[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08213613A - Vertical semiconductor device and its manufacturing method - Google Patents

Vertical semiconductor device and its manufacturing method

Info

Publication number
JPH08213613A
JPH08213613A JP16496595A JP16496595A JPH08213613A JP H08213613 A JPH08213613 A JP H08213613A JP 16496595 A JP16496595 A JP 16496595A JP 16496595 A JP16496595 A JP 16496595A JP H08213613 A JPH08213613 A JP H08213613A
Authority
JP
Japan
Prior art keywords
trench
layer
conductivity type
semiconductor
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16496595A
Other languages
Japanese (ja)
Other versions
JP3319228B2 (en
Inventor
Yoshinori Konishi
義則 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16496595A priority Critical patent/JP3319228B2/en
Publication of JPH08213613A publication Critical patent/JPH08213613A/en
Application granted granted Critical
Publication of JP3319228B2 publication Critical patent/JP3319228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To enhance the breakdown strength while decreasing the leakage current in an accumulation type MOSFET. CONSTITUTION: The near part of the end part of a trench 52 with a gate electrode 46 buried therein and the outer side on the outermost side are made to have the same conductivity type as that of a substrate so that an n<+> source region 44 may be formed in the part excluding the parts so that an active region is inside a depletion layer formed when a gate is negative-biased. Besides, a low concentration n epitaxial layer 42 is formed on a high concentration n<+> substrate 41 and then lower concentration n-epitaxial layer 43 is formed on the layer 42 while the trench 52 reaching the n epitaxial layer 42 is formed from the surface so as to fill up the inside of the trench 52 with a gate electrode 46 through the intermediary of a gate oxide film 45. Through these procedures, the breakdown strength sharing ratio on the n epitaxial layer 42 is increased so that the ratio of the gate oxide film may be reduced thereby enhancing the breakdown strength as the whole element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】ディスク駆動装置や自動車用電装
品などの電源部に用いられる比較的大電力を扱う低耐
圧、低オン抵抗のスイッチング用のたて型半導体素子及
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical semiconductor device for switching, which has a low withstand voltage and a low on-resistance and handles a relatively large amount of electric power, which is used in a power source section of a disk drive device, an electric component for automobiles, etc.

【0002】[0002]

【従来の技術】従来、自動車用電装品やディスク駆動装
置などの制御系の電源電圧は、5Vのものが圧倒的に多
かった。しかし、コンピュータの高速処理、低消費電力
化のため、および、充電型二次電池の進歩拡大によるバ
ッテリー利用装置の長寿命化設計への配慮等から、電源
電圧の主流は、5Vより低電圧の3.3V或いは、更に
低い1.5Vに移行しようとしている。電源電圧が低く
なると、使用される半導体素子における電圧降下が無視
できなくなり、より低オン抵抗の半導体素子が求められ
ることになる。
2. Description of the Related Art Conventionally, the power supply voltage of a control system such as an electric component for an automobile or a disk drive has been predominantly 5V. However, due to high-speed processing of computers, low power consumption, and consideration of design for longer life of battery-using devices due to the expansion of rechargeable secondary batteries, mainstream power supply voltage is lower than 5V. It is going to shift to 3.3V or 1.5V which is lower. When the power supply voltage becomes low, the voltage drop in the semiconductor element used cannot be ignored, and a semiconductor element having a lower ON resistance is required.

【0003】上記のような利用分野で用いられている、
比較的大電力を扱う低耐圧、低オン抵抗のパワー素子の
一つであるDMOSFET(二重拡散型金属−酸化膜−
半導体電界効果トランジスタ)の要部断面図を図6に示
す。図に示したのは、電流のスイッチングを行う活性領
域の単位の部分であって、実際の半導体素子では図のよ
うな構造が多数集積されていることが多い。図におい
て、高濃度のドナー形成型不純物を含んだn+ サブスト
レート1の上に、同じ導電型で不純物濃度の低いnエピ
タキシャル層2を積層したエピタキシャル基板の表面層
に、選択的にアクセプタ形成型不純物を含んだpベース
領域11が形成され、そのpベース領域11の表面層の
一部にnソース領域4が形成されている。そして、nソ
ース領域4とnエピタキシャル層2とに挟まれたpベー
ス領域11の表面上およびnエピタキシャル層2の表面
露出部の上には、ゲート酸化膜5を介して多結晶シリコ
ンからなるゲート電極6が設けられている。またnソー
ス領域4とpベース領域11との表面には、共通に接触
するソース電極8が、n+ サブストレート1の裏面には
ドレイン電極9がそれぞれ設けられている。図では、ソ
ース電極が絶縁膜7を介してゲート電極6の上まで延長
されている。このDMOSFETにおいて、ドレイン電
極9、ソース電極8間に電圧を印加し、ゲート電極6
に、正のある値以上の信号を与えると、ゲート電極6直
下のpベース領域11の表面層に反転層のチャネルを生
じ、電子がnソース領域4からそのチャネルを通って、
nエピタキシャル層2に流れ込み、電界に従ってn+
ブストレート1に達し、ソース電極8とドレイン電極9
間が導通する。すなわち、電流はドレイン電極9からソ
ース電極8へと流れる。ゲート電極6の信号を取り去れ
ば、チャネルが消滅しソース電極8とドレイン電極9間
は遮断される。図のように半導体基板の両主面に電極を
もち、半導体基板の厚さ方向に電流が流れる構造の半導
体素子を、たて型半導体素子と呼ぶが、このような構造
は、半導体基板表面の利用率が高くでき、電流容量を大
きくできるのでパワー素子に適したものである。このた
て型DMOSFETの、導通時のオン抵抗を発生成分別
に見積もると、高耐圧素子では耐圧を確保するためのn
エピタキシャル層2の寄与率が高く、それに比べてチャ
ネル抵抗の寄与率は余り高くない。しかし、低耐圧素子
では、耐圧を確保するためのnエピタキシャル層2の厚
さは薄くて済むので、チャネル抵抗のオン抵抗に占める
割合は高くなる。
Used in the above-mentioned application fields,
DMOSFET (double-diffusion type metal-oxide film), which is one of power devices with low breakdown voltage and low on-resistance that handles relatively large power,
FIG. 6 shows a sectional view of the main part of the semiconductor field effect transistor). What is shown in the figure is a unit portion of an active region that performs current switching, and in actual semiconductor devices, many structures as shown in the figure are often integrated. In the figure, an acceptor formation type is selectively formed on a surface layer of an epitaxial substrate in which an n epitaxial layer 2 having the same conductivity type and a low impurity concentration is laminated on an n + substrate 1 containing a high concentration donor formation type impurity. The p base region 11 containing impurities is formed, and the n source region 4 is formed in a part of the surface layer of the p base region 11. Then, on the surface of the p base region 11 sandwiched between the n source region 4 and the n epitaxial layer 2 and on the exposed surface portion of the n epitaxial layer 2, a gate made of polycrystalline silicon is provided via a gate oxide film 5. An electrode 6 is provided. Further, a source electrode 8 that is in common contact is provided on the surfaces of the n source region 4 and the p base region 11, and a drain electrode 9 is provided on the back surface of the n + substrate 1. In the figure, the source electrode is extended to above the gate electrode 6 via the insulating film 7. In this DMOSFET, a voltage is applied between the drain electrode 9 and the source electrode 8, and the gate electrode 6
When a signal having a positive value or more is applied to, a channel of the inversion layer is generated in the surface layer of the p base region 11 immediately below the gate electrode 6, and electrons pass from the n source region 4 through the channel,
It flows into the n epitaxial layer 2 and reaches the n + substrate 1 according to the electric field, and the source electrode 8 and the drain electrode 9
There is continuity between the two. That is, the current flows from the drain electrode 9 to the source electrode 8. When the signal from the gate electrode 6 is removed, the channel disappears and the source electrode 8 and the drain electrode 9 are cut off from each other. A semiconductor element having a structure in which electrodes are provided on both main surfaces of the semiconductor substrate as shown in the figure and a current flows in the thickness direction of the semiconductor substrate is called a vertical semiconductor element. It is suitable for a power device because it can have a high utilization rate and a large current capacity. When the on-resistance of the vertical DMOSFET in conduction is estimated for each generation component, it is n for securing a withstand voltage in a high withstand voltage element.
The contribution of the epitaxial layer 2 is high, and the contribution of the channel resistance is not so high. However, in the low breakdown voltage element, since the thickness of the n epitaxial layer 2 for ensuring the breakdown voltage may be small, the ratio of the channel resistance to the ON resistance is high.

【0004】そこで、チャネル抵抗を小さくする方法の
一つとして、トレンチ構造のゲートをもつUMOSFE
Tが考案された。図7に、そのUMOSFETの要部断
面図を示す。図6のDMOSFETとの違いは、nエピ
タキシャル層2の表面層にpベース領域11を貫通して
トレンチ12が形成され、そのトレンチ12の内部にゲ
ート酸化膜5を介してゲート電極6が埋め込まれている
点である。7は絶縁膜である。ゲート電極6への正の電
圧信号により、ドレイン電極9、ソース電極8間の電流
がスイッチングされることは、図6のDMOSFETと
同じである。このUMOSFETは、図6のDMOSF
ETに比べて、トレンチゲートにしたことにより、半導
体素子の単位面積当たりのチャネルの面積(ゲート面
積)を広くでき、また、接合型FET効果によるチャネ
ルの狭隘化も発生しないので、チャネル抵抗を低くで
き、実際に多用されている。
Therefore, as one of the methods for reducing the channel resistance, UMOSFE having a gate having a trench structure is used.
The T was devised. FIG. 7 shows a sectional view of the main part of the UMOSFET. 6 is different from the DMOSFET in FIG. 6 in that a trench 12 is formed in the surface layer of the n-epitaxial layer 2 so as to penetrate the p-base region 11 and the gate electrode 6 is embedded in the trench 12 via a gate oxide film 5. That is the point. Reference numeral 7 is an insulating film. The positive voltage signal applied to the gate electrode 6 switches the current between the drain electrode 9 and the source electrode 8 as in the DMOSFET of FIG. This UMOSFET is a DMOSF of FIG.
Compared to ET, the use of a trench gate allows a wider channel area (gate area) per unit area of the semiconductor element, and does not cause a narrowing of the channel due to the junction-type FET effect, thus lowering the channel resistance. Yes, it's actually heavily used.

【0005】最近、B.J.Baliga氏らから、更
にチャネル抵抗を低くできるトレンチゲートをもつ蓄積
型MOSFET(以下ACCUFETと呼ぶ)が報告さ
れた〔アイイーイーイー トランズアクション オン
エレクトロン デバイス レターズ 13巻8号427
頁1992年参照〕。ACCUFETの要部構造を図8
に示す。図において、不純物濃度の高いn+ サブストレ
ート21の上に不純物濃度の低いnエピタキシャル層2
2を積層したエピタキシャル基板の表面層にnソース領
域24が形成されている。そして、基板表面からn+
ース領域24とnエピタキシャル層22を貫通してn+
サブストレート21に達するトレンチ32が形成され、
そのトレンチ32の内部には、ゲート酸化膜25を介し
て多結晶シリコンからなるゲート電極26が埋め込まれ
ている。またn+ ソース領域24の表面には、ソース電
極28が、n+ サブストレート21の裏面にはドレイン
電極29がそれぞれ設けられている。図では、ソース電
極28が絶縁膜27を介してゲート電極26の上まで延
長されている。代表的な形状パラメータ等は、次のよう
なものである。n+ サブストレート21の比抵抗は0.
002Ωcm、nエピタキシャル層22の不純物濃度と
厚さは、それぞれ1×1014cm-3、2.5μm、トレ
ンチ32の幅と深さは、共に3μm、nソース領域24
のドーズ量と厚さは、それぞれ1.3×1015cm-2
0.5μm、ゲート酸化膜25の厚さは70nmであ
る。
Recently, B. J. Baliga et al. Have reported a storage MOSFET (hereinafter referred to as ACCUFET) having a trench gate that can further reduce the channel resistance.
Electron Device Letters Vol.13 No.8 427
Page 1992]. Figure 8 shows the structure of the main part of the ACCUFET.
Shown in In the figure, an n epitaxial layer 2 having a low impurity concentration is formed on an n + substrate 21 having a high impurity concentration.
An n source region 24 is formed in the surface layer of an epitaxial substrate in which 2 layers are stacked. Then, n + source region 24 and n epitaxial layer 22 are penetrated from the substrate surface to n +
A trench 32 reaching the substrate 21 is formed,
Inside the trench 32, a gate electrode 26 made of polycrystalline silicon is buried via a gate oxide film 25. A source electrode 28 is provided on the front surface of the n + source region 24, and a drain electrode 29 is provided on the back surface of the n + substrate 21. In the figure, the source electrode 28 extends to above the gate electrode 26 via the insulating film 27. Typical shape parameters and the like are as follows. The specific resistance of the n + substrate 21 is 0.
002 Ωcm, the impurity concentration and the thickness of the n epitaxial layer 22 are 1 × 10 14 cm -3 and 2.5 μm, respectively, the width and the depth of the trench 32 are both 3 μm, and the n source region 24 is formed.
The dose and thickness are 1.3 × 10 15 cm -2 ,
The gate oxide film 25 has a thickness of 0.5 μm and a thickness of 70 nm.

【0006】図9に、ACCUFETの斜視断面図を示
した。このACCUFETにおいて、ドレイン電極2
9、ソース電極28間に電圧を印加し、ゲート電極26
に、正のバイアスを与えると、nエピタキシャル層22
のゲート電極26に沿った部分に蓄積層33を生じ、電
子がn+ ソース領域24からその蓄積層33を通って、
nエピタキシャル層22に流れ込み、電界に従ってn+
サブストレート21に達し、ドレイン電極29とソース
電極28との間が導通する。
FIG. 9 is a perspective sectional view of the ACCUFET. In this ACCUFET, the drain electrode 2
9. A voltage is applied between the source electrode 28 and the gate electrode 26.
When a positive bias is applied to the n epitaxial layer 22
A storage layer 33 is formed in a portion along the gate electrode 26, and electrons pass from the n + source region 24 through the storage layer 33,
flows into the n-type epitaxial layer 22 and n +
Reaching the substrate 21, conduction is established between the drain electrode 29 and the source electrode 28.

【0007】逆にゲート電極26に負のバイアスを与え
れば、蓄積層33が消滅し空乏層が広がって、ドレイン
電極29とソース電極28との間は遮断される。この素
子は、オン状態でのチャネル部分を反転層でなく、蓄積
層としているので、チャネル部分のキャリアの移動度を
高くでき、チャネル抵抗を小さくできる。また、電流経
路にpn接合を持たないので、寄生ダイオードの効果が
ないという特長を持つ。
Conversely, if a negative bias is applied to the gate electrode 26, the storage layer 33 disappears and the depletion layer expands, and the drain electrode 29 and the source electrode 28 are cut off from each other. In this element, since the channel portion in the on state is not the inversion layer but the storage layer, the mobility of carriers in the channel portion can be increased and the channel resistance can be reduced. In addition, since it has no pn junction in the current path, it has the advantage that there is no effect of a parasitic diode.

【0008】一方、ACCUFETのオフはトレンチゲ
ートからの空乏層の広がりによって行われる。従って、
ソース・ドレイン間電圧印加時にゲートをマイナスにバ
イアスしても図10に示すようにチップ周辺にトレンチ
92の設けられない部分が広くあると、空乏層95はト
レンチ周辺にのみ形成され、トレンチ92の外側におい
て、漏れ電流が流れる経路が存在し、十分な耐圧が得ら
れない。
On the other hand, the ACCUFET is turned off by the spread of the depletion layer from the trench gate. Therefore,
Even if the gate is negatively biased when the source-drain voltage is applied, if there is a wide portion where the trench 92 is not provided around the chip as shown in FIG. 10, the depletion layer 95 is formed only around the trench and the trench 92 On the outside, there is a path through which leakage current flows, and a sufficient breakdown voltage cannot be obtained.

【0009】この対策として、Baliga博士らが提
案している耐圧構造を図11に示す。図11において、
電流の流れる活性部の最も外側のトレンチ32の外側の
+ソース領域24の下にp型の拡散領域36をを設
け、拡散領域36とnエピタキシャル層32との間のp
n接合によって、耐圧が保たれ、漏れ電流が低減される
構造となっている。なお、37は素子分離のためのトレ
ンチである。
As a countermeasure against this, a breakdown voltage structure proposed by Dr. Baliga et al. Is shown in FIG. In FIG.
A p-type diffusion region 36 is provided below the n + source region 24 outside the outermost trench 32 of the active portion where a current flows, and a p-type diffusion region 36 is provided between the diffusion region 36 and the n epitaxial layer 32.
The n-junction maintains the breakdown voltage and reduces the leakage current. Reference numeral 37 is a trench for element isolation.

【0010】[0010]

【発明が解決しようとする課題】しかし、図11の構造
では、部分的にpn接合を含むので寄生ダイオードをも
つ構造となり、 双方向動作性(ソース・ドレイン間を逆極性に印加す
る)が失われるなどの欠点を生ずる。
However, in the structure of FIG. 11, since it partially includes the pn junction, it becomes a structure having a parasitic diode, and the bidirectional operation (the source and the drain are applied in opposite polarities) is lost. It causes a defect such as being broken.

【0011】また、上記のACCUFETは、次の問題
を有している。 トレンチ32内に形成するゲート酸化膜25の絶縁耐
圧は、表面がエッチング表面であることおよびコーナー
部を持つことなどの理由により、通常の平坦部に形成す
るゲート酸化膜の絶縁耐圧(約8MV/cm)に比べ劣
っている。図8のACCUFETの構造では、ソース・
ドレイン間に印加される電圧が、トレンチ32の底部の
ゲート酸化膜25にほとんどかかり、耐圧はゲート酸化
膜25のそれ以上を得ることができない。すなわち、高
耐圧の素子が得られない。
Further, the above ACCUFET has the following problems. Due to the fact that the surface of the gate oxide film 25 formed in the trench 32 is an etching surface and has a corner portion, the withstand voltage of the gate oxide film formed on a normal flat portion (about 8 MV / cm). In the structure of the ACCUFET of FIG.
The voltage applied between the drains is almost applied to the gate oxide film 25 at the bottom of the trench 32, and the breakdown voltage cannot be higher than that of the gate oxide film 25. That is, a high breakdown voltage element cannot be obtained.

【0012】ACCUFETは、スイッチオフする
時、ゲート電極26に負の電圧をかける。すると、チャ
ネル領域に空乏層が広がり、隣のトレンチ32のゲート
電極26から広がる空乏層と繋がって、ドリフト領域全
体が空乏化すれば、流れる電流を切ることができる。す
なわち、トレンチ32のピッチをかなり狭くしないとオ
フ時に素子に電圧がかかる時に、漏れ電流が流れる。一
方、狭くすればそれだけ電流通路が狭くなり、オン抵抗
が増大する。
The ACCUFET applies a negative voltage to the gate electrode 26 when it is switched off. Then, a depletion layer spreads in the channel region, is connected to the depletion layer spreading from the gate electrode 26 of the adjacent trench 32, and if the entire drift region is depleted, the flowing current can be cut off. That is, if the pitch of the trenches 32 is not narrowed considerably, a leakage current flows when a voltage is applied to the device at the time of off. On the other hand, if the width is made narrower, the current path becomes narrower and the on-resistance increases.

【0013】以上の問題に鑑み、本発明の目的は、双方
向動作性をもち、しかも高耐圧で、漏れ電流の少ないし
かも蓄積型で動作するたて型半導体素子を提供すること
にある。
In view of the above problems, it is an object of the present invention to provide a vertical semiconductor element which has bidirectional operability, has a high breakdown voltage, has a small leakage current, and operates in a storage type.

【0014】[0014]

【課題を解決するための手段】上記の課題解決のため、
本発明は、高濃度の第一導電型半導体基板上に、同一導
電型で第一導電型半導体基板より低濃度の半導体層を積
層した半導体積層板の半導体層の表面層に形成した高濃
度の第一導電型ソース領域と、半導体積層板の表面から
第一導電型ソース領域を貫通するトレンチと、そのトレ
ンチ内にゲート酸化膜を介して充填されたゲート電極
と、そのゲート電極の上に形成された絶縁膜と、第一導
電型ソース領域の表面に設けられたソース電極と、第一
導電型半導体基板の裏面に設けられたドレイン電極とを
有する単一導電型たて型半導体素子において、ゲート電
極を埋めたトレンチの端部近傍部分および最外側のトレ
ンチの外側部分の表面層が第一導電型であり、その部分
を除いて第一導電型ソース領域が形成されているものと
する。
[Means for Solving the Problems] In order to solve the above problems,
The present invention is directed to a high-concentration first-conductivity-type semiconductor substrate and a high-concentration semiconductor layer formed on the surface layer of a semiconductor laminated plate in which semiconductor layers having the same conductivity type and a lower concentration than the first-conductivity-type semiconductor substrate are laminated. A first conductivity type source region, a trench penetrating the first conductivity type source region from the surface of the semiconductor laminated plate, a gate electrode filled in the trench through a gate oxide film, and formed on the gate electrode In a single conductivity type vertical semiconductor element having a formed insulating film, a source electrode provided on the surface of the first conductivity type source region, and a drain electrode provided on the back surface of the first conductivity type semiconductor substrate, It is assumed that the surface layer of the portion near the end of the trench filling the gate electrode and the outer portion of the outermost trench is of the first conductivity type, and the source region of the first conductivity type is formed except for the portion.

【0015】特に、第一導電型ソース領域がトレンチゲ
ートの端部よりトレンチ間隔以上内側に形成されている
ものがよく、また、最外側のトレンチと第二最外側のト
レンチとの間に、ソース領域が形成されない部分を少な
くとも一ケ所、有するものがよい。なお、前記半導体層
が、第一導電型半導体基板より低濃度の第一半導体層と
その上に同一導電型で更に低濃度の第二半導体層からな
り、トレンチが第二半導体層を貫通して第一半導体層に
達するものとすることができる。
Particularly, it is preferable that the first-conductivity-type source region is formed inside the end portion of the trench gate by a distance equal to or more than the trench interval, and the source is provided between the outermost trench and the second outermost trench. It is preferable to have at least one portion where a region is not formed. The semiconductor layer is composed of a first semiconductor layer having a concentration lower than that of the first conductivity type semiconductor substrate and a second semiconductor layer having the same conductivity type and a concentration lower than that of the first conductivity type semiconductor substrate, and the trench penetrates the second semiconductor layer. It may reach the first semiconductor layer.

【0016】特に、隣あう二つのトレンチの間の第二半
導体層の表面層の一部に、第二導電型領域を有するもの
がよい。上記のようなたて型半導体素子の製造方法とし
ては、高濃度の第一導電型の半導体基板に同一導電型で
低濃度のエピタキシャル層と、その上に同一導電型で更
に低濃度のエピタキシャル層を積層したダブルエピタキ
シャルウェハを使用するものとする。
In particular, it is preferable that a part of the surface layer of the second semiconductor layer between two adjacent trenches has the second conductivity type region. As a method for manufacturing the vertical semiconductor device as described above, a high-concentration first-conductivity-type semiconductor substrate has an epitaxial layer of the same conductivity type and a low concentration, and an epitaxial layer of the same conductivity type and a lower concentration on the epitaxial layer. It is assumed that a double epitaxial wafer in which is laminated is used.

【0017】[0017]

【作用】上記の手段を講じ、ゲート電極を埋めたトレン
チの端部近傍部分および最外側のトレンチの外側部分の
表面層が第一導電型であり、その部分を除いて第一導電
型ソース領域が形成されているものとすれば、ゲートを
マイナスにバイアスした時に、第一導電型ソース領域と
周辺部との間に空乏層が形成される。
By taking the above-mentioned means, the surface layer of the portion near the end of the trench in which the gate electrode is filled and the outer portion of the outermost trench are of the first conductivity type. If the gate is negatively biased, a depletion layer is formed between the first conductivity type source region and the peripheral portion.

【0018】特に、第一導電型ソース領域がトレンチゲ
ートの端部よりトレンチ間隔以上内側に形成され、ま
た、最外側のトレンチと第二最外側のトレンチとの間
に、ソース領域が形成されない部分を少なくとも一ケ所
設ければ、空乏層の分離効果が高められる。半導体積層
板の表面から、第一導電型ソース領域および第二半導体
層を貫通し第一半導体層に達するトレンチを設けること
によって、第一半導体層が、ソース・ドレイン間の電圧
の一部を担うことになり、ゲート酸化膜が担う電圧を低
下させ、その結果、素子としての耐圧向上が実現でき
る。
In particular, the first-conductivity-type source region is formed inside the end of the trench gate by a distance equal to or more than the trench interval, and the source region is not formed between the outermost trench and the second outermost trench. If at least one is provided, the separation effect of the depletion layer can be enhanced. The first semiconductor layer plays a part of the source-drain voltage by providing a trench that penetrates the first conductivity type source region and the second semiconductor layer and reaches the first semiconductor layer from the surface of the semiconductor laminate. As a result, the voltage carried by the gate oxide film is reduced, and as a result, the breakdown voltage of the device can be improved.

【0019】また、隣あう二つのトレンチの間の第二半
導体層の表面層の一部に、第二導電型領域を形成するこ
とによって、一つのトレンチから広がる空乏層が、第二
導電領域があるために隣のトレンチから広がる空乏層に
到達し易くなり、第二半導体層をより空乏化できること
により、漏れ電流を低減できる。
Further, by forming a second conductivity type region in a part of the surface layer of the second semiconductor layer between two adjacent trenches, a depletion layer extending from one trench and a second conductivity region are formed. Therefore, the depletion layer extending from the adjacent trench can be easily reached, and the second semiconductor layer can be further depleted, so that the leakage current can be reduced.

【0020】[0020]

【実施例】以下、図面を参照しながら、本発明の実施例
について述べる。図1は、本発明第一の実施例のACC
UFETのトレンチゲートの端部の半導体上の絶縁膜お
よび電極を除去した状態の平面図である。半導体チップ
の周辺部を除いて、内部にゲート酸化膜45を介して多
結晶シリコンからなるゲート電極46を有するトレンチ
52が形成され、さらにトレンチ52の端部および最外
側のトレンチ52を除いて内側に、n+ ソース領域44
が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the ACC of the first embodiment of the present invention.
FIG. 7 is a plan view showing a state in which an insulating film on a semiconductor and an electrode on an end portion of a trench gate of a UFET are removed. Except for the peripheral portion of the semiconductor chip, a trench 52 having a gate electrode 46 made of polycrystalline silicon is formed inside via a gate oxide film 45, and the inside of the trench 52 except the end portion and the outermost trench 52 is formed. At the n + source region 44
Are formed.

【0021】図2は、図1の第一の実施例のACCUF
ETのA−A線における断面図を示す。この図では半導
体上部の絶縁膜および電極をも示した。図において、比
抵抗0.002Ωcm、厚さ300μmのn+ サブスト
レート41の上に、不純物濃度が4×1015cm-3、厚
さ6.0μmのnエピタキシャル層42、更にその上に
nエピタキシャル層42より不純物濃度の低い不純物濃
度が1×1014cm-3、厚さ4.5μmのn- エピタキ
シャル層43を積層したエピタキシャル基板の表面層の
一部に、不純物濃度が1×1020cm-3、厚さ0.2μ
mのn+ ソース領域44が形成されている。そして、n
+ ソース領域44とn- エピタキシャル層43を貫通し
て、nエピタキシャル層42に達する幅1.8μm、深
さ5.5μmのトレンチ52が形成され、そのトレンチ
52の内部には、厚さ0.1μmのゲート酸化膜45を
介して多結晶シリコンからなるゲート電極46が埋め込
まれている。またn+ ソース領域44の表面には、アル
ミニウム−シリコン(Al−Si)合金からなるソース
電極48が、n+ サブストレート41の裏面には、やは
りAl−Si合金のドレイン電極49がそれぞれ設けら
れている。図では、ソース電極48が絶縁膜47を介し
てゲート電極46の上まで延長されている。
FIG. 2 shows the ACCUF of the first embodiment of FIG.
The sectional view in the AA line of ET is shown. This figure also shows the insulating film and the electrodes on the semiconductor. In the figure, on an n + substrate 41 having a specific resistance of 0.002 Ωcm and a thickness of 300 μm, an n epitaxial layer 42 having an impurity concentration of 4 × 10 15 cm −3 and a thickness of 6.0 μm, and further n epitaxial layer thereon. The impurity concentration is 1 × 10 14 cm −3 , which is lower than that of the layer 42, and the impurity concentration is 1 × 10 20 cm in a part of the surface layer of the epitaxial substrate on which the n epitaxial layer 43 having a thickness of 4.5 μm is laminated. -3 , thickness 0.2μ
An n + source region 44 of m is formed. And n
A trench 52 having a width of 1.8 μm and a depth of 5.5 μm reaching the n epitaxial layer 42 is formed through the + source region 44 and the n epitaxial layer 43, and the trench 52 has a thickness of 0. A gate electrode 46 made of polycrystalline silicon is embedded through a 1 μm gate oxide film 45. A source electrode 48 made of an aluminum-silicon (Al-Si) alloy is provided on the surface of the n + source region 44, and a drain electrode 49 of an Al-Si alloy is also provided on the back surface of the n + substrate 41. ing. In the figure, the source electrode 48 is extended to above the gate electrode 46 via the insulating film 47.

【0022】このACCUFETにおいて、ドレイン電
極49、ソース電極48間に電圧を印加し、ゲート電極
46に、正のバイアスを与えると、n- エピタキシャル
層43のゲート電極46に沿った部分に蓄積層53を生
じ、電子がnソース領域44からその蓄積層53を通っ
て、nエピタキシャル層42に流れ込み、電界に従って
+ サブストレート41に達し、ソース電極48とドレ
イン電極49間が導通する。ゲート電極46に負のバイ
アスを与えれば、蓄積層53が消滅し空乏層が広がっ
て、ソース電極48とドレイン電極49間は遮断され
る。
In this ACCUFET, when a voltage is applied between the drain electrode 49 and the source electrode 48 and a positive bias is applied to the gate electrode 46, the accumulation layer 53 is formed in the portion of the n epitaxial layer 43 along the gate electrode 46. Then, electrons flow from the n source region 44 through the storage layer 53 into the n epitaxial layer 42, reach the n + substrate 41 according to the electric field, and establish conduction between the source electrode 48 and the drain electrode 49. When a negative bias is applied to the gate electrode 46, the storage layer 53 disappears and the depletion layer expands, and the source electrode 48 and the drain electrode 49 are cut off from each other.

【0023】図1において、その特徴は三点ある。第一
にnソース領域44はトレンチ52の端部を除いて形成
されている。第二にnソース領域44とトレンチ52の
端部との間の距離L2は、トレンチ52の間隔L1(例
えば0.1〜5μm)より大きい。第三に、最外側のト
レンチ52と、第二最外側のトレンチ52との間にnソ
ース領域44を形成しない部分を1μm空け、最も外側
のトレンチ52にはnソース領域44が接触しないよう
にした。このようにすれば、nソース領域44と、周辺
部との間に十分広い幅の空乏層ができ、周辺部の漏れ電
流を阻止できる。
In FIG. 1, there are three features. First, the n source region 44 is formed except for the end portion of the trench 52. Secondly, the distance L2 between the n source region 44 and the end of the trench 52 is larger than the interval L1 of the trench 52 (for example, 0.1 to 5 μm). Thirdly, a 1 μm gap is formed between the outermost trench 52 and the second outermost trench 52 so that the n source region 44 is not formed so that the n source region 44 does not contact the outermost trench 52. did. By doing so, a depletion layer having a sufficiently wide width is formed between the n source region 44 and the peripheral portion, and the leakage current in the peripheral portion can be prevented.

【0024】この構造は、例えばフォトレジストのマス
クを用いて、nソース領域44を形成するためのイオン
注入を選択的に行えば、実現できる。また、この素子
は、n- エピタキシャル層43の下に設けたnエピタキ
シャル層42が、ソース・ドレイン間の電圧の一部を担
うことにより、ゲート酸化膜45が担う電圧を低下さ
せ、耐圧向上が達成される。また、オン状態時のチャネ
ルを反転層でなく、蓄積層53としているので、チャネ
ルのキャリアの移動度を高くでき、チャネル抵抗を小さ
くできる。
This structure can be realized by selectively performing ion implantation for forming the n source region 44 using a photoresist mask, for example. Further, in this element, the n epitaxial layer 42 provided below the n epitaxial layer 43 bears a part of the voltage between the source and the drain, thereby lowering the voltage carried by the gate oxide film 45 and improving the breakdown voltage. To be achieved. Further, since the channel in the ON state is the storage layer 53 instead of the inversion layer, the carrier mobility of the channel can be increased and the channel resistance can be reduced.

【0025】しかも、本発明の実施例のACCUFET
は、電流経路にpn接合を持たないので、寄生ダイオー
ドの効果がなく、ソースとドレインとを交換した双方向
動作性をもつACCUFETである。図4に、試作した
図1、2の第一の実施例のACCUFETの耐圧分布を
示す。横軸は耐圧、たて軸は出現度数である。比較のた
め、図8に示した従来構造のACCUFETの耐圧分布
も示した。図1の第一の実施例のACCUFETでは従
来構造のACCUFETに比べて、耐圧が平均40%上
昇していることがわかる。従来の構造のACCUFET
では、トレンチ32の底部が高濃度のサブストレート2
1に達していたため、トレンチ32の底部で、空乏層が
広がらず、トレンチ32底部のゲート酸化膜25特にそ
の角部に強い電界がかかっていた。図1の第一の実施例
のACCUFETでは、空乏層がトレンチ52の下方に
も広がるため、トレンチ52の底部のゲート酸化膜45
が担う耐圧は小さくて良いので、全体としての耐圧が向
上するものと考えられる。
Moreover, the ACCUFET of the embodiment of the present invention
Is an ACCUFET having a bidirectional operability in which the source and the drain are exchanged, because the current path does not have a pn junction and the parasitic diode does not have an effect. FIG. 4 shows the breakdown voltage distribution of the ACCUFET of the first embodiment shown in FIGS. The horizontal axis is pressure resistance, and the vertical axis is frequency of appearance. For comparison, the withstand voltage distribution of the conventional ACCUFET shown in FIG. 8 is also shown. It can be seen that the ACCUFET of the first embodiment in FIG. 1 has an average breakdown voltage increase of 40% as compared with the ACCUFET of the conventional structure. ACCUFET of conventional structure
Then, the bottom of the trench 32 has a high concentration on the substrate 2
Since it reached 1, the depletion layer did not spread at the bottom of the trench 32, and a strong electric field was applied to the gate oxide film 25 at the bottom of the trench 32, especially at its corners. In the ACCUFET of the first embodiment of FIG. 1, since the depletion layer also spreads below the trench 52, the gate oxide film 45 at the bottom of the trench 52 is formed.
Since the withstand voltage required by the device may be small, it is considered that the withstand voltage as a whole is improved.

【0026】図1の素子は、次のような製造方法によっ
て得られる。比抵抗が0.002Ωcmの砒素ドープの
+ サブストレート41上に、不純物濃度が5×1015
cm -3、厚さ6.0μmの燐ドープのnエピタキシャル
層42、その上に不純物濃度が1×1014cm-3、厚さ
4.7μmの燐ドープのn- エピタキシャル層43を堆
積したダブルエピタキシャルウェハを準備する。チップ
周辺部に初期酸化膜を形成し、次に、表面層にドーズ量
が1.3×1015cm-2の砒素イオンのイオン注入及び
熱処理を行い、n+ ソース領域44とする。次に、図示
していないがフォトレジストを塗布し、シリコン酸化膜
をパターニングしてそのフォトレジストと酸化膜とをマ
スクにしてn+ ソース領域44およびn- エピタキシャ
ル層43をエッチングして、幅と深さがそれぞれ1.8
μm、5.5μmのトレンチ52を形成する。次に熱酸
化によりトレンチ52の内面に、厚さ0.1μmのゲー
ト酸化膜45を形成し、続いて減圧CVD法により、ト
レンチ52内に多結晶シリコンを堆積した後、トレンチ
内部以外の多結晶シリコンを除去してゲート電極46を
形成する。次いで、ゲート電極46とソース電極48と
の間を分離する絶縁膜47を形成し、トレンチ以外の部
分にコンタクトホールを形成し、Al−Si合金を蒸着
し、パターニングしてソース電極48を形成する。更
に、n+ サブストレート41の裏面にもAl−Si合金
を蒸着してドレイン電極49を形成する。このように、
エピタキシャルウェハを使用し、n型不純物の導入工程
およびトレンチ形成工程が主要な工程であり、p型不純
物の導入工程が不要であるという利点がある。
The device of FIG. 1 is manufactured by the following manufacturing method.
Obtained. Arsenic-doped with a specific resistance of 0.002 Ωcm
n+The impurity concentration is 5 × 10 on the substrate 41.Fifteen
cm -3, 6.0 μm thick phosphorus-doped n-epitaxial
Layer 42, with an impurity concentration of 1 × 1014cm-3,thickness
4.7 μm phosphorus-doped n-Deposit the epitaxial layer 43
A stacked double epitaxial wafer is prepared. Tip
An initial oxide film is formed on the periphery, and then a dose is applied to the surface layer.
Is 1.3 × 10Fifteencm-2Arsenic ion implantation and
Heat treatment, n+The source region 44 is used. Next, illustrated
Not applied, but apply photoresist, silicon oxide film
By patterning the photoresist and the oxide film.
Squeeze n+Source regions 44 and n-Epitaxia
And etching the layer 43 to make the width and depth 1.8 each.
A trench 52 of μm and 5.5 μm is formed. Then hot acid
The inner surface of the trench 52 is formed with a thickness of 0.1 μm.
The oxide film 45 is formed, and then a low pressure CVD method is used to
After depositing polycrystalline silicon in the wrench 52, the trench
The polycrystalline silicon other than the inside is removed to form the gate electrode 46.
Form. Then, the gate electrode 46 and the source electrode 48
Insulating film 47 is formed to separate the spaces between
Minute contact hole is formed and Al-Si alloy is evaporated.
Then, the source electrode 48 is formed by patterning. Change
To n+Al-Si alloy on the back surface of the substrate 41
To form a drain electrode 49. in this way,
Step of introducing n-type impurities using an epitaxial wafer
And trench formation process is the main process, and p-type impurity
There is an advantage that a step of introducing a product is unnecessary.

【0027】図3は、本発明第二の実施例のACCUF
ETの要部断面図を示す。図1の第一の実施例との違い
は、隣接する二つのトレンチ72の間のn- エピタキシ
ャル層63の表面層にn+ ソース領域64より深くp領
域70が形成されている点である。そして、ソース電極
68が、p領域70の表面に接している。このような構
造とすることによって、一つのゲートから広がる空乏層
が、p領域70があるために隣のトレンチ72から広が
る空乏層に到達し易くなり、チャネル領域をより一層空
乏化できることになり、漏れ電流を低減できる。図2で
は、p領域70の表面が、nソース領域64の表面より
掘り下げられているが、必ずしも掘り下げる必要はな
く、同一の高さであっても良い。掘り下げてあった方
が、p領域70を形成する拡散熱処理時間が短くてすむ
利点がある。
FIG. 3 shows the ACCUF of the second embodiment of the present invention.
The principal part sectional drawing of ET is shown. The difference from the first embodiment of FIG. 1 is that the p region 70 is formed deeper than the n + source region 64 in the surface layer of the n epitaxial layer 63 between two adjacent trenches 72. Then, the source electrode 68 is in contact with the surface of the p region 70. With such a structure, the depletion layer extending from one gate can easily reach the depletion layer extending from the adjacent trench 72 due to the p region 70, and the channel region can be further depleted. Leakage current can be reduced. In FIG. 2, the surface of the p region 70 is dug down from the surface of the n source region 64, but it is not always necessary to dug down, and the height may be the same. The dug down has an advantage that the diffusion heat treatment time for forming the p region 70 can be shortened.

【0028】図5に、試作した図2の第二の実施例のA
CCUFETの漏れ電流分布を示す。横軸は漏れ電流、
たて軸は出現度数である。比較のため従来構造のACC
UFETの漏れ電流分布も示した。図1の第一の実施例
のACCUFETでは従来構造のACCUFETに比べ
て、漏れ電流が約一桁減少していることがわかる。
FIG. 5 shows the prototype A of the second embodiment of FIG.
The leakage current distribution of CCUFET is shown. The horizontal axis is the leakage current,
The vertical axis is the frequency of appearance. ACC with conventional structure for comparison
The UFET leakage current distribution is also shown. It can be seen that in the ACCUFET of the first embodiment of FIG. 1, the leakage current is reduced by about one digit as compared with the ACCUFET of the conventional structure.

【0029】[0029]

【発明の効果】以上述べたように、本発明の蓄積型のた
て型半導体素子においては、ゲート電極を埋めたトレン
チの端部近傍部分および最外側のトレンチの外側部分の
表面層が第一導電型であり、その部分を除いて第一導電
型ソース領域を形成することによって、寄生ダイオード
の作用がなく双方向動作性で、しかも十分な幅の空乏層
により、漏れ電流を抑制して耐圧を向上させることがで
きる。また、半導体層を、第一導電型半導体基板より低
濃度の第一半導体層とその上の同一導電型で第一半導体
層より低濃度の第二半導体層からなるものとし、第一半
導体層に達するトレンチを設けることによって、トレン
チ内部のゲート酸化膜がになう電圧を減少させ、素子と
しての耐圧を向上させることができる。更に、隣接する
二つのトレンチ間の第二半導体層の表面層に第二導電型
領域を形成することによって、電圧印加時の第二半導体
層の空乏化を促し、漏れ電流の低減が可能になる。
As described above, in the storage type vertical semiconductor device of the present invention, the surface layers of the portion near the end of the trench in which the gate electrode is filled and the outer portion of the outermost trench are the first. It is of a conductive type, and by forming the source region of the first conductivity type excluding that part, it has bidirectional operability without the action of a parasitic diode, and a depletion layer of sufficient width suppresses leakage current and withstands voltage. Can be improved. Further, the semiconductor layer is composed of a first semiconductor layer having a concentration lower than that of the first conductivity type semiconductor substrate and a second semiconductor layer having the same conductivity type and a concentration lower than that of the first semiconductor layer on the first conductivity type semiconductor substrate. By providing the reaching trench, the voltage applied to the gate oxide film inside the trench can be reduced and the breakdown voltage of the device can be improved. Furthermore, by forming the second conductivity type region in the surface layer of the second semiconductor layer between two adjacent trenches, depletion of the second semiconductor layer at the time of voltage application is promoted, and leakage current can be reduced. .

【0030】本発明により、耐圧50V、漏れ電流10
μA以下の、蓄積型のたて型半導体素子を実現し、歩留
りを向上できた。
According to the present invention, the breakdown voltage is 50 V and the leakage current is 10
It was possible to realize a storage vertical semiconductor element of μA or less and improve the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一の実施例のACCUFETの要部断
面図
FIG. 1 is a sectional view of a main part of an ACCUFET according to a first embodiment of the present invention.

【図2】図1のACCUFETの絶縁膜および電極を除
去した状態の平面図
FIG. 2 is a plan view of the ACCUFET of FIG. 1 with the insulating film and electrodes removed.

【図3】本発明第二の実施例のACCUFETの要部断
面図
FIG. 3 is a sectional view of an essential part of an ACCUFET according to a second embodiment of the present invention.

【図4】本発明第一の実施例のACCUFETにおける
耐圧分布と従来のACCUFETのそれとの比較図
FIG. 4 is a comparison diagram of the breakdown voltage distribution in the ACCUFET of the first embodiment of the present invention and that of the conventional ACCUFET.

【図5】本発明第二の実施例のACCUFETにおける
漏れ電流分布と従来のACCUFETのそれとの比較図
FIG. 5 is a comparison diagram of the leakage current distribution in the ACCUFET of the second embodiment of the present invention and that of the conventional ACCUFET.

【図6】従来のDMOSFETの要部断面図FIG. 6 is a sectional view of a main part of a conventional DMOSFET.

【図7】従来のUMOSFETの要部断面図FIG. 7 is a sectional view of a main part of a conventional UMOSFET.

【図8】従来のACCUFETの要部断面図FIG. 8 is a sectional view of a main part of a conventional ACCUFET.

【図9】従来のACCUFETの斜視断面図FIG. 9 is a perspective sectional view of a conventional ACCUFET.

【図10】従来のACCUFETの一例の絶縁膜および
電極を除去した状態の平面図
FIG. 10 is a plan view of an example of a conventional ACCUFET with an insulating film and electrodes removed.

【図11】従来のACCUFETの別の例の端部断面図FIG. 11 is an end cross-sectional view of another example of a conventional ACCUFET.

【符号の説明】[Explanation of symbols]

1、21、41 n+ サブストレート 2、22、42 nエピタキシャル層 4、24、44、64 n+ ソース領域 5、25、45 ゲート酸化膜 6、26、46 ゲート電極 7、27、47 絶縁膜 8、28、48、68 ソース電極 9、29、49 ドレイン電極 11 pベース領域 12、32、52、72、92 トレンチ 33、53 蓄積層 36 p型拡散領域 37 トレンチ 43、63 n- エピタキシャル層 70 p型領域 95 空乏層の広がり1, 21, 41 n + substrate 2, 22, 42 n epitaxial layer 4, 24, 44, 64 n + source region 5, 25, 45 gate oxide film 6, 26, 46 gate electrode 7, 27, 47 insulating film 8, 28, 48, 68 Source electrode 9, 29, 49 Drain electrode 11 p Base region 12, 32, 52, 72, 92 Trench 33, 53 Storage layer 36 p-type diffusion region 37 Trench 43, 63 n - Epitaxial layer 70 p-type region 95 Expansion of depletion layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】第一導電型半導体基板上に、同一導電型で
半導体基板より低濃度の半導体層を積層した半導体積層
板の半導体層の表面層に形成した高濃度の第一導電型ソ
ース領域と、半導体積層板の表面から第一導電型ソース
領域を貫通するトレンチと、そのトレンチ内にゲート酸
化膜を介して充填されたゲート電極と、そのゲート電極
の上に形成された絶縁膜と、第一導電型ソース領域の表
面に設けられたソース電極と、第一導電型半導体基板の
裏面に設けられたドレイン電極とを有するたて型半導体
素子において、ゲート電極を埋めたトレンチの端部近傍
部分および最外側のトレンチの外側部分の表面層が第一
導電型であり、その部分を除いて第一導電型ソース領域
が形成されていることを特徴とするたて型半導体素子。
1. A high-concentration first-conductivity-type source region formed on a surface layer of a semiconductor layer of a semiconductor laminated plate in which semiconductor layers of the same conductivity type and a lower concentration than the semiconductor substrate are laminated on a first-conductivity-type semiconductor substrate. A trench penetrating the first conductivity type source region from the surface of the semiconductor laminate, a gate electrode filled in the trench via a gate oxide film, and an insulating film formed on the gate electrode, In a vertical semiconductor element having a source electrode provided on the front surface of the first conductivity type source region and a drain electrode provided on the back surface of the first conductivity type semiconductor substrate, in the vicinity of an end of a trench filled with a gate electrode A vertical semiconductor device, wherein the surface layer of the portion and the outer portion of the outermost trench is of the first conductivity type, and the source region of the first conductivity type is formed except for the portion.
【請求項2】第一導電型ソース領域がトレンチゲートの
端よりトレンチ間隔以上内側に形成されていることを特
徴とする請求項1に記載のたて型半導体素子。
2. The vertical semiconductor element according to claim 1, wherein the first-conductivity-type source region is formed inside the trench gate by an amount equal to or more than the trench interval.
【請求項3】最外側のトレンチと第二最外側のトレンチ
との間に、ソース領域が形成されない部分を少なくとも
一ケ所有することを特徴とする請求項2に記載のたて型
半導体素子。
3. The vertical semiconductor device according to claim 2, wherein at least one portion in which the source region is not formed is provided between the outermost trench and the second outermost trench.
【請求項4】前記半導体層が、第一導電型半導体基板よ
り低濃度の第一半導体層とその上の同一導電型で第一半
導体層より低濃度の第二半導体層からなり、トレンチが
第二半導体層を貫通して第一半導体層に達することを特
徴とする請求項1ないし3のいずれかに記載のたて型半
導体素子。
4. The semiconductor layer comprises a first semiconductor layer having a concentration lower than that of a semiconductor substrate of a first conductivity type and a second semiconductor layer having the same conductivity type thereon and a concentration lower than that of the first semiconductor layer, and the trench is a second semiconductor layer. 4. The vertical semiconductor element according to claim 1, wherein the vertical semiconductor element penetrates two semiconductor layers to reach the first semiconductor layer.
【請求項5】隣接する二つのトレンチの間の第二半導体
層の表面層の一部に、第二導電型領域を有することを特
徴とする請求項4に記載のたて型半導体素子。
5. The vertical semiconductor device according to claim 4, wherein a part of the surface layer of the second semiconductor layer between two adjacent trenches has a second conductivity type region.
【請求項6】第一導電型の半導体基板上に同一導電型で
半導体基板より低濃度のエピタキシャル層と、その上に
同一導電型で更に低濃度のエピタキシャル層を積層した
ダブルエピタキシャルウェハを使用することを特徴とす
るゲート電極を埋めたトレンチの端部近傍部分および最
外側のトレンチの外側部分の表面層が第一導電型であ
り、その部分を除いて第一導電型ソース領域が形成され
ているたて型半導体素子の製造方法。
6. A double epitaxial wafer having an epitaxial layer of the same conductivity type and a concentration lower than that of the semiconductor substrate on a semiconductor substrate of the first conductivity type, and a double epitaxial wafer having an epitaxial layer of the same conductivity type and a concentration lower than that of the semiconductor substrate. The surface layer of the portion near the end of the trench filling the gate electrode and the outer portion of the outermost trench is of the first conductivity type, and the first conductivity type source region is formed except for that portion. Manufacturing method of vertical semiconductor device.
JP16496595A 1994-12-09 1995-06-30 Vertical semiconductor device and method of manufacturing the same Expired - Fee Related JP3319228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16496595A JP3319228B2 (en) 1994-12-09 1995-06-30 Vertical semiconductor device and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30576894 1994-12-09
JP6-305768 1994-12-09
JP16496595A JP3319228B2 (en) 1994-12-09 1995-06-30 Vertical semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08213613A true JPH08213613A (en) 1996-08-20
JP3319228B2 JP3319228B2 (en) 2002-08-26

Family

ID=26489878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16496595A Expired - Fee Related JP3319228B2 (en) 1994-12-09 1995-06-30 Vertical semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3319228B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299346A (en) * 2001-04-02 2002-10-11 Fuji Electric Co Ltd Method of manufacturing semiconductor device
JP2004022941A (en) * 2002-06-19 2004-01-22 Toshiba Corp Semiconductor device
US6855983B1 (en) 1998-11-10 2005-02-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device having reduced on resistance
JP2008277324A (en) * 2007-04-25 2008-11-13 Denso Corp Semiconductor device having vertical mosfet
JP2008300496A (en) * 2007-05-30 2008-12-11 Rohm Co Ltd Semiconductor device
JP2008300495A (en) * 2007-05-30 2008-12-11 Rohm Co Ltd Semiconductor device
JP2008311573A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
JP2008311572A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
JP2008311574A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
US8575687B2 (en) 2007-05-30 2013-11-05 Rohm Co., Ltd. Semiconductor switch device
US8766317B2 (en) 2007-06-18 2014-07-01 Rohm Co., Ltd. Semiconductor device
US8860129B2 (en) 2007-05-30 2014-10-14 Rohm Co., Ltd. Semiconductor device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855983B1 (en) 1998-11-10 2005-02-15 Toyota Jidosha Kabushiki Kaisha Semiconductor device having reduced on resistance
JP2002299346A (en) * 2001-04-02 2002-10-11 Fuji Electric Co Ltd Method of manufacturing semiconductor device
US7800168B2 (en) 2002-06-19 2010-09-21 Kabushiki Kaisha Toshiba Power semiconductor device
JP2004022941A (en) * 2002-06-19 2004-01-22 Toshiba Corp Semiconductor device
JP2008277324A (en) * 2007-04-25 2008-11-13 Denso Corp Semiconductor device having vertical mosfet
JP2008300495A (en) * 2007-05-30 2008-12-11 Rohm Co Ltd Semiconductor device
JP2008300496A (en) * 2007-05-30 2008-12-11 Rohm Co Ltd Semiconductor device
US8575687B2 (en) 2007-05-30 2013-11-05 Rohm Co., Ltd. Semiconductor switch device
US8860129B2 (en) 2007-05-30 2014-10-14 Rohm Co., Ltd. Semiconductor device
JP2008311573A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
JP2008311572A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
JP2008311574A (en) * 2007-06-18 2008-12-25 Rohm Co Ltd Semiconductor device
US8766317B2 (en) 2007-06-18 2014-07-01 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP3319228B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US10720510B2 (en) Lateral transistors and methods with low-voltage-drop shunt to body diode
US6762098B2 (en) Trench DMOS transistor with embedded trench schottky rectifier
JP3291957B2 (en) Vertical trench MISFET and method of manufacturing the same
EP1033759B1 (en) MOS-gated device having a buried gate and process for forming same
US7462908B2 (en) Dynamic deep depletion field effect transistor
JP4066946B2 (en) Semiconductor device
TWI544648B (en) Planar srfet using no additional masks and layout method
CN102403315B (en) Semiconductor device
US7795638B2 (en) Semiconductor device with a U-shape drift region
US20020055232A1 (en) Method of operation of punch-through field effect transistor
US20080035992A1 (en) Semiconductor device
JP2001135819A (en) Super-junction semiconductor element
JP4764974B2 (en) Semiconductor device
JP2018511184A (en) High voltage semiconductor device and method of manufacturing the device
JP2002280555A (en) Semiconductor device
JP2004327598A (en) Semiconductor device and its manufacturing method
JPWO2011136272A1 (en) Semiconductor device
JP2002270840A (en) Power mosfet
JP2005011846A (en) Semiconductor device
JP3998454B2 (en) Power semiconductor device
JP3319228B2 (en) Vertical semiconductor device and method of manufacturing the same
JP2001127285A (en) Vertical field-effect transistor
JP2008306022A (en) Semiconductor device
JP2005101147A (en) Semiconductor device and its manufacturing method
JP2004327891A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080621

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090621

LAPS Cancellation because of no payment of annual fees