[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08224076A - Bioreactor - Google Patents

Bioreactor

Info

Publication number
JPH08224076A
JPH08224076A JP7176757A JP17675795A JPH08224076A JP H08224076 A JPH08224076 A JP H08224076A JP 7176757 A JP7176757 A JP 7176757A JP 17675795 A JP17675795 A JP 17675795A JP H08224076 A JPH08224076 A JP H08224076A
Authority
JP
Japan
Prior art keywords
carrier
liquid
treated
immobilized
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7176757A
Other languages
Japanese (ja)
Other versions
JP2887737B2 (en
Inventor
Hiroaki Uemoto
弘明 植本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP7176757A priority Critical patent/JP2887737B2/en
Publication of JPH08224076A publication Critical patent/JPH08224076A/en
Application granted granted Critical
Publication of JP2887737B2 publication Critical patent/JP2887737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To provide a bioreactor which can remove or increase specific components in the solution to be treated without addition of an energy substance. CONSTITUTION: In this bioreactor, an,ammonium oxidizing bacterium or denitrifying bacterium is immobilized on a synthetic resin carrier such as a photosetting resin and the resin is formed in tubes or films and an liquid or gaseous energy substance such as ethanol or a hydrogen gas is allowed to flow on one face of the bacterium-immobilized carrier, while the solution to be treated is brought into contact with the other face to increase or remove a specific component in the solution. 1 is the experimental tank, 2 is a water bath for keeping warm the air stone and the experimental tank, 3 is a culture medium (solution to be treated), 4 is an air pump, 5 is an air stone, 6 is a pipe and 8 is a stirring blade. The ethanol solution is circulated through the pipe 14 using the pump 13 to remove the nitrogen in the culture medium 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理液中の特定成
分、例えば排水などの水中に含まれるアンモニアなどの
窒素成分を微生物によって効率よく除去するためのバイ
オリアクターに関するものである。
TECHNICAL FIELD The present invention relates to a bioreactor for efficiently removing a specific component in a liquid to be treated, for example, a nitrogen component such as ammonia contained in water such as waste water by microorganisms.

【0002】[0002]

【従来の技術】湖沼、閉鎖性海域へ流入するアンモニア
などの窒素化合物は、富栄養化の主要な原因物質の一つ
である。そのため、窒素に関する排水基準が強化され、
現在では河川や海域への排出も厳しく規制される状況に
ある。
2. Description of the Related Art Nitrogen compounds such as ammonia flowing into lakes and closed seas are one of the main causative substances of eutrophication. Therefore, the drainage standard for nitrogen is strengthened,
At present, discharge into rivers and sea areas is under severe control.

【0003】現在、排水中の窒素化合物を除去する方法
として、生物学的脱窒法が広く一般的に用いられてい
る。しかしながら、生物学的脱窒法による既存の排水処
理装置では、好気槽(硝化反応)と嫌気槽(脱窒反応)
を必要とするため、装置が大型化、複雑化するという難
点を有する。また、脱窒反応のエネルギー源としてアル
コールなどの有機物を脱窒槽に添加する必要があるが、
処理水中に残存するアルコール除去のため、再曝気槽を
設置する必要がある。さらに、pH調整が必要であり、
添加したアルコールの利用効率が低く、運転コストが高
くなるなどの問題点も存在する。
At present, a biological denitrification method is widely used as a method for removing nitrogen compounds in waste water. However, in the existing wastewater treatment equipment using the biological denitrification method, an aerobic tank (nitrification reaction) and an anaerobic tank (denitrification reaction) are used.
Therefore, there is a problem that the device becomes large and complicated. Also, it is necessary to add organic substances such as alcohol to the denitrification tank as an energy source for the denitrification reaction.
It is necessary to install a re-aeration tank to remove the alcohol remaining in the treated water. In addition, pH adjustment is required,
There are also problems such as low utilization efficiency of the added alcohol and high operating costs.

【0004】[0004]

【発明が解決しようとする課題】本発明は、微生物を使
用して被処理液中の特定の成分を除去または増加させる
ことができるバイオリアクターに関するもので、例え
ば、従来の窒素処理装置における問題点を解決すること
ができるもので、硝化と脱窒反応を1つの反応槽で効率
よく行い、かつ脱窒菌等に効率良くエネルギー源物質を
供給できる新しい窒素除去用バイオリアクター等を提供
せんとするものである。
The present invention relates to a bioreactor capable of removing or increasing a specific component in a liquid to be treated by using a microorganism. For example, there are problems in a conventional nitrogen treatment device. It is intended to provide a new nitrogen-removing bioreactor that can efficiently perform nitrification and denitrification reaction in one reaction tank, and can efficiently supply energy source substances to denitrifying bacteria and the like. Is.

【0005】[0005]

【課題を解決するための手段】本発明者は、種々研究を
重ねた結果、アンモニア酸化菌および/または脱窒菌を
合成高分子、天然高分子等の担体に包埋した固定化担体
をフィルム、シート、チューブ等に成形し、この菌固定
化担体の一面に被処理液を接触させ他面に菌体のエネル
ギー源物質を接触させると、効率よく窒素除去できるこ
とを見いだし、更に他の微生物にも同様に適用できるこ
とを見いだして本発明を完成させたものである。したが
って本発明は、光硬化性樹脂、アガロース等の合成また
は天然高分子担体に被処理液中の目的とする成分の除去
等に有効な微生物の1種または2種以上を固定化した固
定化担体の一面に被処理液を接触させ他面に該微生物の
エネルギー源物質を接触させるようにしたことを特徴と
するバイオリアクターに関するものである。
Means for Solving the Problems As a result of various researches, the present inventor has made a film of an immobilized carrier in which an ammonia-oxidizing bacterium and / or a denitrifying bacterium is embedded in a carrier such as a synthetic polymer or a natural polymer. It was found that nitrogen can be removed efficiently by molding it into a sheet, tube, etc., and contacting the liquid to be treated on one surface of this carrier for immobilizing bacteria and contacting the energy source substance of the bacteria on the other surface, and also for other microorganisms. The present invention has been completed by finding out that it can be similarly applied. Therefore, the present invention provides an immobilization carrier having one or more microorganisms immobilized on a synthetic or natural polymer carrier such as a photocurable resin or agarose, which is effective for removing a target component in a liquid to be treated. The present invention relates to a bioreactor, wherein one surface is brought into contact with a liquid to be treated and the other surface is brought into contact with an energy source substance of the microorganism.

【0006】本発明の具体的な一例としては、光硬化性
樹脂、アガロース等の合成または天然高分子ゲル担体に
アンモニア酸化菌、脱窒菌等の被処理液中の窒素または
窒素成分の除去に有効な微生物の1種または2種以上を
固定化した固定化担体の一面に被処理液を接触させ他面
に該微生物のエネルギー源物質を接触させるようにした
ことを特徴とする窒素除去用バイオリアクターを挙げる
ことができる。なお、本発明において、被処理液中の窒
素または窒素成分の除去に有効な微生物としては、アン
モニア酸化菌および/または脱窒菌が好ましく、担体に
は更に亜硝酸酸化菌等を固定化させてもよい。
As a specific example of the present invention, it is effective for removing nitrogen or nitrogen components in a liquid to be treated such as ammonia-oxidizing bacteria and denitrifying bacteria on a synthetic or natural polymer gel carrier such as photocurable resin and agarose. Bioreactor for removing nitrogen, wherein one surface of an immobilization carrier on which one or more kinds of various microorganisms are immobilized is brought into contact with a liquid to be treated and the other surface is brought into contact with an energy source substance of the microorganism. Can be mentioned. In the present invention, the microorganisms effective for removing nitrogen or nitrogen components in the liquid to be treated are preferably ammonia-oxidizing bacteria and / or denitrifying bacteria, and the carrier may be further immobilized with nitrite-oxidizing bacteria. Good.

【0007】本発明において、アンモニア酸化菌、脱窒
菌、および亜硝酸酸化菌は従来この種の分野で知られて
いるものが使用できるが、より具体的には、例えば、ア
ンモニア酸化菌としては、 Nitrosomonas europaea IFO-14298、 Nitrosomonas europaea, N.marinaNitrosococcus oceanus , N.mobilis、Nitrosococcus sp.DA-001 (FERM P-12904) 、 Nitrosospira briensis 、 Nitrosolobus multiformis、 Nitrosovibrio tenuis、 脱窒菌としては、 Paracoccus denitrificans JCM-6892*, Paracoccus denitrificans* , Alcaligenes eutrophus * ,A.faecalisAlcaligenes sp. Ab-A-1, Ab-A-2, G-A-2-1FERMP-138
62, P-13860, P-13861 ) Pseudomonas denitrificans, Thiosphaera pantotropha , Thiobacillus denitrificans**, 亜硝酸酸化菌としては、 Nitrobacter winogradskyi N.hamburgensisNitrospina gracilis Nitrococcus mobilis Nitrospira marina などを挙げることができる。なお、上記においてアンダ
ーラインを付した菌株は海水の処理にのみ適用できる菌
株であり、それ以外は淡水の処理に適用できる菌株であ
る。N. europaea とN. winogradskyi は淡水のものと海
水のものとがある。FERM番号の菌株は出願人が微生
物工業技術研究所に寄託済のもので、寄託番号を示す。
また、*の付した菌は、エタノールなどの有機物の代わ
りに水素をエネルギー源として使用できる菌株であり、
**を付した菌は硫黄のみをエネルギー源とすることが
でき、チオ硫酸などの硫黄化合物を使って脱窒できる菌
株である。
In the present invention, as the ammonia-oxidizing bacteria, the denitrifying bacteria, and the nitrite-oxidizing bacteria, those conventionally known in the field of this kind can be used. More specifically, for example, as the ammonia-oxidizing bacteria, Nitrosomonas europaea IFO-14298, Nitrosomonas europaea, N.marina , Nitrosococcus oceanus , N.mobilis, Nitrosococcus sp.DA-001 (FERM P-12904) , Nitrosospira briensis, Nitrosolobus multiformis, Nitrosovibrio tenuis, deificative fungus, and denitrifying fungi -6892 *, Paracoccus denitrificans *, Alcaligenes eutrophus *, A.faecalis Alcaligenes sp. Ab-A-1, Ab-A-2, GA-2-1 ( FERMP-138
62, P-13860, P-13861 ) Pseudomonas denitrificans, Thiosphaera pantotropha, Thiobacillus denitrificans **, and nitrite-oxidizing bacteria include Nitrobacter winogradskyi N.hamburgensis Nitrospina gracilis Nitrococcus mobilis Nitrospira marina . The underlined strains are strains applicable only to the treatment of seawater, and the other strains are strains applicable to the treatment of fresh water. N. europaea and N. winogradskyi are available in freshwater and seawater. The strain with the FERM number has been deposited by the applicant with the Institute for Microbial Technology and the deposit number is shown.
The bacteria marked with * are strains that can use hydrogen as an energy source instead of organic substances such as ethanol,
Bacteria marked with ** are strains that can use only sulfur as an energy source and can denitrify using sulfur compounds such as thiosulfate.

【0008】本発明において、上記菌株は単独でもまた
同種または異種の菌株を併せて一つの担体に固定化して
もよい。一般の脱窒法のように、亜硝酸酸化菌も関与す
る微生物反応系を考慮する場合には混合微生物系を使用
することも可能であることから、し尿処理等の汚泥中の
微生物などをそのまま担体に固定することもできる。本
発明は、上記の窒素除去用の菌のほかに、被処理液中の
特定の成分を除去または増加等させることができる菌株
として、活性汚泥中のアクロモバクター、アルカリゲネ
スなどの微生物や、排水中のリンの除去用の微生物、鉄
バクテリアなどをそのまま、またはこれらの微生物の繁
殖を助長する微生物を用いることができる。
In the present invention, the above-mentioned strains may be immobilized alone or in combination with the same or different strains on a single carrier. When considering a microbial reaction system that also involves nitrite-oxidizing bacteria, like a general denitrification method, it is possible to use a mixed microbial system. It can also be fixed to. The present invention, in addition to the above-mentioned bacteria for removing nitrogen, as a strain capable of removing or increasing specific components in the liquid to be treated, microorganisms such as Achromobacter in activated sludge and Alcaligenes, and drainage. Microorganisms for removing phosphorus, iron bacteria and the like can be used as they are, or microorganisms that promote the reproduction of these microorganisms can be used.

【0009】菌固定化用の担体としては、微生物や酵素
の固定化に用いられている高分子ゲルを使用することが
できる。具体的には、コラーゲン、フィブリン、アルブ
ミン、カゼイン、セルロースファイバー、セルロースト
リアセタート、寒天、アルギン酸カルシウム、カラギー
ナン、アガロース等の天然高分子、ポリアクリルアミ
ド、ポリ−2−ヒドロキシエチルメタクリル酸、ポリビ
ニルクロリド、γ−メチルポリグルタミン酸、ポリスチ
レン、ポリビニルピロリドン、ポリジメチルアクリルア
ミド、ポリウレタン、光硬化性樹脂(ポリビニルアルコ
ール誘導体、ポリエチレングリコール誘導体、ポリプロ
ピレングリコール誘導体、ポリブタジエン誘導体等)等
の合成高分子、またはこれらの複合体などが挙げられ
る。これらの担体のうち、天然高分子などの強度の小さ
いゲルは適当な支持体を用いるとか、または多孔性膜な
どに挟んで使用するとよい。バイオリアクターにおける
固定化担体の形状としては、チューブ状、プレート状ま
たはフィルム状等とすることができるほか、特定の形状
の成形体とすることができる。
As a carrier for immobilizing bacteria, polymer gels used for immobilizing microorganisms and enzymes can be used. Specifically, collagen, fibrin, albumin, casein, cellulose fiber, cellulose triacetate, agar, calcium alginate, carrageenan, natural polymers such as agarose, polyacrylamide, poly-2-hydroxyethyl methacrylic acid, polyvinyl chloride, Synthetic polymers such as γ-methylpolyglutamic acid, polystyrene, polyvinylpyrrolidone, polydimethylacrylamide, polyurethane, photocurable resins (polyvinyl alcohol derivatives, polyethylene glycol derivatives, polypropylene glycol derivatives, polybutadiene derivatives, etc.), or composites thereof Is mentioned. Among these carriers, a gel having a low strength such as a natural polymer may be used with an appropriate support or sandwiched between porous membranes. The shape of the immobilization carrier in the bioreactor may be a tube shape, a plate shape, a film shape, or the like, and may be a molded body having a specific shape.

【0010】本発明は、特に、光硬化性樹脂等のそれ自
体強度のある高分子ゲル担体にアンモニア酸化菌および
/または脱窒菌等の微生物を固定化し、チューブ状に成
形した窒素除去用などのバイオリアクターが好ましい。
このようにチューブ状に成形した菌固定化担体の中空部
に、メタノール、エタノール等の液体または水素ガス等
の気体などを流通せしめて、固定化菌のエネルギー源と
なる物質を補給し得るようにしたものである。固定化担
体のチューブは1本である必要はなく、アンモニア酸化
菌を担持させた固定化担体のチューブと脱窒菌を固定化
した担体のチューブを交互に並べて処理槽内に配置して
もよく、また両者の菌を固定化した担体を複数個配置す
るようにしてもよい。チューブは直線状である必要はな
く曲線状でもスパイラル状としてもよい。
The present invention is particularly suitable for removing nitrogen, which is formed into a tubular shape by immobilizing microorganisms such as ammonia-oxidizing bacteria and / or denitrifying bacteria on a polymer gel carrier having high strength such as photocurable resin. Bioreactors are preferred.
The hollow portion of the bacterium-immobilized carrier thus formed in a tube shape is allowed to circulate a liquid such as methanol or ethanol or a gas such as hydrogen gas so that a substance serving as an energy source for the immobilized bacterium can be replenished. It was done. The tube of the immobilization carrier does not have to be one, and the tubes of the immobilization carrier carrying the ammonia-oxidizing bacteria and the tubes of the carrier immobilizing the denitrifying bacteria may be alternately arranged in the treatment tank, Further, a plurality of carriers on which both bacteria are immobilized may be arranged. The tube need not be straight, but may be curved or spiral.

【0011】なお上記のものは、担体そのものをチュー
ブ状に成形したものであるが、更に本発明は、樋状など
の一面が開放した容器の開放面に、担体にアンモニア酸
化菌および/または脱窒菌等を固定化した固定化担体の
層を形成し、該固定化担体の層の裏面の空間部にエタノ
ール溶液、水素ガス等の液体または気体を流通せしめる
ようにしたものとすることができる。この場合、容器は
樋状のものに限らず、チューブをその軸線に沿って二分
割した形状に固定化担体を成形し、一面をガラス板、プ
ラスチック板、プラスチックフィルムで覆ったものとす
るとか、容器内を多数のプレート状に成形した固定化担
体で仕切り、固定化担体と固定化担体の間にエタノール
溶液を通過させ、固定化担体と固定化担体の間に被処理
液を通過させるようにするなど種々の形状としてもよ
い。固定化担体面がより大きく被処理液に接する形状と
するとよい。
In the above, the carrier itself is formed into a tubular shape. However, the present invention is further characterized in that the ammonia-oxidizing bacterium and / or the deoxidizing agent is removed from the carrier on the open surface of a container such as a gutter-shaped container whose one surface is open. It is possible to form a layer of an immobilizing carrier on which immobilizing bacteria such as nitrifying bacteria and to allow a liquid or gas such as an ethanol solution or hydrogen gas to flow in the space on the back surface of the layer of the immobilizing carrier. In this case, the container is not limited to a gutter-shaped one, and the immobilization carrier is molded into a shape in which the tube is divided into two along its axis, and one surface is covered with a glass plate, a plastic plate, or a plastic film, The inside of the container is divided by a large number of plate-shaped immobilization carriers, an ethanol solution is passed between the immobilization carriers and the liquid to be treated is passed between the immobilization carriers. It may be formed in various shapes such as. It is preferable that the surface of the immobilization carrier is larger and is in contact with the liquid to be treated.

【0012】固定化担体の厚さは特に限定されることな
く、被処理液の性質や要求される強度にしたがって脱窒
反応が効率よく行われる範囲内で任意に選択することが
できる。通常は0.5〜10mm程度、特に1mm前後の厚
さが好ましい。担体に固定化させる菌の量や、アンモニ
ア酸化菌と脱窒菌との割合は、処理すべき排水等の被処
理液によって任意に設定される。固定化担体のエネルギ
ー源物質としては、前記のメタノール、エタノール等の
アルコール溶液、水素ガス等の他、グルコースなどの有
機物や有機物を含む排液などを用いることができる。ま
た、独立栄養の硫黄酸化菌を用いて硫黄または硫黄化合
物溶液をエネルギー源とすることもできる。エネルギー
源物質は、固定化担体の性質に応じて適当な媒体で希釈
して用いるとよい。エネルギー源物質の供給に際して
は、これらの液体または気体を、必要に応じて加温また
は冷却等の温度調節を施してもよい。エネルギー源物質
の補給は、系外から循環方式で供給してもよく、または
固定化担体の一方の面の閉鎖空間内に必要量だけ充填し
ておく回分方式のいずれによってもよい。
The thickness of the immobilization carrier is not particularly limited, and can be arbitrarily selected within the range where the denitrification reaction is efficiently performed according to the properties of the liquid to be treated and the required strength. Usually, a thickness of about 0.5 to 10 mm, especially about 1 mm is preferable. The amount of bacteria to be immobilized on the carrier and the ratio of ammonia-oxidizing bacteria to denitrifying bacteria are arbitrarily set depending on the liquid to be treated such as wastewater to be treated. As the energy source material for the immobilization carrier, an organic solution such as glucose or an effluent containing an organic matter can be used in addition to the above alcohol solution such as methanol and ethanol, hydrogen gas and the like. Alternatively, a sulfur or sulfur compound solution can be used as an energy source using autotrophic sulfur-oxidizing bacteria. The energy source substance may be diluted with an appropriate medium according to the property of the immobilization carrier before use. When supplying the energy source substance, these liquids or gases may be subjected to temperature control such as heating or cooling, if necessary. The energy source substance may be supplied from the outside of the system by a circulation system, or by a batch system in which the required amount is filled in the closed space on one surface of the immobilization carrier.

【0013】[0013]

【実施例】以下、本発明を実験例および実施例により説
明するが、本発明はこれらの例に限られるものではな
い。
EXAMPLES The present invention will be described below with reference to experimental examples and examples, but the present invention is not limited to these examples.

【0014】実験例 1)供試菌株とその培養 硝化菌(アンモニア酸化菌)としてNitrosomonas europ
aea IFO-14298 、脱窒菌としてParacoccus denitrifica
ns JCM-6892 を用いた。培養には、N.europaeaはIFO Me
dium List No.240、P.denitrificans JCM Medium List
No.22 (Nutrient agar No.2)を基本とした液体培地を
用いた。培地の組成を表1に示す。それぞれ30℃で振
とう(110rpm)培養後、遠心分離により集菌し、リン酸
緩衝液(9g/l Na2HPO4 ・12H2O 、1.5g/l KH2PO4 、pH
7.5 )により3回洗浄した。洗浄菌体は、N.europaeaは
8mg dry wt./ml 、P.denitrificans は33mg drywt./
ml になるようそれぞれリン酸緩衝液に懸濁した。
Experimental Example 1) Test strain and its culture Nitrosomonas europ as nitrifying bacteria (ammonium oxidizing bacteria)
aea IFO-14298, Paracoccus denitrifica as a denitrifying bacterium
ns JCM-6892 was used. For culture, N. europaea is IFO Me
dium List No.240, P.denitrificans JCM Medium List
A liquid medium based on No. 22 (Nutrient agar No. 2) was used. The composition of the medium is shown in Table 1. After shaking (110 rpm) culture at 30 ° C, the cells were harvested by centrifugation and phosphate buffer (9 g / l Na 2 HPO 4 · 12H 2 O, 1.5 g / l KH 2 PO 4 , pH).
Washed 3 times with 7.5). The washed cells were 8 mg dry wt./ml for N. europaea and 33 mg dry wt./ for P. denitrificans.
The suspension was suspended in phosphate buffer so that the volume of each suspension became 1 ml.

【0015】[0015]

【表1】 *1:IFO培地 No.240 に Phenol Red (フェノール レッド)をpH指示 薬として添加し、pHはCaCO3 の代わりにNa2CO3を適宜添加することに より調整した。 *2:JCM培地 No.22から寒天を除き、液体培地として用いた。[Table 1] * 1: Phenol Red (phenol red) was added to IFO medium No. 240 as a pH indicator, and the pH was adjusted by appropriately adding Na 2 CO 3 instead of CaCO 3 . * 2: Agar was removed from JCM medium No. 22 and used as a liquid medium.

【0016】2)固定化方法 光硬化性樹脂PVA−SbQ(SPP−H−13、東洋合
成工業製)9mlに対し、前述のN.europaeaの菌懸濁液1
ml、P.denitrificans の菌懸濁液2mlを混合し固定化し
た。N.europaeaを単独で固定化する場合は、P.denitrif
icans の菌懸濁液の代わりにリン酸緩衝液2mlを添加し
た。菌体と樹脂の混合液は、プラスチックシャーレ、お
よびガラス棒を入れたガラス管を鋳型として用い、メタ
ルハロゲンランプ下で1時間光照射することにより膜状
固定化担体(直径5cm、厚さ5mm)とチューブ状固定化
担体(外径12mm、内径5mm、長さ 125mm)に成形した。
チューブ状固定化担体は、担体内部にエタノール溶液を
供給するため、外径4mm、内径2mmのシリコーンチュー
ブをチューブ状固定化担体の前後に光硬化性樹脂を用い
て接着した。
2) Immobilization method 9 ml of the photocurable resin PVA-SbQ (SPP-H-13, manufactured by Toyo Gosei Co., Ltd.) was added to the above-mentioned N. europaea bacterial suspension 1
2 ml of P. denitrificans suspension was mixed and immobilized. When immobilizing N. europaea alone, P. denitrif
Instead of the icans bacterial suspension, 2 ml of phosphate buffer was added. The mixed solution of the bacterial cells and the resin was used as a mold using a glass dish containing a plastic petri dish and a glass rod, and was irradiated with light under a metal halogen lamp for 1 hour to form a film-shaped immobilized carrier (diameter 5 cm, thickness 5 mm). And a tubular fixed carrier (outer diameter 12 mm, inner diameter 5 mm, length 125 mm).
In order to supply the ethanol solution to the inside of the tubular immobilization carrier, a silicone tube having an outer diameter of 4 mm and an inner diameter of 2 mm was adhered to the front and rear of the tubular immobilization carrier using a photocurable resin.

【0017】 3)実験1:膜状固定化担体による脱窒実験 上記実施例で作製した、N.europaeaを単独で包埋した膜
状固定化担体、およびN.europaeaとP.denitrificans を
同時に包埋した膜状固定化担体について、硝化および脱
窒速度を測定した。実験装置の模式図を図1に示す。図
中、1は実験槽、2は実験槽1を保温するための水浴
(ウォターバス)、3は培地を示す。供試膜状固定化担
体10は固定用の枠またはシャーレなどの固定具9ない
に形成し、培地3中に浸漬した。培地3はエアーポンプ
4によってエアーストーン5から空気を噴出させてエア
レーションするとともにスターラー7で攪拌する。6は
パイプ、8は攪拌翼を示す。実験は、30℃の条件下で行
い、エアレーション(100 ml/min)とスターラー7によ
る攪拌(300rpm)を同時に行った。実験培地3は、前述
したリン酸緩衝液に0.2 g-N/1 (NH4)2SO4 、0.2 g/l Mg
SO4・7H2O、微量元素(trace element )溶液(ZnSO4 10
0mg/l,MnCl2 30mg/l,H3BO3 300mg/l, CoCl2・6H2O 200
mg/l,CuCl2・2H2O 10mg/1,NiCl2・6H2O 20mg/l,Na2MoO4
・2H2O 30mg/l )1ml/lを添加した200ml溶液を用い、
経時的に培地中のアンモニア、亜硝酸、硝酸濃度を測定
した。また、N.europaeaとP.denitrificans を同時に包
埋した固定化担体については、脱窒用にエタノールを添
加した。エタノールの添加方法は、実験培地中に99.5%
エタノール0.5 ml(最終濃度0.25%)を直接添加する方
法と、固定化担体の裏側(シャーレとの間隙)に注入し
た5mlのリン酸緩衝液に、24時間毎に99.5%エタノール
を0.125 ml(4日間の総添加量0.5 ml)を添加する方法
の2通りで行った。
3) Experiment 1: Denitrification Experiment with Membrane-Immobilized Carrier The membrane-immobilized carrier prepared by embedding N. europaea alone and N. europaea and P. denitrificans prepared at the same time in the above Example were simultaneously encapsulated. The nitrification and denitrification rates were measured for the embedded membranous immobilized carrier. A schematic diagram of the experimental apparatus is shown in FIG. In the figure, 1 is an experimental tank, 2 is a water bath (water bath) for keeping the experimental tank 1 warm, and 3 is a medium. The test film-shaped immobilization carrier 10 was formed in a fixture 9 such as a fixing frame or a petri dish, and immersed in the medium 3. The medium 3 is aerated by ejecting air from an air stone 5 by an air pump 4 and agitated by a stirrer 7. 6 is a pipe, and 8 is a stirring blade. The experiment was performed under the condition of 30 ° C., and aeration (100 ml / min) and stirring by the stirrer 7 (300 rpm) were performed at the same time. The experimental medium 3 was 0.2 gN / 1 (NH 4 ) 2 SO 4 , 0.2 g / l Mg in the above-mentioned phosphate buffer.
SO 4 · 7H 2 O, trace elements (trace element) solution (ZnSO 4 10
0mg / l, MnCl 2 30mg / l, H 3 BO 3 300mg / l, CoCl 2・ 6H 2 O 200
mg / l, CuCl 2・ 2H 2 O 10mg / 1, NiCl 2・ 6H 2 O 20mg / l, Na 2 MoO 4
・ 2H 2 O 30 mg / l) 1 ml / l was added to the 200 ml solution,
Ammonia, nitrous acid, and nitric acid concentrations in the medium were measured over time. In addition, ethanol was added for denitrification to the immobilization carrier in which N. europaea and P. denitrificans were embedded at the same time. The method of adding ethanol was 99.5% in the experimental medium.
0.5 ml of ethanol (final concentration 0.25%) was added directly, and 9 ml of ethanol was added to 0.125 ml (4 ml) every 24 hours in 5 ml of phosphate buffer injected to the back side of the immobilization carrier (gap between the dish). The total daily addition amount of 0.5 ml) was added in two ways.

【0018】 4)実験2:チューブ状固定化担体による脱窒実験 N.europaeaとP.denitrificans を同時に包埋したチュー
ブ状固定化担体の硝化および脱窒速度を測定した。実験
装置の模式図を図2に示す。図2において、11はチュ
ーブ状固定化担体、11aはチューブ状固定化担体11の
両端に接着したシリコーンチューブ、12はエタノール
溶液、13は循環ポンプ、14はパイプを示し、他は図
1に記載のものと同じものは同一符号を用いた。実験は
30℃の条件下で行い、エアレーションとスターラー7
による攪拌は膜状固定化担体の場合と同様にして行っ
た。実験培地3は、前述したリン酸緩衝液に0.1 g-N/1
(NH4)2SO4 、0.2 g/l MgSO4・7H2O、微量元素(trace el
ement )溶液1ml/lを添加した 200ml溶液を用い、経時
的に培地中のアンモニア、亜硝酸、硝酸、TOC濃度を
測定した。なお、チューブ状固定化担体11内部では9
9.5%エタノール0.05mlと0.1 mlを添加した10mlのリン
酸緩衝液(エタノール最終濃度0.5%と1.0 %)が循環
するようにポンプ13を設定(5ml/h)した。また、発
生ガスの捕集および分析も行った。
4) Experiment 2: Denitrification experiment using tubular immobilization carrier The nitrification and denitrification rates of the tubular immobilization carrier in which N. europaea and P. denitrificans were simultaneously embedded were measured. A schematic diagram of the experimental apparatus is shown in FIG. In FIG. 2, 11 is a tubular immobilization carrier, 11a is a silicone tube adhered to both ends of the tubular immobilization carrier 11, 12 is an ethanol solution, 13 is a circulation pump, 14 is a pipe, and others are described in FIG. The same reference numerals are used for the same items. The experiment was performed under the condition of 30 ° C, and the aeration and the stirrer 7 were used.
The stirring was carried out in the same manner as in the case of the film-shaped immobilized carrier. Experimental medium 3 was 0.1 gN / 1 in the above-mentioned phosphate buffer.
(NH 4) 2 SO 4, 0.2 g / l MgSO 4 · 7H 2 O, trace elements (trace el
ement) Solution 200 ml solution containing 1 ml / l was used to measure the concentration of ammonia, nitrous acid, nitric acid and TOC in the medium over time. In the inside of the tubular immobilization carrier 11, 9
The pump 13 was set (5 ml / h) so that 10 ml of phosphate buffer solution (final concentration of ethanol 0.5% and 1.0%) supplemented with 0.05 ml and 0.1 ml of 9.5% ethanol was circulated. In addition, the generated gas was collected and analyzed.

【0019】5)分析方法 培地溶液中のアンモニア、亜硝酸濃度は、それぞれイン
ドフェノール青吸光光度法、ナフチルアミン吸光光度法
により測定した。硝酸濃度はイオンクロマトアナライザ
(IC−500P、横河電機製)、TOC濃度は燃焼−
赤外線式全有機炭素分析計(TOC−500、島津製作
所製)、発生ガスの組成についてはPID検出器付ガス
クロマトアナライザ(G−3000、日立製作所製)に
より分析した。
5) Analytical method The concentrations of ammonia and nitrite in the medium solution were measured by indophenol blue absorptiometry and naphthylamine absorptiometry. Nitric acid concentration is ion chromatograph analyzer (IC-500P, manufactured by Yokogawa Electric), TOC concentration is combustion-
An infrared type total organic carbon analyzer (TOC-500, manufactured by Shimadzu Corporation), and the composition of the generated gas was analyzed by a gas chromatoanalyzer with a PID detector (G-3000, manufactured by Hitachi Ltd.).

【0020】結果 1)膜状固定化担体による脱窒 硝化と脱窒反応が同時に起こることを確認するため、N.
europaeaを包埋した膜状固定化担体、またはN.europaea
とP.denitrificans を同時に包埋した膜状共固定化担体
の硝化および脱窒速度を測定した。N.europaeaを包埋し
た固定化担体においては、実験培地3中のアンモニア濃
度は時間の経過とともに減少し、亜硝酸濃度が上昇した
(図3A)。一方、N.europaeaとP.denitrificans を同
時に包埋した固定化担体においては、実験培地中のアン
モニア濃度は時間の経過とともに減少したが、亜硝酸濃
度は2日目以降若干上昇したものの、実験終了時には減
少した(図3B)。この傾向は、エタノールの供給方法
を変えても同様であった(図3C)。また、硝酸につい
てはいずれの実験培地中からも検出されなかった。ま
た、各固定化担体における実験開始から13.5時間経過後
の実験培地中のアンモニア、亜硝酸濃度から算出された
硝化速度(NH4→NO2)と脱窒速度(NO2→N2) を表2に示
す。硝化速度は、N.europaeaを単独で包埋した固定化担
体の場合よりもN.europaeaとP.denitrificans を同時に
包埋した固定化担体の方が高かった。また、N.europaea
とP.denitrificans を同時に包埋した固定化担体におい
て、エタノールを実験培地中に添加した場合も固定化担
体とシャーレの間に注入した場合も硝化速度と脱窒速度
に違いが認められなかった。
Results 1) Denitrification by a membrane-like immobilized carrier In order to confirm that nitrification and denitrification reaction occur simultaneously, N.
Membrane-shaped immobilization carrier embedded with europaea, or N. europaea
The nitrification and denitrification rates of a membranous co-immobilized carrier in which P. and P. denitrificans were simultaneously embedded were measured. In the immobilized carrier in which N. europaea was embedded, the ammonia concentration in the experimental medium 3 decreased with time and the nitrite concentration increased (Fig. 3A). On the other hand, in the immobilization carrier in which N. europaea and P. denitrificans were embedded at the same time, the ammonia concentration in the experimental medium decreased with time, but the nitrite concentration slightly increased from the 2nd day, but the experiment was completed. Sometimes decreased (Figure 3B). This tendency was the same even when the ethanol supply method was changed (Fig. 3C). Nitrate was not detected in any of the experimental media. In addition, the nitrification rate (NH 4 → NO 2 ) and denitrification rate (NO 2 → N 2 ) calculated from the concentration of ammonia and nitrite in the experimental medium after 13.5 hours from the start of the experiment on each immobilized carrier are shown in the table. 2 shows. The nitrification rate was higher in the immobilized carrier in which N. europaea and P. denitrificans were simultaneously embedded than in the immobilized carrier in which N. europaea was embedded alone. Also N. europaea
In the immobilization carrier in which P. and P. denitrificans were embedded at the same time, no difference was observed in the nitrification rate and the denitrification rate when ethanol was added to the experimental medium or injected between the immobilization carrier and the dish.

【0021】[0021]

【表2】 硝化速度と脱窒速度は、13.5時間後の培地中の無機窒素濃度から算出した。 *1:培地中に0.25%(V/V )エタノールを直接添加した。 *2:2.5 %(V/V )エタノール溶液を培地とは反対の面に添加した。[Table 2] The nitrification rate and denitrification rate were calculated from the concentration of inorganic nitrogen in the medium after 13.5 hours. * 1: 0.25% (V / V) ethanol was directly added to the medium. * 2: A 2.5% (V / V) ethanol solution was added to the side opposite to the medium.

【0022】2)チューブ状固定化担体による脱窒 N.europaeaとP.denitrificans を同時に包埋したチュー
ブ状固定化担体において、チューブ内にエタノール溶液
を循環させ、脱窒実験を行った。膜状固定化担体の場合
と同様、実験培地中のアンモニア濃度は時間の経過とと
もに減少した。亜硝酸濃度は2日目以降に若干上昇した
が、実験終了時にはアンモニアとともに消失した(図
4)。また、実験培地中からは、硝酸は検出されなかっ
た。実験培地中のTOC濃度は、実験開始時から上昇
し、実験終了時には58mg-C/lとなった。しかしなが
ら、エタノール濃度を 0.5%に下げた場合、活性は変わ
らず、TOC濃度も実験開始時に40mg・C/lとなったが
それ以上には上昇しなかった(図5)。脱窒反応による
ガス発生は、チューブ内でのみ観察された。また、捕集
したガスは窒素であり、亜酸化窒素などの脱窒反応の中
間生成物は検出されなかった。
2) Denitrification by a tubular immobilization carrier In a tubular immobilization carrier in which N. europaea and P. denitrificans were embedded at the same time, a denitrification experiment was conducted by circulating an ethanol solution in the tube. As in the case of the membranous immobilized carrier, the concentration of ammonia in the experimental medium decreased with time. The nitrite concentration increased slightly after the second day, but disappeared with ammonia at the end of the experiment (Fig. 4). Nitrate was not detected in the experimental medium. The TOC concentration in the experimental medium increased from the beginning of the experiment to 58 mg-C / l at the end of the experiment. However, when the ethanol concentration was lowered to 0.5%, the activity did not change, and the TOC concentration was 40 mg · C / l at the start of the experiment, but it did not rise further (Fig. 5). Gas generation due to the denitrification reaction was observed only in the tube. The collected gas was nitrogen, and no intermediate product of denitrification such as nitrous oxide was detected.

【0023】上記の実験結果からわかるように、N.euro
paeaとP.denitrificans を同時に固定化することによ
り、硝化と脱窒反応が同時に起こり、かつN.europaea単
独の場合よりも硝化活性が向上することが示された(図
3、表2)。P.denitrificansは、好気条件下では脱窒
活性は見られないことが知られている。しかしながら、
本発明のバイオリアクターにおいて硝化と脱窒反応が同
時に起こった理由としては、担体である樹脂内部への酸
素の供給が制限され、かつN.europaeaが酸素を消費した
ため、脱窒反応に必要な嫌気的部位が生じたためと考え
られる。また、同時固定化による硝化活性の向上は、N.
europaeaの反応生成物である亜硝酸が同時固定化したP.
denitrificans による脱窒によって速やかに除去される
ためと考えられる。
As can be seen from the above experimental results, N. euro
It was shown that by immobilizing paea and P. denitrificans at the same time, nitrification and denitrification reactions occur at the same time, and the nitrification activity is improved as compared with the case of N. europaea alone (Fig. 3, Table 2). It is known that P. denitrificans has no denitrifying activity under aerobic conditions. However,
The reason why the nitrification and the denitrification reaction occur simultaneously in the bioreactor of the present invention is that the supply of oxygen into the resin as a carrier is limited, and N. europaea consumes the oxygen, so that the anaerobic reaction required for the denitrification reaction is It is considered that the target site was created. In addition, the improvement of nitrification activity by simultaneous immobilization is described in N.
P. co-immobilized with nitrous acid, a reaction product of europaea.
It is considered that this is because the denitrification by denitrificans promptly removes it.

【0024】上記実験により、アンモニア酸化菌と脱窒
菌の同時固定化とともに脱窒菌へのエタノールの供給方
法についても検討し、実験培地に接する固定化担体面と
は逆の面からエタノールを供給することも可能であるこ
とがわかる(表2)。また、固定化担体をチューブ状と
することによって、連続的なエタノールの供給により脱
窒が可能となった(図4)。本発明のエタノール供給法
は、従来の処理水中に直接添加する方法に比較し、固定
化担体内の脱窒菌に直接高濃度のエタノールを供給でき
るとともに、エタノールが担体内で消費され、実験培地
中に漏れ出ないため、従来行われていた処理水中に残存
するエタノールを除去する工程を省くことができる。
By the above experiment, the simultaneous immobilization of the ammonia-oxidizing bacteria and the denitrifying bacteria as well as the method of supplying ethanol to the denitrifying bacteria was investigated, and ethanol was supplied from the surface opposite to the surface of the immobilized carrier in contact with the experimental medium. It is also possible (Table 2). Further, by making the immobilization carrier into a tube shape, denitrification became possible by continuous supply of ethanol (Fig. 4). The ethanol supply method of the present invention is capable of directly supplying a high concentration of ethanol to the denitrifying bacteria in the immobilized carrier as compared with the conventional method of directly adding it to treated water, and the ethanol is consumed in the carrier, and thus in the experimental medium. Since it does not leak out, it is possible to omit the step of removing ethanol remaining in the treated water, which has been conventionally performed.

【0025】上記実験で使用したエタノール量は、排水
に直接エタノールを 0.025%濃度で添加する場合に相当
し、低濃度のエタノールを効率よく利用することができ
る。また、実験培地中のTOC濃度は、実験開始時に上
昇したが、それ以上には上昇しなかった(図5)。この
理由としては、固定化直後は担体内の脱窒菌が持ち込ん
だ有機物を消費するまでの間エタノールの消費が少なく
処理水中に漏れ出たものと考えられる。したがって、T
OCの蓄積はエタノール濃度の検討および固定化担体の
安定化により防止できる。
The amount of ethanol used in the above experiment corresponds to the case where ethanol is directly added to the waste water at a concentration of 0.025%, and low concentration ethanol can be efficiently used. Further, the TOC concentration in the experimental medium increased at the start of the experiment, but did not increase further (Fig. 5). The reason for this is considered to be that, immediately after immobilization, the consumption of ethanol was low until the denitrifying bacteria in the carrier consumed the organic substances brought in, and the ethanol leaked into the treated water. Therefore, T
The accumulation of OC can be prevented by examining the ethanol concentration and stabilizing the immobilization carrier.

【0026】図6は、本発明の他の実験例の結果を示す
グラフで、エネルギー源としてエタノールの代わりに水
素ガスを使用した例である。図6Aは、前記実験におい
て脱窒菌のみを固定化したチューブ状固定化担体を用
い、該担体のチューブ内にエタノール溶液の代わりに窒
素ガスを供給した場合の硝酸態窒素の除去を検討した結
果で、この場合固定化時の菌体内に残った有機物により
硝酸は減少するが、その後は減少しなくなる。これに対
し、図6Bに示すように窒素ガスに代えて水素ガスを供
給した場合には、時間の経過と共に硝酸態窒素量は減少
した。水素を菌体のエネルギー源として使用した場合に
は、アルコールなどの有機物を使用する場合と異なり、
人体に影響を及ぼすことが少ないため、飲料水として使
われる上水の処理や地下水の処理等に利用できる。ま
た、水素ガスの漏れ出しがなく水に溶かす必要もないた
め、安全面、コスト面からも有効である。
FIG. 6 is a graph showing the results of another experimental example of the present invention, which is an example in which hydrogen gas is used as the energy source instead of ethanol. FIG. 6A shows the results of examining removal of nitrate nitrogen when a tubular immobilization carrier in which only denitrifying bacteria were immobilized in the above experiment was used, and nitrogen gas was supplied in the tube of the carrier instead of the ethanol solution. , In this case, nitric acid decreases due to the organic matter remaining in the cells during immobilization, but it does not decrease thereafter. On the other hand, when hydrogen gas was supplied instead of nitrogen gas as shown in FIG. 6B, the amount of nitrate nitrogen decreased with the passage of time. When hydrogen is used as an energy source for bacterial cells, unlike when using organic substances such as alcohol,
Since it has little effect on the human body, it can be used for treatment of tap water used as drinking water or treatment of groundwater. Further, since hydrogen gas does not leak out and does not need to be dissolved in water, it is effective in terms of safety and cost.

【0027】上記の結果からわかるように、本発明のバ
イオリアクターによれば、菌体のエネルギー源としてア
ルコールのほか、水素ガスや、また硫黄化合物など、任
意のエネルギー源物質が使用できる。なお、エネルギー
源物質として水素を使用する場合は、水素ガス透過性の
プラスチックチューブ等を使用し、その外周面に固定化
担体層を形成するなどの方法により、不必要にガスが処
理系外に漏出するのを防止するなどの手段を用いるとよ
い。これらの結果から、本発明のチューブ状固定化担体
は、処理コストの低減とともに、硝化槽、脱窒槽の一体
化および再曝気槽が不要になるため、システムの小型
化、効率化に極めて有効である。
As can be seen from the above results, according to the bioreactor of the present invention, any energy source substance such as hydrogen gas and sulfur compounds can be used as the energy source of the bacterial cells in addition to alcohol. When hydrogen is used as the energy source substance, a hydrogen gas permeable plastic tube or the like is used, and a method such as forming an immobilization carrier layer on the outer peripheral surface of the hydrogen gas unnecessarily removes the gas from the treatment system. Means such as preventing leakage may be used. From these results, the tubular immobilization carrier of the present invention is extremely effective in reducing the size and efficiency of the system because it reduces the treatment cost and eliminates the need for integrating the nitrification tank and denitrification tank and the re-aeration tank. is there.

【0028】上記実験例では直管状の固定化担体を示し
たが、以下に本発明バイオリアクターの応用例のいくつ
かを示す。 実施例1 図7は、チューブ状に形成した菌固定化担体21を支持
枠22で多数保持し、このチューブ状担体21内の通路
21aにエネルギー源物質Aを供給するようにしたもので
ある。ボイラーなどと同様の構造となし、ボイラーの熱
媒体の代わりにエネルギー源物質Aを使用し、チューブ
の外側に被処理液として使用できる。この場合、チュー
ブ内に被処理液を流し、チューブ外をエネルギー源物質
Aとすることもできる。なお、チューブ状の固定化担体
に代えて中空状の板状担体を同様に支持枠に固定して使
用することもできる。 実施例2 図8は、チューブ状固定化担体21をスパイラル(螺
旋)状とした例である。実施例1と同様に使用すること
ができる。
In the above experimental example, a straight tubular immobilization carrier was shown, but some of the application examples of the bioreactor of the present invention are shown below. Example 1 In FIG. 7, a large number of tube-shaped bacterium-immobilized carriers 21 are held by a support frame 22, and a passage in the tube-shaped carrier 21 is provided.
The energy source substance A is supplied to 21a. The structure is similar to that of a boiler or the like, and the energy source substance A is used instead of the heating medium of the boiler and can be used as a liquid to be treated outside the tube. In this case, the liquid to be treated may be flown into the tube and the outside of the tube may be used as the energy source substance A. Instead of the tubular immobilization carrier, a hollow plate-shaped carrier may be similarly fixed to the support frame and used. Example 2 FIG. 8 is an example in which the tubular immobilization carrier 21 has a spiral shape. It can be used in the same manner as in Example 1.

【0029】実施例3 図9は、一端が閉止されたチューブ状固定化担体21を
支持枠22に多数保持した例である。 実施例4 図10は、多数の平板状の固定化担体20を適当な間隔
で多数並列し、この平板状担体20の間に交互にエネル
ギー源物質Aと被処理液Bとを通すようにしたものの例
である。この場合、担体20間の間隔はすべて同じとす
る必要はなく、エネルギー源物質Aの通路を広くし、被
処理液B側を狭くするなど、任意に設定してよい。
Example 3 FIG. 9 shows an example in which a large number of tubular immobilization carriers 21 having one end closed are held by a support frame 22. Example 4 In FIG. 10, a large number of flat plate-shaped immobilization carriers 20 are arranged in parallel at appropriate intervals, and the energy source substance A and the liquid to be treated B are alternately passed between the flat plate-shaped carriers 20. Here is an example. In this case, the intervals between the carriers 20 do not have to be all the same, and may be set arbitrarily such that the passage of the energy source substance A is widened and the liquid to be treated B side is narrowed.

【0030】実施例5 図11は、廃液処理管等の管体23の内部に、管体23
の直径方向に二分されるように平板状の固定化担体20
を配置した例で、担体20の一方の側にエネルギー源物
質A、他方の側に被処理液Bが流れるようにしたもので
ある。本例の場合も実施例4と同様に、一方の側の通路
を広くし他方の側を狭くするようにしてもよい。
Embodiment 5 FIG. 11 shows that a pipe 23 is provided inside a pipe 23 such as a waste liquid treatment pipe.
Flat plate-shaped immobilization carrier 20 so as to be divided into two diametrical directions
In this example, the energy source substance A flows on one side of the carrier 20 and the liquid B to be treated flows on the other side. Also in the case of this example, as in the case of the fourth embodiment, the passage on one side may be widened and the other side may be narrowed.

【0031】[0031]

【発明の効果】本発明のバイオリアクターは、固定化担
体内のアンモニア酸化菌と脱窒菌の数のバランス、およ
び固定化担体内の好気部分と嫌気部分の割合、菌濃度お
よび固定化担体層の厚さ、例えばチューブ状固定化担体
の場合のチューブの肉厚などの調整等、を適宜選択して
設定することによってより効率的に排水等を処理するこ
とができる。また、本発明のバイオリアクターを連続処
理槽として用いる場合には、処理槽内での滞留時間、循
環するエネルギー源物質の濃度、処理槽中の曝気量など
の処理条件も上記と同様に適宜選択して設定することに
よってより効率的に排水等を処理することができる。こ
のほか、固定化担体からの細菌の漏れ出しの防止や強度
を付与する目的で固定化担体の少なくとも排水などの被
処理液と接する側の表面に、細菌の活動を阻害しない薄
い樹脂層を形成してもよい。
EFFECTS OF THE INVENTION The bioreactor of the present invention comprises a balance of the numbers of ammonia-oxidizing bacteria and denitrifying bacteria in the immobilization carrier, a ratio of aerobic and anaerobic parts in the immobilization carrier, concentration of bacteria and immobilization carrier layer. By appropriately selecting and setting the thickness, for example, adjustment of the wall thickness of the tube in the case of a tubular immobilization carrier, wastewater and the like can be treated more efficiently. When the bioreactor of the present invention is used as a continuous treatment tank, the treatment conditions such as the residence time in the treatment tank, the concentration of the circulating energy source substance, and the aeration amount in the treatment tank are appropriately selected as in the above. By setting the above, wastewater and the like can be treated more efficiently. In addition, a thin resin layer that does not inhibit the activity of bacteria is formed on at least the surface of the immobilization carrier that is in contact with the liquid to be treated, such as drainage, for the purpose of preventing leakage of bacteria from the immobilization carrier and providing strength. You may.

【0032】固定化担体を膜状、シート状またはチュー
ブ状に形成する場合、固定化担体のみで形成するほか
に、金属またはプラスチック製の適当なフレーム、例え
ば格子状やハニカム(honeycomb )状のフレームの隙間
に形成することによって所定の大きさのものとすること
ができる。本発明は、被処理液中の窒素除去を主体とし
て説明したが、種々の微生物を用いて同様なバイオリア
クターとすることによって、エネルギー源物質に影響さ
れることなく被処理液中の成分を除去することができる
ほか、被処理液中の特定の微生物の成育に必要な物質を
放出する微生物を使用することによって、被処理液中の
特定の微生物を増殖させたり特定の成分を増加させるこ
ともできる。
When the immobilization carrier is formed into a film shape, a sheet shape or a tube shape, in addition to the immobilization carrier alone, a suitable metal or plastic frame, for example, a lattice-shaped or honeycomb-shaped frame is used. By forming it in the gap, it can be made to have a predetermined size. The present invention has been described mainly for removing nitrogen in the liquid to be treated, but by using a similar bioreactor using various microorganisms, the components in the liquid to be treated can be removed without being affected by the energy source substance. In addition, by using a microorganism that releases a substance necessary for the growth of a specific microorganism in the liquid to be treated, it is possible to grow a specific microorganism in the liquid to be treated or increase a specific component. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】膜状固定化担体用の実験装置の模式図である。FIG. 1 is a schematic view of an experimental device for a membranous immobilized carrier.

【図2】チューブ状固定化担体用の実験装置の模式図で
ある。
FIG. 2 is a schematic view of an experimental device for a tubular immobilization carrier.

【図3】膜状固定化担体のアンモニアおよび亜硝酸処理
効果を示すグラフである。
FIG. 3 is a graph showing the effect of treating the membrane-shaped immobilized carrier with ammonia and nitrous acid.

【図4】チューブ状固定化担体のアンモニアおよび亜硝
酸処理効果を示すグラフである。
FIG. 4 is a graph showing the effect of treating the tube-shaped immobilized carrier with ammonia and nitrous acid.

【図5】実験培地中のTOC濃度を示すグラフである。FIG. 5 is a graph showing TOC concentration in an experimental medium.

【図6】水素ガスをエネルギー源として使用したときの
チューブ状固定化担体の硝酸態窒素の除去効果を示すグ
ラフである。
FIG. 6 is a graph showing the effect of removing nitrate nitrogen of a tubular immobilization carrier when hydrogen gas is used as an energy source.

【図7】本発明のバイオリアクターの一例を示す側面図
である。
FIG. 7 is a side view showing an example of the bioreactor of the present invention.

【図8】チューブ状固定化担体の一使用例を示す側面図
である。
FIG. 8 is a side view showing an example of use of a tubular immobilization carrier.

【図9】チューブ状固定化担体の他の使用例を示す側面
図である。
FIG. 9 is a side view showing another example of use of the tubular immobilization carrier.

【図10】平板状固定化担体の一使用例を示す斜視図で
ある。
FIG. 10 is a perspective view showing an example of use of a flat immobilization carrier.

【図11】平板状固定化担体の他の使用例を示す斜視図
である。
FIG. 11 is a perspective view showing another usage example of the flat plate-shaped immobilization carrier.

【符号の説明】[Explanation of symbols]

1 実験槽 2 水浴 3 実験培地 4 エアーポンプ 5 エアーストーン 7 スターラー 8 攪拌翼 10 膜状固定化担体 11 チューブ状固定化担体 11a シリコーンチューブ 12 エタノール溶液 13 循環ポンプ 20 平板状固定化担体 21 チューブ状固定化担体 22 支持枠 23 管体 1 Experimental Tank 2 Water Bath 3 Experimental Medium 4 Air Pump 5 Air Stone 7 Stirrer 8 Stirring Blade 10 Membrane Immobilized Carrier 11 Tube Immobilized Carrier 11a Silicone Tube 12 Ethanol Solution 13 Circulation Pump 20 Flat Plate Immobilized Carrier 21 Tube Immobilized Carrier 22 support frame 23 tubular body

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 合成高分子、天然高分子等の担体に被処
理液中の目的とする成分の除去等に有効な微生物の1種
または2種以上を固定化した固定化担体の一面に被処理
液を接触させ他面に該微生物のエネルギー源物質を接触
させるようにしたことを特徴とするバイオリアクター。
1. A surface of an immobilizing carrier in which one or more kinds of microorganisms effective for removing a target component in a liquid to be treated are immobilized on a carrier such as a synthetic polymer or a natural polymer. A bioreactor characterized in that the treatment liquid is brought into contact with the other surface of the microorganism as an energy source substance.
【請求項2】 合成高分子、天然高分子等の担体に目的
とする成分の除去等に有効な微生物としてアンモニア酸
化菌、脱窒菌等の被処理液中の窒素または窒素成分の除
去に有効な微生物の1種または2種以上を固定化し、こ
の固定化担体の一面に被処理液を接触させ他面に該微生
物のエネルギー源物質を接触させて窒素または窒素成分
を除去するようにしたことを特徴とする請求項1記載の
バイオリアクター。
2. As a microorganism effective for removing a target component of a carrier such as a synthetic polymer or a natural polymer, it is effective for removing nitrogen or nitrogen component in a liquid to be treated such as ammonia-oxidizing bacteria and denitrifying bacteria. One or more kinds of microorganisms are immobilized, and the liquid to be treated is brought into contact with one surface of the immobilized carrier and the energy source substance of the microorganism is brought into contact with the other surface to remove nitrogen or nitrogen components. The bioreactor according to claim 1, which is characterized.
【請求項3】 窒素または窒素成分の除去に有効な微生
物としてアンモニア酸化菌および/または脱窒菌を固定
化した固定化担体の一面に被処理液を接触させ他面に菌
体のエネルギー源物質を接触させるようにしたことを特
徴とする請求項2記載のバイオリアクター。
3. A liquid to be treated is brought into contact with one surface of an immobilization carrier on which ammonia-oxidizing bacteria and / or denitrifying bacteria are immobilized as microorganisms effective for removing nitrogen or nitrogen components, and an energy source substance for bacterial cells is attached to the other surface. The bioreactor according to claim 2, wherein the bioreactor is brought into contact with the bioreactor.
【請求項4】 更に亜硝酸酸化菌を固定化したことを特
徴とする請求項2記載のバイオリアクター。
4. The bioreactor according to claim 2, wherein nitrite-oxidizing bacteria are further immobilized.
【請求項5】 アンモニア酸化菌がNitrosomonas europ
aea IFO-14298 、脱窒菌がParacoccus denitrificans J
CM-6892 であることを特徴とする請求項2記載のバイオ
リアクター。
5. The ammonia-oxidizing bacterium is Nitrosomonas europ.
aea IFO-14298, denitrifying bacteria Paracoccus denitrificans J
The bioreactor according to claim 2, which is CM-6892.
【請求項6】 担体が、コラーゲン、フィブリン、アル
ブミン、カゼイン、セルロースファイバー、寒天、アガ
ロース等の天然高分子、ポリアクリルアミド、ポリ−2
−ヒドロキシエチルメタクリル酸、ポリビニルクロリ
ド、ポリスチレン、ポリウレタン、光硬化性樹脂(ポリ
ビニルアルコール誘導体、ポリエチレングリコール誘導
体等)の合成高分子、またはこれらの複合体であること
を特徴とする請求項1ないし3のいずれか1項記載のバ
イオリアクター。
6. The carrier is a natural polymer such as collagen, fibrin, albumin, casein, cellulose fiber, agar or agarose, polyacrylamide, poly-2.
-Hydroxyethyl methacrylic acid, polyvinyl chloride, polystyrene, polyurethane, a synthetic polymer of a photocurable resin (polyvinyl alcohol derivative, polyethylene glycol derivative, etc.), or a complex thereof. The bioreactor according to any one of claims 1.
【請求項7】 固定化担体の形状が、チューブ状、プレ
ート状またはフィルム状であることを特徴とする請求項
1ないし3のいずれか1項記載のバイオリアクター。
7. The bioreactor according to claim 1, wherein the immobilized carrier has a tube shape, a plate shape, or a film shape.
【請求項8】 チューブ状に成形した菌固定化担体の中
空部に、エタノール、水素ガス等の液体または気体状の
エネルギー源物質を流通せしめるようにしたことを特徴
とする請求項7項記載の窒素除去用バイオリアクター。
8. The liquid or gaseous energy source substance such as ethanol or hydrogen gas is allowed to flow through the hollow portion of the tube-shaped bacterium-immobilized carrier. Bioreactor for nitrogen removal.
【請求項9】 箱体または樋状などの一面が開放した容
器の開放面に、合成高分子、天然高分子等の担体に被処
理液中の目的とする成分の除去等に有効な微生物の1種
または2種以上を固定化した固定化担体の層を形成し、
該固定化担体の層の裏面の容器内の空間部にエタノー
ル、水素ガス等の液体または気体状のエネルギー源物質
を流通せしめるようにしたことを特徴とするバイオリア
クター。
9. A container, such as a box or gutter, whose one surface is open, has a carrier such as a synthetic polymer or a natural polymer on which the microorganisms effective for removing the target component in the liquid to be treated are provided. Forming a layer of an immobilization carrier on which one or more types are immobilized,
A bioreactor characterized in that a liquid or gaseous energy source substance such as ethanol or hydrogen gas is allowed to flow in the space inside the container on the back surface of the layer of the immobilized carrier.
【請求項10】 箱体または筒体など郭成体の内部を、
合成高分子、天然高分子等の担体にアンモニア酸化菌、
脱窒菌等の被処理液中の特定の成分の除去等に有効な微
生物の1種または2種以上を固定化した固定化担体の層
で2または2以上に仕切り、該固定化担体の層の一方の
側に被処理液を流通させ他方の側に菌体のエネルギー源
物質を流通させるようにしたことを特徴とするバイオリ
アクター。
10. The inside of a body such as a box or a cylinder,
Ammonia-oxidizing bacteria on a carrier such as synthetic polymer, natural polymer,
A layer of an immobilizing carrier on which one or more kinds of microorganisms effective for removing a specific component in a liquid to be treated such as denitrifying bacteria is immobilized is divided into two or two or more layers of the immobilizing carrier. A bioreactor characterized in that a liquid to be treated is circulated on one side and an energy source substance of bacterial cells is circulated on the other side.
【請求項11】 合成高分子、天然高分子等の担体に被
処理液中の目的とする成分の除去等に有効な微生物の1
種または2種以上を固定化し、この固定化担体の一面に
被処理液を接触させ他面に該微生物のエネルギー源物質
を接触させることを特徴とする被処理液中の特定成分の
処理方法。
11. A microorganism which is effective for removing a target component in a liquid to be treated on a carrier such as a synthetic polymer or a natural polymer.
A method for treating a specific component in a liquid to be treated, which comprises immobilizing one or more species, and contacting the liquid to be treated on one surface of the immobilized carrier and bringing the energy source substance of the microorganism into contact with the other surface.
【請求項12】 合成高分子、天然高分子等の担体に目
的とする成分の除去等に有効な微生物としてアンモニア
酸化菌、脱窒菌等の被処理液中の窒素または窒素成分の
除去に有効な微生物の1種または2種以上を固定化し、
この固定化担体の一面に被処理液を接触させ他面に該微
生物のエネルギー源物質を接触させて被処理液中の窒素
を除去することを特徴とする請求項11記載の処理方
法。
12. As a microorganism effective for removing a target component in a carrier such as a synthetic polymer or a natural polymer, it is effective for removing nitrogen or nitrogen component in a liquid to be treated such as ammonia oxidizing bacteria and denitrifying bacteria. Immobilize one or more microorganisms,
12. The treatment method according to claim 11, wherein the liquid to be treated is brought into contact with one surface of the immobilized carrier and the energy source substance of the microorganism is brought into contact with the other surface thereof to remove nitrogen in the liquid to be treated.
【請求項13】 固定化担体の他面に接触さる微生物の
エネルギー源物質を加温または冷却して所望の温度に調
整して接触させることを特徴とする請求項11記載の処
理方法。
13. The treatment method according to claim 11, wherein the energy source substance of the microorganism that comes into contact with the other surface of the immobilization carrier is heated or cooled to adjust the temperature to a desired temperature and brought into contact with the immobilized carrier.
JP7176757A 1994-12-24 1995-06-20 Bioreactor Expired - Fee Related JP2887737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7176757A JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33592494 1994-12-24
JP6-335924 1994-12-24
JP7176757A JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Publications (2)

Publication Number Publication Date
JPH08224076A true JPH08224076A (en) 1996-09-03
JP2887737B2 JP2887737B2 (en) 1999-04-26

Family

ID=26497546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7176757A Expired - Fee Related JP2887737B2 (en) 1994-12-24 1995-06-20 Bioreactor

Country Status (1)

Country Link
JP (1) JP2887737B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551511B1 (en) 1999-05-31 2003-04-22 Matsushita Electric Industrial Co. Ltd. Denitrification promoter and a method of water treatment using the same
JP2007021487A (en) * 2005-06-15 2007-02-01 Central Res Inst Of Electric Power Ind Bioreactor and method for decomposing/removing ammonia gas by using the bioreactor
JP2007160236A (en) * 2005-12-14 2007-06-28 Central Res Inst Of Electric Power Ind Bioreactor
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
KR100815469B1 (en) * 2007-03-08 2008-03-20 인하대학교 산학협력단 Extractor for meiofaunal organisms in sediments using ultra fine bubble generator
WO2008143149A1 (en) * 2007-05-11 2008-11-27 Dai Nippon Printing Co., Ltd. Cell sheet having good dimensional stability, method for production thereof, and cell culture carrier for use in the method
JP2011025168A (en) * 2009-07-27 2011-02-10 Central Res Inst Of Electric Power Ind Method and system of treating wastewater
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
CN104045170B (en) * 2014-07-07 2016-03-02 中国科学院重庆绿色智能技术研究院 A kind of waste disposal plant printing biologic packing material based on 3D
US9643133B2 (en) 2011-09-30 2017-05-09 Life Technologies Corporation Container with film sparger
US9682353B2 (en) 2005-04-22 2017-06-20 Life Technologies Corporation Gas spargers and related container systems
US10123940B2 (en) 2014-06-26 2018-11-13 Advanced Scientific, Inc. Bag assembly and system for use with a fluid
US10301585B2 (en) 2011-09-29 2019-05-28 Life Technologies Corporation Filter systems for separating microcarriers from cell culture solutions
US10589197B2 (en) 2016-12-01 2020-03-17 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
KR20230022190A (en) * 2020-11-02 2023-02-14 경기대학교 산학협력단 Immobilization method of bacteria and bacterial culture media for bacteria activation in concrete

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662809B2 (en) * 2011-01-12 2015-02-04 一般財団法人電力中央研究所 Electron donor supply device and denitrification bioreactor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551511B1 (en) 1999-05-31 2003-04-22 Matsushita Electric Industrial Co. Ltd. Denitrification promoter and a method of water treatment using the same
US10328404B2 (en) 2005-04-22 2019-06-25 Life Technologies Corporation Gas spargers and related container systems
US9682353B2 (en) 2005-04-22 2017-06-20 Life Technologies Corporation Gas spargers and related container systems
JP5335238B2 (en) * 2005-06-15 2013-11-06 一般財団法人電力中央研究所 Microbial activity control substance supply method and apparatus, environmental purification method and bioreactor using the same
JP2007021487A (en) * 2005-06-15 2007-02-01 Central Res Inst Of Electric Power Ind Bioreactor and method for decomposing/removing ammonia gas by using the bioreactor
JP2013039571A (en) * 2005-06-15 2013-02-28 Central Research Institute Of Electric Power Industry Method of supplying microorganism activity control substance, apparatus therefor, and method of cleaning environment and bioreactor using the same
JP2007160236A (en) * 2005-12-14 2007-06-28 Central Res Inst Of Electric Power Ind Bioreactor
JP2008023488A (en) * 2006-07-24 2008-02-07 Central Res Inst Of Electric Power Ind Method for supplying electron donor to microorganism and its device, and bioreactor using it
KR100815469B1 (en) * 2007-03-08 2008-03-20 인하대학교 산학협력단 Extractor for meiofaunal organisms in sediments using ultra fine bubble generator
JP2013138691A (en) * 2007-05-11 2013-07-18 Dainippon Printing Co Ltd Cell sheet maintaining dimension, method for producing the same, and cell culture carrier for use in the method
JP5257355B2 (en) * 2007-05-11 2013-08-07 大日本印刷株式会社 Cell sheet having dimensions, manufacturing method thereof, and cell culture carrier therefor
US8685733B2 (en) 2007-05-11 2014-04-01 Dai Nippon Printing Co., Ltd. Cell sheet having good dimensional stability, method for production thereof, and cell culture carrier for use in the method
WO2008143149A1 (en) * 2007-05-11 2008-11-27 Dai Nippon Printing Co., Ltd. Cell sheet having good dimensional stability, method for production thereof, and cell culture carrier for use in the method
JP2011025168A (en) * 2009-07-27 2011-02-10 Central Res Inst Of Electric Power Ind Method and system of treating wastewater
US10934514B2 (en) 2011-09-29 2021-03-02 Life Technologies Corporation Filter systems for separating microcarriers from cell culture solutions
US10301585B2 (en) 2011-09-29 2019-05-28 Life Technologies Corporation Filter systems for separating microcarriers from cell culture solutions
US10350554B2 (en) 2011-09-30 2019-07-16 Life Technologies Corporation Container with film Sparger
US9643133B2 (en) 2011-09-30 2017-05-09 Life Technologies Corporation Container with film sparger
US10843141B2 (en) 2011-09-30 2020-11-24 Life Technologies Corporation Container with film sparger
US12128367B2 (en) 2011-09-30 2024-10-29 Life Technologies Corporation Container with film sparger
US10123940B2 (en) 2014-06-26 2018-11-13 Advanced Scientific, Inc. Bag assembly and system for use with a fluid
US10463571B2 (en) 2014-06-26 2019-11-05 Advanced Scientifics, Inc. Bag assembly and bag system for use with a fluid
CN104045170B (en) * 2014-07-07 2016-03-02 中国科学院重庆绿色智能技术研究院 A kind of waste disposal plant printing biologic packing material based on 3D
US10589197B2 (en) 2016-12-01 2020-03-17 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
US11344827B2 (en) 2016-12-01 2022-05-31 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
US11890557B2 (en) 2016-12-01 2024-02-06 Life Technologies Corporation Microcarrier filter bag assemblies and methods of use
KR20230022190A (en) * 2020-11-02 2023-02-14 경기대학교 산학협력단 Immobilization method of bacteria and bacterial culture media for bacteria activation in concrete

Also Published As

Publication number Publication date
JP2887737B2 (en) 1999-04-26

Similar Documents

Publication Publication Date Title
Rostron et al. Nitrification of high strength ammonia wastewaters: comparative study of immobilisation media
JP2887737B2 (en) Bioreactor
NL2004440C2 (en) Wastewater treatment method and wastewater treatment apparatus.
US7556961B2 (en) Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
EP1607374B1 (en) Method for operating anaerobic ammonium oxidation vessel and anaerobic ammonium oxidation equipment
JP5150993B2 (en) Denitrification method and apparatus
Chen et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface
JP5324269B2 (en) Waste water treatment method and waste water treatment apparatus
KR101935093B1 (en) Selective Microorganism Immobilization Support
JP4671178B2 (en) Nitrogen removal method and apparatus
JP4678577B2 (en) Wastewater treatment system
Lei et al. The short-term effects of temperature and free ammonia on ammonium oxidization in granular and floccular nitrifying system
JP4817057B2 (en) Batch treatment of nitrogen-containing water
KR100483421B1 (en) Wastewater treatment method using radial rotating biological contactors
JP3303665B2 (en) Nitrification / denitrification method and apparatus
JP2001246397A (en) Method for removing nitrogen in waste water
CN114314841B (en) Film hanging method for immobilized biological filter
Li et al. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods
JP6651298B2 (en) Wastewater treatment method and wastewater treatment device for wastewater containing high salt concentration
Miura et al. Effectiveness of biofilm scouring in improving the carbon and nitrogen removal performance of membrane-aerated biofilm reactors installing novel high oxygen-transfer polyethylene membranes
Jittawattanarat et al. Immobilized cell augmented activated sludge process for enhanced nitrogen removal from wastewater
JP5126691B2 (en) Wastewater treatment method
KR100202066B1 (en) Wastewater treatment method using biological 3 step digestion process in one reactor
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
Akankshya et al. Removal of organic matters and nutrients by using bio-balls and corn cobs as bio-film carrier in MBBR technology

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees