JPH08213038A - Control method of fuel cell power generation device - Google Patents
Control method of fuel cell power generation deviceInfo
- Publication number
- JPH08213038A JPH08213038A JP7017604A JP1760495A JPH08213038A JP H08213038 A JPH08213038 A JP H08213038A JP 7017604 A JP7017604 A JP 7017604A JP 1760495 A JP1760495 A JP 1760495A JP H08213038 A JPH08213038 A JP H08213038A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel cell
- potential difference
- electrode
- fuel gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、電解質層を挟持する
燃料電極と空気電極に反応ガスを送り電気化学反応によ
り電力を得る燃料電池発電装置の制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a fuel cell power generator which sends a reaction gas to a fuel electrode and an air electrode sandwiching an electrolyte layer to obtain electric power by an electrochemical reaction.
【0002】[0002]
【従来の技術】図2は、一般的な燃料電池発電装置の基
本構成を示す模式図である。図示したように、燃料電池
発電装置は、燃料電池本体1と、原燃料を改質系反応器
13で改質して得た改質燃料ガスと空気を燃料電池本体
1へ供給する反応ガス供給系、燃料電池本体1で電気化
学反応により得られた直流電力を交流電力に変換して負
荷10へと送る制御インバータ20、さらに主として、
電気化学反応に伴う発熱の除去を行う冷却水系30とに
より構成されている。2. Description of the Related Art FIG. 2 is a schematic diagram showing the basic structure of a general fuel cell power generator. As shown in the figure, the fuel cell power generator includes a fuel cell main body 1 and a reaction gas supply for supplying reformed fuel gas obtained by reforming raw fuel in a reforming system reactor 13 and air to the fuel cell main body 1. System, a control inverter 20 that converts direct-current power obtained by an electrochemical reaction in the fuel cell main body 1 into alternating-current power and sends it to the load 10, and more mainly,
The cooling water system 30 removes heat generated by the electrochemical reaction.
【0003】図3は、燃料電池本体1の基本構成と従来
より用いられている燃料電池発電装置の制御方法を示す
模式図である。燃料電池本体1は、電解質層2を燃料ガ
ス通流孔31を備えた燃料極3と空気通流孔41を備え
た空気極4とで挟持してなる単セル5を、セパレータ6
を介在させて複数層積層し、適宜、冷却板7を組み込ん
で形成されている。改質燃料ガスは、積層し形成された
燃料電池本体1の一方の側面より相対する側面へと燃料
ガス通流孔31を通して送られ、空気は、これらの側面
と直交する他の側面の一方より他方へと空気通流孔41
を通して送られる。このように改質燃料ガスと空気を通
流させると、それぞれの単セル5で電気化学反応により
直流電力が発生し燃料極3と空気極4の間に直流電圧が
生じ、積層し形成された燃料電池本体1では、各単セル
の直流電圧が重畳された直流電圧が得られることとな
る。FIG. 3 is a schematic diagram showing the basic structure of the fuel cell main body 1 and a control method of a fuel cell power generator which has been conventionally used. The fuel cell main body 1 includes a separator 6 and a unit cell 5 in which an electrolyte layer 2 is sandwiched between a fuel electrode 3 having a fuel gas passage hole 31 and an air electrode 4 having an air passage hole 41.
A plurality of layers are laminated with the interposing of the above, and the cooling plate 7 is appropriately incorporated therein. The reformed fuel gas is sent from one side surface of the stacked fuel cell body 1 to the opposite side surface through the fuel gas flow hole 31, and the air is supplied from one side surface orthogonal to these side surfaces. Air flow hole 41 to the other side
Sent through. When the reformed fuel gas and the air are allowed to flow in this manner, a DC power is generated by an electrochemical reaction in each unit cell 5 to generate a DC voltage between the fuel electrode 3 and the air electrode 4, and the cells are stacked. In the fuel cell main body 1, a DC voltage in which the DC voltage of each single cell is superimposed is obtained.
【0004】上記のように、燃料電池本体1に改質燃料
ガスと空気を通流させることにより直流電力が得られる
こととなるが、正常な発電性能を得るには改質燃料ガス
によって所定の水素量が供給される必要がある。改質燃
料ガスによって供給される水素量は、図2に示した改質
系反応器13へ供給される原燃料のガス流量と、改質系
反応器13での原燃料の改質率とにより定まる。通常、
原燃料の改質率の変動を避けるよう改質系反応器13の
運転条件を一定とし、原燃料のガス流量を制御バルブに
よって調整して、供給水素量を制御する方法が用いられ
ている。しかしながら、改質系反応器13の原燃料の改
質率が何らかの原因により低下してしまうと、供給水素
量が減少し、燃料電池本体1が水素不足の状態で運転さ
れる可能性がある。特に、供給水素量が著しく不足した
状態において運転すると、不足量を補うために、燃料極
3を形成する炭素材料に対して、As described above, direct-current power can be obtained by passing the reformed fuel gas and air through the fuel cell body 1. However, in order to obtain normal power generation performance, the reformed fuel gas is used to provide a predetermined amount. Amount of hydrogen needs to be supplied. The amount of hydrogen supplied by the reformed fuel gas depends on the gas flow rate of the raw fuel supplied to the reforming reactor 13 and the reforming rate of the raw fuel in the reforming reactor 13 shown in FIG. Determined. Normal,
A method is used in which the operating conditions of the reforming reactor 13 are kept constant to avoid fluctuations in the reforming rate of the raw fuel, and the gas flow rate of the raw fuel is adjusted by a control valve to control the amount of hydrogen supplied. However, if the reforming rate of the raw fuel in the reforming reactor 13 is lowered for some reason, the supplied hydrogen amount is reduced, and the fuel cell body 1 may be operated in a hydrogen-deficient state. In particular, when operating in a state where the supplied hydrogen amount is extremely short, in order to make up for the shortage, the carbon material forming the fuel electrode 3 is
【0005】[0005]
【化1】C+2H2 O → CO2 +4H+ +4e- で示される反応が生じ、電池特性が回復不可能な損傷を
受けることとなる。したがって、従来の燃料電池発電装
置においては、このような状態となるのを未然に防止す
るために、図3に併記したように、複数の単セルの積層
体の電位差を常時監視し、この電位差が所定の電圧以下
に低下すると、制御装置15より制御信号を発して、負
荷10に接続される負荷スイッチ11を遮断して発電装
置を停止する方法が採られている。## STR1 ## C + 2H 2 O → CO 2 + 4H + + 4e - In the reaction occurs as shown, the battery characteristic is subject to permanent damage. Therefore, in the conventional fuel cell power generator, in order to prevent such a situation from occurring, as shown in FIG. 3, the potential difference between the stacks of a plurality of single cells is constantly monitored, and this potential difference is constantly monitored. When the voltage drops below a predetermined voltage, a control signal is issued from the control device 15 to shut off the load switch 11 connected to the load 10 to stop the power generation device.
【0006】[0006]
【発明が解決しようとする課題】上記のように、単セル
の積層体の電位差を常時監視し、この電位差が所定の電
圧以下に低下すると発電装置を停止する方法を採れば、
仮に原燃料の改質率が何らかの原因により低下してしま
う事態に至っても、供給水素量の不足による燃料電池本
体1の致命的な損傷を防止することができる。As described above, if the method of constantly monitoring the potential difference of the laminated body of the single cells and stopping the power generator when the potential difference falls below a predetermined voltage is adopted,
Even if the reforming rate of the raw fuel is lowered for some reason, it is possible to prevent the fatal damage to the fuel cell main body 1 due to the shortage of the supplied hydrogen amount.
【0007】しかしながら、上記の方法においても、電
位差が所定の電圧以下に低下するのを検知するには、単
セル中での水素利用率が95%以上と高いことが必要で
あり、したがって、保護動作が作用するまでに燃料電池
本体が少なからず損傷を受けてしまうという問題点があ
る。また、燃料電池発電装置は経年変化に伴い電池電圧
が低下していく場合がしばしばあるが、この経年変化に
よる電位差の低下と供給水素量の不足による電位差の低
下の識別は困難であるので、燃料電池発電装置の運転初
期には供給水素量の不足の検知に利用できるが、運転が
進行すると必ずしも有効に検知できるものでないという
難点がある。However, even in the above method, in order to detect that the potential difference drops below a predetermined voltage, it is necessary that the hydrogen utilization rate in a single cell is as high as 95% or more, and therefore, protection is required. There is a problem that the fuel cell main body is not a little damaged before the operation is performed. Further, in the fuel cell power generator, the cell voltage often decreases with the aging, but it is difficult to distinguish between the decrease in the potential difference due to the aging and the decrease in the potential difference due to the shortage of the supplied hydrogen amount. Although it can be used for detecting the shortage of the amount of hydrogen supply at the initial stage of the operation of the battery power generator, there is a drawback that it cannot be detected effectively as the operation progresses.
【0008】この発明は、かかる問題点を考慮してなさ
れたもので、その目的は、前述のごとき供給水素量の不
足が生じた場合にあっても、燃料電池本体に損傷を及ぼ
すことなく安全に保護動作を行うことのできる燃料電池
発電装置の制御方法を提供することにある。The present invention has been made in view of the above problems, and an object thereof is to keep safety without damaging the fuel cell body even when the amount of supplied hydrogen is insufficient as described above. Another object of the present invention is to provide a method of controlling a fuel cell power generation device capable of performing a protective operation.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、電解質層を燃料電極と空気電
極とにより挟持してなる単セルを複数層積層して構成さ
れる燃料電池本体の燃料電極に燃料ガスを、また空気電
極に空気を供給して電気化学反応により電力を得る燃料
電池発電装置において、燃料電池本体の同一電極面内の
電位差を測定し、測定される電位差の大きさによって発
電状態量を制御することとする。In order to achieve the above object, in the present invention, a fuel cell constructed by stacking a plurality of single cells in which an electrolyte layer is sandwiched between a fuel electrode and an air electrode. In a fuel cell power generator that supplies fuel gas to the fuel electrode of the main body and air to the air electrode to obtain electric power by an electrochemical reaction, measure the potential difference in the same electrode surface of the fuel cell main body, and measure the measured potential difference. The power generation state quantity is controlled according to the size.
【0010】さらに、上記の同一電極面内の電位差を、
燃料電極の同一電極面内の電位差とする。また、上記同
一電極面内の電位差を、燃料電極の燃料ガス入口近傍と
燃料ガス出口近傍との電位差とする。さらに、制御する
上記の発電状態量として、燃料ガスを生成するために改
質系反応器に供給される原燃料の流量と、燃料電池本体
の両電極間に接続される負荷に流れる負荷電流との、少
なくともいずれか一方を用いることとする。Further, the potential difference in the same electrode plane is
The potential difference is within the same electrode surface of the fuel electrode. Further, the potential difference within the same electrode surface is defined as the potential difference between the vicinity of the fuel gas inlet and the vicinity of the fuel gas outlet of the fuel electrode. Further, as the power generation state quantity to be controlled, the flow rate of the raw fuel supplied to the reforming system reactor to generate the fuel gas, and the load current flowing in the load connected between both electrodes of the fuel cell main body At least one of the above is used.
【0011】[0011]
【作用】原燃料の改質率の低下、あるいは原燃料流量の
低下によって、積層された燃料電池本体への供給水素量
が不足すると、燃料電極の燃料ガス出口側での水素量が
低下するので電流が減少し、燃料電極の燃料ガス入口側
に電流が集中するので、同一電極面内の電位差の分布が
変化する。したがって、同一電極面内の所定位置での電
位差を測定すれば供給水素量の不足が検知でき、この測
定値を用いて燃料電池発電装置の発電状態量を制御すれ
ば、燃料電池発電装置を安全に保護動作させることがで
きる。When the amount of hydrogen supplied to the stacked fuel cell bodies is insufficient due to a reduction in the reforming rate of the raw fuel or a decrease in the raw fuel flow rate, the amount of hydrogen at the fuel gas outlet side of the fuel electrode is reduced. Since the current decreases and the current concentrates on the fuel gas inlet side of the fuel electrode, the distribution of the potential difference on the same electrode surface changes. Therefore, by measuring the potential difference at a predetermined position on the same electrode surface, the shortage of the supplied hydrogen amount can be detected, and by controlling the power generation state amount of the fuel cell power generation device using this measurement value, the fuel cell power generation device is safe. Can be operated to protect.
【0012】とくに、電位差の測定を燃料電極の同一電
極面内にて行うこととすれば、その電極での供給水素量
の不足による電位差が直接測定できることとなるのでよ
り正確に検知されることとなり、さらに、燃料ガス出口
近傍と燃料ガス入口近傍との電位差を測定すれば供給水
素量の不足による電位差の変化がより精度高く測定でき
るので、供給水素量の不足がより精度高く検知されるこ
ととなる。Particularly, if the potential difference is measured within the same electrode surface of the fuel electrode, the potential difference due to the shortage of the amount of hydrogen supplied at that electrode can be directly measured, so that it can be detected more accurately. Moreover, if the potential difference between the vicinity of the fuel gas outlet and the vicinity of the fuel gas inlet is measured, the change in the potential difference due to the shortage of the supplied hydrogen amount can be measured with higher accuracy, so that the shortage of the supplied hydrogen amount can be detected with higher accuracy. Become.
【0013】また、供給水素量の不足の検知信号をもと
に制御する発電状態量として、燃料ガスを生成するため
に改質系反応器に供給される原燃料流量を用いれば、供
給水素量不足の検知とともに原燃料流量を増大させるよ
う制御することにより供給水素量の不足が解消されるこ
ととなる。また制御する発電状態量として、燃料電池本
体の両電極間に接続された負荷に流れる負荷電流を用い
れば、供給水素量不足の検知とともに負荷電流の減少、
あるいは遮断等の制御を行うことにより安全に保護動作
を行うことができる。なお、原燃料流量および負荷電流
を併せて制御することとすれば、より安全な保護動作が
行えることとなる。Also, if the flow rate of the raw fuel supplied to the reforming reactor for producing the fuel gas is used as the power generation state quantity controlled based on the detection signal of the shortage of the supplied hydrogen quantity, the supplied hydrogen quantity is By controlling the flow rate of the raw fuel to increase as well as detecting the shortage, the shortage of the supplied hydrogen amount will be resolved. Further, if the load current flowing through the load connected between the electrodes of the fuel cell body is used as the power generation state amount to be controlled, the load current decreases with the detection of the shortage of the supplied hydrogen amount,
Alternatively, the protection operation can be safely performed by performing control such as interruption. In addition, if the raw fuel flow rate and the load current are controlled together, a safer protection operation can be performed.
【0014】[0014]
【実施例】以下、本発明による燃料電池発電装置の制御
方法の実施例を図面を用いて説明する。図1は、燃料電
池本体1の基本構成と本発明による制御方法を示す模式
図である。図中に示した燃料電池本体1の基本構成は、
既に図3に示したものと同一であり、同一機能を有する
構成部品には同一符号を付して重複する説明は省略す
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a control method for a fuel cell power generator according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a basic configuration of a fuel cell body 1 and a control method according to the present invention. The basic configuration of the fuel cell body 1 shown in the figure is
The same components as those shown in FIG. 3 are already described, and the components having the same functions are designated by the same reference numerals, and the duplicated description will be omitted.
【0015】図1に示す本発明の実施例による制御方法
と、図3に示した従来例での制御方法との差は、一つに
は供給水素量の不足の検知方法にあり、さらには検知さ
れた信号をもとに行われる保護動作の方法にある。供給
水素量の不足の検知方法として、従来例では複数の単セ
ルの積層体の電位差を常時監視し、この電位差が所定の
電圧以下に低下するか否かによって供給水素量の不足を
検知する方法をとっていたが、図1に示した本発明の実
施例においては、燃料極3の燃料ガス出口近傍に設置し
た燃料ガス出口電圧センサ8で測定される電位と同一の
燃料極3の燃料ガス入口近傍に設置した燃料ガス入口電
圧センサ9で測定される電位との電位差を求め、この電
位差が所定の電圧を越えると供給水素量の不足として検
知する方法が採られている。本方法では、既に述べたご
とく供給水素量の不足により生じる電位の変動が最も顕
著に表れる2点間の電位差を測定することとしているの
で、効果的に供給水素量の不足を検知することができ
る。原燃料流量の低下や改質率の低下により供給水素量
が減少し、単セルでの水素利用率が90%を越えると、
測定される電位差が10mVを越えることが確認されて
いる。従来例の方法により供給水素量の不足を検知する
には水素利用率が95%を越えることが必要であった
が、本実施例では90%を越えれば検知されるので、早
期に検知でき、電池本体に大きな損傷を及ぼすことなく
保護動作を行うことが可能である。One of the differences between the control method according to the embodiment of the present invention shown in FIG. 1 and the control method according to the conventional example shown in FIG. 3 lies in the detection method of the shortage of the supplied hydrogen amount. This is a method of protection operation performed based on the detected signal. As a method of detecting the shortage of the amount of supplied hydrogen, in the conventional example, the potential difference between the stacked bodies of a plurality of single cells is constantly monitored, and a method of detecting the shortage of the amount of supplied hydrogen depending on whether or not the potential difference drops below a predetermined voltage. However, in the embodiment of the present invention shown in FIG. 1, the fuel gas of the fuel electrode 3 having the same potential as the potential measured by the fuel gas outlet voltage sensor 8 installed near the fuel gas outlet of the fuel electrode 3. A method is used in which a potential difference from the potential measured by the fuel gas inlet voltage sensor 9 installed near the inlet is obtained, and when the potential difference exceeds a predetermined voltage, it is detected that the amount of supplied hydrogen is insufficient. In this method, as described above, the potential difference between the two points where the fluctuation of the potential caused by the shortage of the supplied hydrogen amount is most noticeable is measured, so that the shortage of the supplied hydrogen amount can be effectively detected. . When the amount of supplied hydrogen decreases due to a decrease in the flow rate of raw fuel and a decrease in the reforming rate, and the hydrogen utilization rate in a single cell exceeds 90%,
It has been confirmed that the measured potential difference exceeds 10 mV. In order to detect the shortage of the supplied hydrogen amount by the method of the conventional example, it was necessary for the hydrogen utilization rate to exceed 95%, but in this embodiment, it is detected if it exceeds 90%, so it can be detected early. It is possible to perform the protective operation without causing a large damage to the battery body.
【0016】次に、検知された信号をもとに行われる保
護動作として、従来例では制御装置15より制御信号を
発して、負荷10に接続される負荷スイッチ11を遮断
して発電装置を停止する方法が採られているが、図1の
実施例では、測定された電位差のレベルに対応して制御
装置12より制御信号を発して、原燃料流量の調整、あ
るいは負荷条件の調整等の多段の保護動作が採られてい
る。すなわち、図1の実施例においては、燃料ガス出口
電圧センサ8と燃料ガス入口電圧センサ9で測定される
電位差が8mVを越えると、制御バルブ14を調整して
改質系反応器13に供給される原燃料の流量を10%増
加させ、測定される電位差が上昇して12mVを越える
と負荷10を流れる負荷電流の値を20%低下させ、さ
らに電位差が上昇して20mVを越えると負荷スイッチ
11を遮断して発電装置を停止する多段の保護動作が採
られている。Next, as a protection operation performed based on the detected signal, in the conventional example, a control signal is issued from the control device 15 to shut off the load switch 11 connected to the load 10 to stop the power generation device. However, in the embodiment of FIG. 1, a control signal is issued from the control device 12 in accordance with the level of the measured potential difference to adjust the raw fuel flow rate or the load condition. The protective action of is adopted. That is, in the embodiment of FIG. 1, when the potential difference measured by the fuel gas outlet voltage sensor 8 and the fuel gas inlet voltage sensor 9 exceeds 8 mV, the control valve 14 is adjusted and supplied to the reforming system reactor 13. When the measured potential difference rises and exceeds 12 mV, the value of the load current flowing through the load 10 is reduced by 20%, and when the potential difference rises and exceeds 20 mV, the load switch 11 increases. The multi-stage protection operation is adopted to shut off the power and stop the power generation device.
【0017】上記のように、本実施例に示した燃料電池
発電装置の制御方法を用いれば、供給水素量の低下が早
期に検知できるので、きめ細かい保護動作を行うことが
可能となり、燃料電池本体に損傷を及ぼすことなく保護
できることとなる。また、本検知方法は同一電極面内で
の電位差で検知する方法であるので、従来法のように経
年変化にともなう電池電圧の変化に影響されることなく
測定できるので、検知方法として長期にわたり永続的に
使用することができる。As described above, if the method for controlling the fuel cell power generator shown in this embodiment is used, it is possible to detect a decrease in the amount of hydrogen supplied at an early stage, so that it is possible to carry out a fine protection operation and the fuel cell main body. Will be protected without damaging the. In addition, since this detection method is a method that detects the potential difference within the same electrode surface, it can be measured without being affected by the change in battery voltage due to aging as in the conventional method. Can be used for any purpose.
【0018】なお、上記の実施例では、燃料極の出口と
入口に設けた電圧センサにより電位差を測定している
が、これに限るものではなく、同一電極内の2点に組み
込んだ電圧センサであれば、感度に差があるものの同様
に供給水素量の低下を検知できる。また、上記の実施例
では、保護動作として原燃料流量の調整、あるいは負荷
条件の調整等の複数の保護動作を組み込んでいるが、こ
れに限るものではなく、それらの内のいずれかを行うも
のであってもよいことは言うまでもない。Although the potential difference is measured by the voltage sensors provided at the outlet and the inlet of the fuel electrode in the above embodiment, the present invention is not limited to this, and voltage sensors incorporated at two points in the same electrode may be used. If so, a decrease in the amount of supplied hydrogen can be similarly detected although there is a difference in sensitivity. Further, in the above embodiment, a plurality of protective operations such as the adjustment of the raw fuel flow rate or the adjustment of the load condition are incorporated as the protective operation, but the invention is not limited to this, and any one of them is performed. It goes without saying that may be.
【0019】[0019]
【発明の効果】上述のように、本発明によれば、電解質
層を燃料電極と空気電極とにより挟持してなる単セルを
複数層積層して構成される燃料電池本体の燃料電極に燃
料ガスを、また空気電極に空気を供給して電気化学反応
により電力を得る燃料電池発電装置において、燃料電池
本体の同一電極面内の電位差を測定し、測定される電位
差の大きさによって発電状態量の制御を行うこととした
ので、測定される電位差により燃料電池本体の燃料電極
に供給される水素量の不足が検知され、効果的に保護動
作を行える燃料電池発電装置の制御方法が得られること
となった。As described above, according to the present invention, the fuel gas is applied to the fuel electrode of the fuel cell body constituted by stacking a plurality of single cells in which the electrolyte layer is sandwiched between the fuel electrode and the air electrode. In addition, in a fuel cell power generator that supplies air to the air electrode to obtain electric power by an electrochemical reaction, the potential difference in the same electrode surface of the fuel cell body is measured, and the power generation state quantity is determined by the magnitude of the measured potential difference. Since the control is performed, a shortage of the amount of hydrogen supplied to the fuel electrode of the fuel cell main body is detected by the measured potential difference, and a control method of the fuel cell power generation device that can effectively perform the protective operation can be obtained. became.
【0020】とくに、同一の燃料極面内の電位差、なか
でも燃料ガス出口近傍と燃料ガス入口近傍との電位差を
測定することとすれば、供給される水素量の不足を、早
期にかつ確実に、検知できることとなるので、より効果
的に保護動作を実施できる燃料電池発電装置の制御方法
が得られることとなる。さらに、制御する上記の発電状
態量として、燃料ガスを生成するために改質系反応器に
供給される原燃料の流量と、燃料電池本体の両電極間に
接続される負荷に流れる負荷電流とのうち、少なくとも
いずれか一方を用いることとすれば、保護動作を適切に
実施できることとなり、安全に運転できる燃料電池発電
装置の制御方法が得られることとなる。Particularly, if the potential difference in the same fuel electrode surface, especially the potential difference between the fuel gas outlet and the fuel gas inlet, is measured, the shortage of the amount of hydrogen to be supplied can be confirmed quickly and surely. Therefore, the control method of the fuel cell power generation device capable of more effectively performing the protection operation can be obtained. Further, as the power generation state quantity to be controlled, the flow rate of the raw fuel supplied to the reforming system reactor to generate the fuel gas, and the load current flowing in the load connected between both electrodes of the fuel cell main body If at least one of them is used, the protection operation can be appropriately performed, and the control method of the fuel cell power generation device that can be operated safely can be obtained.
【図1】燃料電池本体の基本構成と本発明による燃料電
池発電装置の制御方法を示す模式図FIG. 1 is a schematic diagram showing a basic configuration of a fuel cell main body and a control method of a fuel cell power generator according to the present invention.
【図2】一般的な燃料電池発電装置の基本構成を示す模
式図FIG. 2 is a schematic diagram showing the basic configuration of a general fuel cell power generator.
【図3】燃料電池本体の基本構成と従来より用いられて
いる燃料電池発電装置の制御方法を示す模式図FIG. 3 is a schematic diagram showing a basic configuration of a fuel cell main body and a control method of a fuel cell power generator conventionally used.
1 燃料電池本体 2 電解質層 3 燃料極 4 空気極 5 単セル 6 セパレータ 7 冷却板 8 燃料ガス出口電圧センサ 9 燃料ガス入口電圧センサ 10 負荷 11 負荷スイッチ 12 制御装置 13 改質系反応器 14 制御バルブ 15 制御装置 20 制御インバータ 30 冷却水系 31 燃料ガス通流孔 41 空気通流孔 71 冷却水流路 1 Fuel Cell Main Body 2 Electrolyte Layer 3 Fuel Electrode 4 Air Electrode 5 Single Cell 6 Separator 7 Cooling Plate 8 Fuel Gas Outlet Voltage Sensor 9 Fuel Gas Inlet Voltage Sensor 10 Load 11 Load Switch 12 Control Device 13 Reforming System Reactor 14 Control Valve 15 Control Device 20 Control Inverter 30 Cooling Water System 31 Fuel Gas Flow Hole 41 Air Flow Hole 71 Cooling Water Flow Path
Claims (4)
持してなる単セルを複数層積層して構成される燃料電池
本体の前記燃料電極に燃料ガスを、また前記空気電極に
空気を供給して電気化学反応により電力を得る燃料電池
発電装置において、前記燃料電池本体の同一電極面内の
電位差を測定し、測定される電位差の大きさによって発
電状態量を制御することを特徴とする燃料電池発電装置
の制御方法。1. A fuel cell main body constructed by stacking a plurality of single cells in which an electrolyte layer is sandwiched between a fuel electrode and an air electrode to supply fuel gas to the fuel electrode and air to the air electrode. In the fuel cell power generation device that obtains electric power by an electrochemical reaction, the fuel is characterized in that the potential difference in the same electrode surface of the fuel cell body is measured, and the power generation state quantity is controlled according to the magnitude of the measured potential difference. A method for controlling a battery power generator.
極の同一電極面内の電位差であることを特徴とする請求
項1記載の燃料電池発電装置の制御方法。2. The method of controlling a fuel cell power generator according to claim 1, wherein the potential difference within the same electrode surface is the potential difference within the same electrode surface of the fuel electrode.
極の燃料ガス入口近傍と燃料ガス出口近傍との電位差で
あることを特徴とする請求項2記載の燃料電池発電装置
の制御方法。3. The method of controlling a fuel cell power generator according to claim 2, wherein the potential difference within the same electrode surface is the potential difference between the vicinity of the fuel gas inlet and the vicinity of the fuel gas outlet of the fuel electrode.
を生成するために改質系反応器に供給される原燃料の流
量と、燃料電池本体の両電極間に接続された負荷に流れ
る負荷電流との、少なくともいずれか一方であることを
特徴とする請求項1、2または3記載の燃料電池発電装
置の制御方法。4. The power generation state quantity to be controlled flows into a flow rate of a raw fuel supplied to a reforming system reactor to generate the fuel gas and into a load connected between both electrodes of a fuel cell body. The method for controlling a fuel cell power generator according to claim 1, 2 or 3, wherein at least one of the load current and the load current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7017604A JPH08213038A (en) | 1995-02-06 | 1995-02-06 | Control method of fuel cell power generation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7017604A JPH08213038A (en) | 1995-02-06 | 1995-02-06 | Control method of fuel cell power generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08213038A true JPH08213038A (en) | 1996-08-20 |
Family
ID=11948493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7017604A Pending JPH08213038A (en) | 1995-02-06 | 1995-02-06 | Control method of fuel cell power generation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08213038A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002313396A (en) * | 2001-04-11 | 2002-10-25 | Denso Corp | Fuel cell system |
US6724194B1 (en) | 2000-06-30 | 2004-04-20 | Ballard Power Systems Inc. | Cell voltage monitor for a fuel cell stack |
JP2005347218A (en) * | 2004-06-07 | 2005-12-15 | Toyota Motor Corp | Fuel cell |
JP2006244952A (en) * | 2005-03-07 | 2006-09-14 | Nissan Motor Co Ltd | Fuel cell system |
EP1713140A1 (en) * | 2005-04-12 | 2006-10-18 | Siemens Aktiengesellschaft | Process for the detection of a reactant undersupply in one fuel cell of a fuel cell stack and a fuel cell system with such a fuel cell stack |
US20180301723A1 (en) * | 2015-01-28 | 2018-10-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Non-invasive measurement method for controlling the functioning of a membrane fuel cell |
-
1995
- 1995-02-06 JP JP7017604A patent/JPH08213038A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6724194B1 (en) | 2000-06-30 | 2004-04-20 | Ballard Power Systems Inc. | Cell voltage monitor for a fuel cell stack |
JP2002313396A (en) * | 2001-04-11 | 2002-10-25 | Denso Corp | Fuel cell system |
JP2005347218A (en) * | 2004-06-07 | 2005-12-15 | Toyota Motor Corp | Fuel cell |
JP2006244952A (en) * | 2005-03-07 | 2006-09-14 | Nissan Motor Co Ltd | Fuel cell system |
EP1713140A1 (en) * | 2005-04-12 | 2006-10-18 | Siemens Aktiengesellschaft | Process for the detection of a reactant undersupply in one fuel cell of a fuel cell stack and a fuel cell system with such a fuel cell stack |
US20180301723A1 (en) * | 2015-01-28 | 2018-10-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Non-invasive measurement method for controlling the functioning of a membrane fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692869B2 (en) | Abnormality detection device for fuel cell system | |
JP4905182B2 (en) | Fuel cell system | |
US20020028362A1 (en) | Anode oxidation protection in a high-temperature fuel cell | |
JP4639680B2 (en) | Fuel cell system | |
CN107123821B (en) | Method for detecting abnormality of pressure sensor and fuel cell system | |
JP2009158371A (en) | Fuel cell system | |
KR20100037660A (en) | Fuel battery system, fuel battery vehicle and operating method of fuel battery system | |
CN105102684A (en) | A process for monitoring, protection and safety shut-down of an electrolyser system | |
WO2008048270A1 (en) | Hydrogen sensor cell for detecting fuel starvation | |
JP3905800B2 (en) | Fuel cell protection device | |
JPH08213038A (en) | Control method of fuel cell power generation device | |
US6815108B2 (en) | Function maintaining method for a fuel cell system | |
JP2010003518A (en) | Fuel cell system | |
JP4011429B2 (en) | Fuel cell system including gas sensor and fuel cell vehicle including gas sensor | |
KR101023618B1 (en) | Fuel Cell System | |
JP4852854B2 (en) | Fuel cell system | |
JP7379832B2 (en) | fuel cell system | |
JPH08162138A (en) | Control method of fuel cell generating system and control device | |
JPH09306519A (en) | Power generating device for phosphoric acid fuel cell | |
JPH0824052B2 (en) | Stacked fuel cell | |
JP5178305B2 (en) | Fuel cell system and cell voltage control method for fuel cell system | |
JPH11260385A (en) | Fuel cell protection method, protection device, and fuel cell device | |
JP4762569B2 (en) | Fuel cell system and control method thereof | |
JP4715131B2 (en) | Current measuring device | |
JP2001167780A (en) | Cell for fuel cell |