基板1を高周波
マグネトロンスパッタ装置内に充填し、0.1mPa以下に真
空排気した後、N2とArの混合ガスを導入し0.35Paのガス
圧で、Siをターゲットとしてスパッタを行い、誘電体層
2aとしてSiの窒化物を85nm積層する。その後GdFeCo合
金ターゲットを用い、0.3PaのArガス圧でスパッタを行
い、再生層3としてGd0.29Fe0.51Co0.20非晶質合金薄膜
を40nm積層する。次にAl合金薄膜を同じく0.3PaのArガ
ス圧でスパッタし、交換結合力切断層5として1nm積層
する。次にTbFeCo合金ターゲットを用い、0.3PaのArガ
ス圧でスパッタを行い、記録保持層5として遷移金属リ
ッチのTb0.21Fe0.60Co0.19非晶質合金薄膜を40nm積層す
る。このようにして積層された3つの再生層3と記録保
持層4は切断層5によってそれぞれ交換結合が完全に切
断されている。次に再び0.1mPa以下に真空排気した後、
ArとN2ガスの混合ガスを導入し、1.3Paのガス圧で、Si
をターゲットとして反応性スパッタを行い、保護層2b
としてSiの窒化物を85nm積層した。
FIG. 1 shows a laminated structure of a recording medium according to an embodiment of the present invention. First, a 5.25-inch polycarbonate substrate 1 provided with a guide groove for tracking was filled in a high-frequency magnetron sputtering apparatus, and after evacuating to 0.1 mPa or less, a mixed gas of N2 and Ar was introduced and the gas pressure was 0.35 Pa. , Si as a target is sputtered to deposit 85 nm of Si nitride as the dielectric layer 2a. Then, using a GdFeCo alloy target, sputtering is performed at an Ar gas pressure of 0.3 Pa to deposit a 40 nm thick Gd0.29Fe0.51Co0.20 amorphous alloy thin film as the reproducing layer 3. Next, the Al alloy thin film is similarly sputtered at an Ar gas pressure of 0.3 Pa to form an exchange coupling force cutting layer 5 with a thickness of 1 nm. Next, using a TbFeCo alloy target, sputtering is performed at an Ar gas pressure of 0.3 Pa to deposit a transition metal-rich Tb0.21Fe0.60Co0.19 amorphous alloy thin film having a thickness of 40 nm as the recording holding layer 5. The exchange coupling of the three reproducing layers 3 and the recording holding layers 4 thus laminated is completely broken by the cutting layer 5. Next, after evacuation to 0.1 mPa or less again,
Introducing a mixed gas of Ar and N2 gas, at a gas pressure of 1.3 Pa, Si
Reactive sputtering is performed with the target as a target to form a protective layer 2b.
As a result, a nitride of Si was deposited to a thickness of 85 nm.

【0024】本実施例の40nm単層の時の再生層3および
記録保持層4の磁気特性を表1に示す。再生層3は希土
類リッチ、記録保持層4は遷移金属リッチの組成であ
る。
Table 1 shows the magnetic characteristics of the reproducing layer 3 and the recording holding layer 4 in the case of a single layer of 40 nm in this example. The reproducing layer 3 has a rare earth-rich composition, and the recording holding layer 4 has a transition metal-rich composition.

【0025】[0025]

【表1】 補償温度(Tcomp) キュリー温度(Tc) 再生層/GdFeCo 室温以下 300℃ 記録保持層/TbFeCo 210℃ 320℃ また、図7に室温(30℃)から200℃までの温度におけ
る再生層3に印可される外部磁界Hextと磁気カー回転角
θkとの関係(ヒステリシス特性)の典型例を示す。こ
れから分かるようにこの温度領域においては、立ち上が
りの急峻なヒステリシス特性を示すことが分かる。ま
た、反転に必要な磁界(保磁力)は100Oe程度と小さ
く、外部磁界によって容易に磁化の方向を揃えることが
できる。
[Table 1] Compensation temperature (Tcomp) Curie temperature (Tc) Reproducing layer / GdFeCo below room temperature 300 ° C Recording holding layer / TbFeCo 210 ° C 320 ° C Also, in Fig. 7, the reproducing layer at temperatures from room temperature (30 ° C) to 200 ° C A typical example of the relationship (hysteresis characteristic) between the external magnetic field Hext applied to 3 and the magnetic Kerr rotation angle θk is shown. As can be seen from this, in this temperature range, a hysteresis characteristic with a sharp rise is shown. Further, the magnetic field (coercive force) required for reversal is as small as 100 Oe, and the direction of magnetization can be easily aligned by an external magnetic field.

【0026】上述の記録媒体について、図4の構成を持
つ光磁気記録再生装置を用いて再生特性を調べた。再生
時にはスポット周辺に消去方向に向かって100Oeの磁界
をかけ、線速が4m/sになるようにディスクを回転させな
がら再生光ビームを照射した。
The reproducing characteristics of the above recording medium were examined by using the magneto-optical recording / reproducing apparatus having the structure shown in FIG. During reproduction, a magnetic field of 100 Oe was applied to the periphery of the spot in the erasing direction, and the reproduction light beam was irradiated while rotating the disc so that the linear velocity was 4 m / s.

【0027】記録マーク長0.4μmの磁区を再生した際
の、CN比の再生光ビームパワー依存性を図9に示す。パ
ワー3.2mWの光ビームを照射したとき、46dBのCN比を得
ることができた。これに対し、同じ条件でパワー2.7mW
としたときはCN比が20dBとなり、パワー2.7mWから3.2mW
の間でこの大きさの磁区の再生層3への転写が起こるよ
うになったことが分かる。
FIG. 9 shows the dependence of the CN ratio on the reproducing light beam power when reproducing a magnetic domain having a recording mark length of 0.4 μm. When irradiated with a light beam with a power of 3.2 mW, a CN ratio of 46 dB could be obtained. On the other hand, the power is 2.7mW under the same conditions.
, The CN ratio is 20 dB, and the power is 2.7 mW to 3.2 mW.
It can be seen that during this period, the transfer of the magnetic domain of this size to the reproducing layer 3 is started.

【0028】ここで2.7mWの時のCN比20dBは、図8に示
すように再生層29を透過した光が、非磁性層31と記
録保持層30の境で反射して戻ってきた光である。この
反射は非磁性層31として使ったAl薄膜と記録保持層3
0として使ったTbFeCoアモルファス合金の光学定数が異
なるために起こる。
Here, the CN ratio of 20 dB at 2.7 mW is the light returned from the light transmitted through the reproducing layer 29 as reflected in the boundary between the non-magnetic layer 31 and the recording holding layer 30 as shown in FIG. is there. This reflection is caused by the Al thin film used as the non-magnetic layer 31 and the recording holding layer 3.
It occurs because the TbFeCo amorphous alloy used as 0 has different optical constants.

【0029】そこで他の組成および構造を同じにしたま
ま、この非磁性層31の組成をDy-Ni合金薄膜に換えて
実験を行った。この場合、再生層の転写可能パワー以下
でのCN比がおおよそ13dBになった。記録保持層の表面で
反射して戻ってくる光量は大幅に減少したことが分か
る。本発明の媒体および装置の構成は以上の例に限られ
るものではない。例えば、 (1)誘電体層2aや保護層2bとして、例えば、SiO
x、SiAlON、ZnSx,ZnOx等を用いる。
Therefore, an experiment was conducted by changing the composition of the nonmagnetic layer 31 to a Dy-Ni alloy thin film while keeping the other composition and structure the same. In this case, the CN ratio below the transferable power of the reproducing layer was about 13 dB. It can be seen that the amount of light reflected and returned on the surface of the recording holding layer is greatly reduced. The configurations of the medium and the device of the present invention are not limited to the above examples. For example, (1) As the dielectric layer 2a and the protective layer 2b, for example, SiO
x, SiAlON, ZnSx, ZnOx, etc. are used.

【0030】(2)再生層3や記録保持層4としてはG
d、Tb、Nd、Dy、Pr、Sm等の希土類元素とFe、Co、Ni、C
r等の遷移金属との合金を用いる。耐食性を向上させる
ために、Nb、Ti、Pt、Cr、Ta、Ni等を添加しても良い。
(2) G as the reproducing layer 3 and the recording holding layer 4
Rare earth elements such as d, Tb, Nd, Dy, Pr, Sm and Fe, Co, Ni, C
An alloy with a transition metal such as r is used. In order to improve the corrosion resistance, Nb, Ti, Pt, Cr, Ta, Ni or the like may be added.

【0031】(3)基板としてはサンプルサーボ用基
板、ランド/グルーブ基板を用いても良い。また、光磁
気テープや光磁気カードなどのディスク以外の形状のも
のを用いても良い。
(3) As the substrate, a sample servo substrate or a land / groove substrate may be used. Also, a shape other than a disk such as a magneto-optical tape or a magneto-optical card may be used.

【0032】(4)光磁気記録再生装置の磁界発生装置
としては、永久磁石や浮上型磁気ヘッドを用いても良
い。
(4) A permanent magnet or a floating magnetic head may be used as the magnetic field generator of the magneto-optical recording / reproducing apparatus.

【0033】[0033]

【発明の効果】以上の説明からも明らかなように、本発
明は、保持力が小さく垂直磁気異方性を持った再生層
と、記録保持層を非磁性層を間に挟んでに積層し、交換
結合を切断することにより、小さい磁界を用いて再生層
を一方向に磁化することができ、再生層に磁区を転写す
るためのエネルギーがある温度まで静磁結合エネルギー
を上回っていることを利用して、磁気超解像効果を得る
構成となっている。
As is apparent from the above description, according to the present invention, a reproducing layer having a small coercive force and a perpendicular magnetic anisotropy and a recording retaining layer are laminated with a nonmagnetic layer interposed therebetween. By breaking the exchange coupling, the reproducing layer can be magnetized in one direction using a small magnetic field, and the energy for transferring the magnetic domain to the reproducing layer exceeds the magnetostatic coupling energy up to a certain temperature. It is configured to obtain a magnetic super-resolution effect by utilizing it.

【0034】この方式による磁気超解像再生は垂直磁化
膜を使用しているために高いCN比を得るのに有利であ
り、組成マージンを広く取ることができる。また、交換
結合膜を用いた時のように強い初期化磁石は必要なく、
転写した磁区も温度の低下に伴って外部磁界のために消
去されてしまうので高分解能化の際の問題点を解決して
いる。
The magnetic super-resolution reproduction by this method is advantageous in obtaining a high CN ratio because a perpendicular magnetization film is used, and a wide composition margin can be taken. Also, there is no need for a strong initializing magnet like when using an exchange coupling film,
The transferred magnetic domain is also erased due to the external magnetic field as the temperature decreases, which solves the problem of high resolution.

【0035】このように、本発明における光磁気記録再
生装置および光磁気記録媒体は、簡単な組成・構造によ
る高品質な磁気超解像再生を可能とした。
As described above, the magneto-optical recording / reproducing apparatus and the magneto-optical recording medium according to the present invention enable high-quality magnetic super-resolution reproduction with a simple composition and structure.

【0036】したがって、光磁気記録媒体における高密
度記録化を達成する上で非常に有用であり、その意義は
大きい。
Therefore, it is very useful for achieving high density recording in the magneto-optical recording medium, and its significance is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の光磁気記録媒体に対する記録動
作を示す説明図。
FIG. 1 is an explanatory view showing a recording operation on a magneto-optical recording medium of the present invention.

【図2】図2は従来方式の光磁気記録媒体(例えば特開
平5−12731)に対する記録動作を示す説明図。
FIG. 2 is an explanatory diagram showing a recording operation on a conventional type magneto-optical recording medium (for example, Japanese Patent Laid-Open No. 12731/1993).

【図3】図3は従来方式の光磁気記録媒体(例えば特開
平3−88156)に対する記録動作を示す説明図。
FIG. 3 is an explanatory diagram showing a recording operation on a conventional magneto-optical recording medium (for example, Japanese Patent Laid-Open No. 3-88156).

【図4】図4は本発明の光磁気記録装置の一例を示す構
成図。
FIG. 4 is a configuration diagram showing an example of a magneto-optical recording apparatus of the present invention.

【図5】図5は磁区が記録保持層から再生層に転写され
る際に再生層に作られる磁壁の模式図。
FIG. 5 is a schematic diagram of a domain wall formed in a reproducing layer when a magnetic domain is transferred from the recording holding layer to the reproducing layer.

【図6】図6は図5に示した磁壁を作るのに必要なエネ
ルギーの温度依存性を示す図。
6 is a diagram showing the temperature dependence of the energy required to make the domain wall shown in FIG. 5;

【図7】図7は室温から補償温度以下の温度領域におけ
る、本発明の再生層に印可される外部磁界と磁気カー回
転角との関係を表す図(ヒステリシス曲線)。
FIG. 7 is a graph (hysteresis curve) showing a relationship between an external magnetic field applied to the reproducing layer of the present invention and a magnetic Kerr rotation angle in a temperature range from room temperature to a compensation temperature or lower.

【図8】図8は本発明の光磁気記録媒体において、再生
層を透過した光ビームが記録保持層の表面で反射しても
どってくる様子を示す模式図。
FIG. 8 is a schematic diagram showing how a light beam transmitted through a reproducing layer is reflected back on the surface of a recording holding layer in the magneto-optical recording medium of the present invention.

【図9】図9は本発明の実施例におけるCN比の再生光ビ
ームパワー依存性を示す図。
FIG. 9 is a diagram showing the reproduction light beam power dependency of the CN ratio in the example of the present invention.

【符号の説明】[Explanation of symbols]

1…透明基板、2a…誘電体層、2b…保護層、3…信
号再生層、4…記録保持層、5…非磁性層、6…磁界発
生装置、7…光ビーム、8…集光レンズ、9…再生層、
10…記録保持層、11…光ビーム、12…光ビームの
強度分布、13…転写可能領域、14…再生層、15…
記録保持層、16…光ビーム、17…光ビームの強度分
布、18…転写領域、19…補助磁界発生装置および初
期化用磁界、20…光磁気記録再生装置、21…磁界発
生装置、22…光学ピックアップ、23…ディスク回転
のためのスピンドルモータ、24…光磁気記録媒体、2
5…再生層(の一部)、26…外部磁界によって揃えら
れた磁化、27…転写した磁区、28…磁壁(影をつけ
た部分の上)、29…再生層、30…記録保持層、31
…非磁性層、32…隣のビットからの反射、33…読み
出したいビットからの反射。
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2a ... Dielectric layer, 2b ... Protective layer, 3 ... Signal reproducing layer, 4 ... Recording holding layer, 5 ... Nonmagnetic layer, 6 ... Magnetic field generator, 7 ... Light beam, 8 ... Condensing lens , 9 ... Regeneration layer,
10 ... Recording holding layer, 11 ... Light beam, 12 ... Light beam intensity distribution, 13 ... Transferable region, 14 ... Reproducing layer, 15 ...
Recording holding layer, 16 ... Light beam, 17 ... Light beam intensity distribution, 18 ... Transfer area, 19 ... Auxiliary magnetic field generator and initialization magnetic field, 20 ... Magneto-optical recording / reproducing device, 21 ... Magnetic field generating device, 22 ... Optical pickup, 23 ... Spindle motor for disc rotation, 24 ... Magneto-optical recording medium, 2
5 ... Reproducing layer (a part of), 26 ... Magnetization aligned by an external magnetic field, 27 ... Transferred magnetic domain, 28 ... Domain wall (on the shaded portion), 29 ... Reproducing layer, 30 ... Recording holding layer, 31
... non-magnetic layer, 32 ... reflection from adjacent bit, 33 ... reflection from bit to be read.

フロントページの続き (72)発明者 宮本 治一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 ▲高▼橋 正彦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor, Jiichi Miyamoto, 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Masahiko Hashi 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】情報が光磁気記録される磁性層を有する光
磁気記録媒体であって、前記磁性層が情報を磁気的に記
録する記録保持層と、室温から高温にいたるまで小さい
保磁力と垂直磁気異方性とを有する磁気信号再生層とを
備え、前記記録保持層と信号再生層の間に非磁性層を挟
み、これらの交換結合を切断したことを特徴とする光磁
気記録媒体。
1. A magneto-optical recording medium having a magnetic layer on which information is magneto-optically recorded, the recording layer having the magnetic layer magnetically recording information, and a coercive force small from room temperature to high temperature. A magneto-optical recording medium comprising a magnetic signal reproducing layer having perpendicular magnetic anisotropy, wherein a non-magnetic layer is sandwiched between the recording holding layer and the signal reproducing layer and the exchange coupling between them is cut.
【請求項2】再生層の垂直磁気異方性が、室温(摂氏30
度)において、いったん磁化を飽和させたあとで磁界を
ゼロとしたときの残留磁化が、飽和磁化の80%以上であ
ることを特徴とする請求項1記載の光磁気記録媒体。
2. The perpendicular magnetic anisotropy of the reproducing layer is at room temperature (30 degrees Celsius).
2. The magneto-optical recording medium according to claim 1, wherein the remanent magnetization when the magnetic field is zero after the magnetization is once saturated is 80% or more of the saturation magnetization.
【請求項3】上記磁性層間の交換結合を切断するための
非磁性層として、Au、Ag、Al、Cu等のうち、少なくとも
1種類以上の低表面エネルギー金属を母体とする合金薄
膜を用いたことを特徴とする請求項1または2記載の光
磁気記録媒体。
3. An alloy thin film containing at least one low surface energy metal of Au, Ag, Al, Cu, etc. as a matrix is used as the non-magnetic layer for breaking exchange coupling between the magnetic layers. The magneto-optical recording medium according to claim 1 or 2, wherein
【請求項4】上記磁性層間の交換結合を切断するための
非磁性層として、切断した磁性層のいずれか、あるいは
両方と光学定数が同じ物質を用いたことを特徴とする請
求項1または2記載の光磁気記録媒体。
4. The material having the same optical constant as that of either or both of the cut magnetic layers is used as the non-magnetic layer for breaking the exchange coupling between the magnetic layers. The magneto-optical recording medium described.
【請求項5】請求項1または請求項2記載の光磁気記録
媒体を用い、再生層側から光を照射して信号を再生する
光磁気記録再生装置において、光スポットの周辺に再生
層の保磁力よりも大きい磁界をかけながら情報を再生す
ることを特徴とする光磁気記録再生装置。
5. A magneto-optical recording / reproducing apparatus which uses the magneto-optical recording medium according to claim 1 or 2 and reproduces a signal by irradiating light from the reproducing layer side. A magneto-optical recording / reproducing apparatus, which reproduces information while applying a magnetic field larger than the magnetic force.
JP2374195A 1995-02-13 1995-02-13 Magneto-optical recording medium and magneto-optical recording and reproducing device using the same Pending JPH08221823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2374195A JPH08221823A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and magneto-optical recording and reproducing device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2374195A JPH08221823A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and magneto-optical recording and reproducing device using the same

Publications (1)

Publication Number Publication Date
JPH08221823A true JPH08221823A (en) 1996-08-30

Family

ID=12118742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2374195A Pending JPH08221823A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and magneto-optical recording and reproducing device using the same

Country Status (1)

Country Link
JP (1) JPH08221823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143933A (en) * 1996-11-13 1998-05-29 Sanyo Electric Co Ltd Reproducing medium and information recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10143933A (en) * 1996-11-13 1998-05-29 Sanyo Electric Co Ltd Reproducing medium and information recording and reproducing device

Similar Documents

Publication Publication Date Title
US5723227A (en) Magneto-optical recording medium and reproducing method for information recorded on the medium
US5862105A (en) Information recording method capable of verifying recorded information simultaneously with recording, and magneto-optical recording medium used in the method
JP3078145B2 (en) Method for manufacturing magneto-optical recording medium
US5493545A (en) Magnetooptical recording medium with overwrite capabilities and method for using the same
US5265073A (en) Overwritable magneto-optical recording medium having two-layer magnetic films wherein one of the films contains one or more of Cu, Ag, Ti, Mn, B, Pt, Si, Ge, Cr and Al, and a method of recording on the same
JP3164975B2 (en) Magneto-optical recording medium and information reproducing method using the medium
EP0282356A2 (en) Magneto-optical recording medium and method
JPH06124500A (en) Magneto-optical recording medium and playback method of this medium
JPH0535499B2 (en)
JPH0522303B2 (en)
EP0668585B1 (en) Information recording method and system using a magneto-optical medium
JPH0395745A (en) Magneto-optical recording method and recording device
JP3354726B2 (en) Magneto-optical recording medium and reproducing method
JPH0542062B2 (en)
JPH08221823A (en) Magneto-optical recording medium and magneto-optical recording and reproducing device using the same
JP3412879B2 (en) Magneto-optical recording medium
JPH10293949A (en) Magneto-optical recording medium
JP3074104B2 (en) Magneto-optical recording medium
JPH0522302B2 (en)
JP3592399B2 (en) Magneto-optical recording medium
JPH0589536A (en) Magneto-optical recording medium
KR930010474B1 (en) Manufacturing method of optical magnetic materials
JPH05290430A (en) Magneto-optical recording method and magneto-optical recording medium and device to be used therein
JPH07254176A (en) Magneto-optical recording medium and method for reproducing information with same medium
JPH0535493B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020416