[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08211423A - Deflector and image shift type image pickup device formed by using the same - Google Patents

Deflector and image shift type image pickup device formed by using the same

Info

Publication number
JPH08211423A
JPH08211423A JP7017172A JP1717295A JPH08211423A JP H08211423 A JPH08211423 A JP H08211423A JP 7017172 A JP7017172 A JP 7017172A JP 1717295 A JP1717295 A JP 1717295A JP H08211423 A JPH08211423 A JP H08211423A
Authority
JP
Japan
Prior art keywords
image
voltage
electro
crystal
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7017172A
Other languages
Japanese (ja)
Other versions
JP3251798B2 (en
Inventor
Yutaka Unuma
豊 鵜沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP01717295A priority Critical patent/JP3251798B2/en
Publication of JPH08211423A publication Critical patent/JPH08211423A/en
Application granted granted Critical
Publication of JP3251798B2 publication Critical patent/JP3251798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE: To deflect light without using mechanical vibration, to enable low-voltage driving and reduce a cost by holding electrooptical liquid crystals with transparent electrodes, impressing voltage between these transparent electrodes and arranging a deflecting element in such a manner that an electric field parallel with an optical axis direction impressed on the electrooptical crystals. CONSTITUTION: This deflector has the electrooptical crystal C1 which is a parallel flat plate and a DC driving voltage 2 for impressing the voltage on the transparent electrodes T1 and T2 formed across the electrooptical crystal C1 in such a manner that the former attains high potential and the latter low potential. The optical path is changed by impressing the electric field in parallel with the optical axis direction. In such a case, the refractive index ellipsoid possessed by the crystal is changed by the electric field impression to induce rotation of the refractive index ellipsoid in particular, by which the propagation direction of an ordinary ray or extraordinary ray is changed and the imaging position to the image pickup element is shifted in proportion to impressed voltage. The light is thus deflected by arranging the deflecting element 1 in such a manner as to impress the electric field in parallel with the optical axis direction on the electrooptical crystal C1 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TVカメラやイメージ
スキャナ等に用いられる偏向装置及びそれを用いた画像
シフト型撮像装置に関し、更に詳しくは、電気光学結晶
を透明電極に挟んだ構造の偏向素子とその駆動手段とを
備えた偏向装置と、それを用いて撮像素子への結像を撮
像素子に対して相対的にずらす画像シフト型撮像装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflecting device used in a TV camera, an image scanner or the like and an image shift type image pickup device using the same, and more specifically to a deflecting device having an electro-optic crystal sandwiched between transparent electrodes. The present invention relates to a deflecting device including an element and a driving unit for the element, and an image shift type imaging device that uses the deflecting device to shift an image formed on the image sensor relative to the image sensor.

【0002】[0002]

【従来の技術】映像の世界はHDTVに代表されるよう
に高精細化に向かっており、CCDをはじめとする撮像
素子は小型化・高解像度化が要求されている。しかしな
がら、CCD撮像素子の高精細化は高度な半導体微細加
工技術が必要であり、設備投資の増大と歩留りの低下に
よってコスト高を招いている。また、CCD撮像素子の
高密度化によって1セルの体積が極微小となり、信号レ
ベルの低下によりショットノイズが無視できなくなる。
2. Description of the Related Art The world of images is moving toward higher definition as represented by HDTV, and image pickup devices such as CCDs are required to be smaller and have higher resolution. However, high-definition CCD image sensors require advanced semiconductor microfabrication technology, which increases costs due to increased capital investment and reduced yield. Also, the volume of one cell becomes extremely small due to the high density of the CCD image pickup device, and the shot noise cannot be ignored due to the lowered signal level.

【0003】このため、撮像素子の集積度はそのままで
解像度を向上させる技術が検討されている。最も効果的
な方法は、撮像素子と被写体像との相対位置を変調させ
ることによる高解像度化である。まず相対位置をずらさ
ない場合の画像情報をメモリに蓄積しておく、次に撮像
素子上の被写体像を画像ピッチの半分ずらして画像情報
を取り込む。両者の画像情報から2倍の解像度をもった
画像情報を得ることができる。結像位置をずらすため
に、偏向装置が用いられる。
Therefore, a technique for improving the resolution while keeping the degree of integration of the image pickup device unchanged is being studied. The most effective method is to increase the resolution by modulating the relative position between the image sensor and the subject image. First, the image information when the relative position is not shifted is stored in the memory, and then the image of the subject on the image pickup device is shifted by half the image pitch to capture the image information. Image information having double the resolution can be obtained from both image information. A deflecting device is used to shift the image forming position.

【0004】従来技術の偏向装置としては、メカニカル
な方式とノンメカニカルな方式がある。メカニカルな方
式は電圧素子等を用いて光学系に機械的振動を与えるも
のであり、光学系内の光路を変化させるものとCCD等
の撮像素子を移動させるものと被写体を移動させるもの
がある。光学系内の光路を変化させるものは、図12に
示すように、レンズ50と撮像素子52からなる光学系
内に透明な硝子板51を挿入し、該硝子板51を傾ける
ことによって結像をずらす方式(特開昭63-284980号公
報参照)、2枚の透明平板の間に屈折率をもつ透明液体
を充填し、周囲を蛇腹のように構成して頂角を可変でき
る構造のプリズムを光路に配置する方式、ミラーを振動
させて反射方向をずらし結像をずらす方式(特開昭63-1
93678号公報参照)が提案されている。撮像素子自体を
移動させるものは、図13に示すように、圧電アクチュ
エータ53上に撮像素子52を乗せて移動させる方式が
ある(特公平2-45874号公報参照)。被写体を動かす方
式は振動板などで原稿を振動させる方式(特開平3-1732
77号公報参照)が提案されている。
As the deflection device of the prior art, there are a mechanical system and a non-mechanical system. The mechanical method uses a voltage element or the like to apply mechanical vibration to an optical system, and there are a method of changing an optical path in the optical system, a method of moving an image pickup device such as a CCD, and a method of moving an object. For changing the optical path in the optical system, as shown in FIG. 12, a transparent glass plate 51 is inserted into the optical system composed of the lens 50 and the image pickup device 52, and the glass plate 51 is tilted to form an image. A method of shifting (see Japanese Patent Laid-Open No. 63-284980), a prism having a structure in which a transparent liquid having a refractive index is filled between two transparent flat plates, and the periphery is configured like a bellows so that the apex angle can be changed. Method of arranging in optical path, method of oscillating mirror to shift reflection direction and shift image formation
No. 93678) is proposed. As a method of moving the image pickup device itself, as shown in FIG. 13, there is a method of moving the image pickup device 52 on a piezoelectric actuator 53 (see Japanese Patent Publication No. 2-45874). The method of moving the subject is to vibrate the original with a diaphragm or the like (Japanese Patent Laid-Open No. 3-1732
No. 77) is proposed.

【0005】ノンメカニカルな方式は機械的力を与えな
いものであり、大きく分けて2つの方式が検討されてい
る。一つは、図14に示すように、複屈折板中での常光
と異常光の伝播方向の差を利用するものである。入射光
をレンズ50によって平行光とし、偏光板53によって
光の偏光面を一方向に揃え、その後偏光面が回転可能な
素子54に通し、さらに複屈折板55を通して撮像素子
52に結像させる。複屈折板55は常光と異常光によっ
て光路が異なる。つまり、偏光面を90度回転させると
光路が変わり、結像を変位させることが可能になる。偏
光面を回転させるには、電気的に屈折率の異方性を変化
できる素子が用いられており、液晶を用いた場合と電気
光学効果を用いた場合が提案されている。メカニカルな
方式は連続的に結像を変位させることが可能なため、n
分の1づつ変位させることによりn倍の高精細化が可能
であるが、偏光面の回転によるノンメカニカルな方式は
常光を異常光の光路差を利用するため、2倍の高精細化
までが可能である(特開昭62-157482号公報参照)。他
の方式は、電気光学結晶を、図15示すように、楔型で
互いに結晶軸を逆向きに貼り合わせた素子56を用い、
光軸に対して垂直に電場を印加して上下方向に屈折率の
連続的変化を誘起し、光の伝播方向を変化させるもので
ある(特開昭62-15977及び特開昭62-159581号公報参
照)。
The non-mechanical method does not apply a mechanical force, and two methods are roughly considered. One is to utilize the difference between the propagation directions of ordinary and extraordinary rays in the birefringent plate, as shown in FIG. The incident light is made into parallel light by the lens 50, the polarization plane of the light is aligned in one direction by the polarizing plate 53, and then the polarization plane is passed through the rotatable element 54, and is further imaged on the image pickup element 52 through the birefringent plate 55. The birefringent plate 55 has different optical paths depending on the ordinary light and the extraordinary light. That is, when the plane of polarization is rotated by 90 degrees, the optical path is changed and the image formation can be displaced. An element that can electrically change the anisotropy of the refractive index is used to rotate the plane of polarization, and it has been proposed to use a liquid crystal and an electro-optical effect. Since the mechanical system can continuously displace the image formation, n
It is possible to achieve n times higher resolution by displacing each of them by one-half, but the non-mechanical method by rotation of the polarization plane uses ordinary light to make use of the optical path difference of extraordinary light, resulting in up to 2 times higher resolution. It is possible (see JP-A-62-157482). In another method, as shown in FIG. 15, an electro-optic crystal is used by using a wedge-shaped element 56 in which crystal axes are bonded in opposite directions.
An electric field is applied perpendicularly to the optical axis to induce a continuous change in the refractive index in the vertical direction, thereby changing the propagation direction of light (JP-A-62-15977 and JP-A-62-159581). See the bulletin).

【0006】[0006]

【発明が解決しようとする課題】メカニカルな方式は光
学系、機械系、電子回路系に与える機械的振動が、長期
的な信頼性に悪影響を与えたり、振動音を発生させたり
するデメリットが指摘されている。また圧電素子にはヒ
ステリシスがあるため、画像信号取り出しのタイミング
取りが困難であった。
The mechanical method is disadvantageous in that mechanical vibrations given to the optical system, the mechanical system, and the electronic circuit system adversely affect long-term reliability and generate vibration noise. Has been done. Moreover, since the piezoelectric element has hysteresis, it is difficult to set the timing for extracting the image signal.

【0007】またノンメカニカルな方式は、電気光学結
晶あるいは液晶を用いた偏光面の回転は変位量が一定で
あるため、一方向につき2倍以上の高解像度化は不可能
であり、更に複屈折板が必要でありためコスト高となる
ことが欠点であった。複屈折板を用いず、楔型に互いに
結晶軸を逆向きに貼り合わせた素子を用いる方式は、電
圧の印加方向が光軸に対して垂直であるため、高電圧が
必要である問題があった。
Further, in the non-mechanical method, since the displacement amount of the rotation of the polarization plane using the electro-optic crystal or the liquid crystal is constant, it is impossible to increase the resolution more than twice in one direction, and the birefringence is further increased. The disadvantage is that the cost is high because a plate is required. The method of using a wedge-shaped element in which crystal axes are bonded to each other in opposite directions without using a birefringent plate has a problem that a high voltage is required because the voltage application direction is perpendicular to the optical axis. It was

【0008】本発明の目的は、機械的振動を用いずに光
を偏向させ、低電圧駆動で且つ安価な偏向装置を提供す
ることにある。また、本発明の他の目的は、この偏向装
置を用いて、撮像素子を高解像度化することなく高精細
画像を得ることができる画像シフト型撮像装置を提供す
ることにある。
An object of the present invention is to provide a deflecting device which deflects light without using mechanical vibration, is driven at a low voltage, and is inexpensive. Another object of the present invention is to provide an image shift type image pickup device which can obtain a high-definition image without increasing the resolution of the image pickup device by using this deflecting device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、電気光学結晶を透明電極で挟む
構造の偏向素子と、前記透明電極間に電圧を印加して、
前記電気光学結晶に電場を印加する駆動手段と、を備
え、光軸方向に平行な電場を前記電気光学結晶に印加す
るように前記偏向素子を配置して、光を偏向させること
を特徴とする偏向装置である。
In order to achieve the above object, the invention of claim 1 applies a voltage between a deflection element having a structure in which an electro-optic crystal is sandwiched between transparent electrodes and the transparent electrode,
Drive means for applying an electric field to the electro-optic crystal, wherein the deflection element is arranged to apply an electric field parallel to the optical axis direction to the electro-optic crystal to deflect light. It is a deflection device.

【0010】請求項2の発明は、請求項1記載の偏向装
置と、撮像素子と、撮像のタイミングに応じて前記偏向
装置の駆動手段の動作を制御する制御手段とを設け、該
制御手段により前記偏向装置の透明電極に電圧を印加し
ない場合と印加した場合で前記撮像素子に結像して、該
結像を撮像素子に対して相対的にずらすことを特徴とす
る画像シフト型撮像装置である。
According to a second aspect of the present invention, the deflecting device according to the first aspect, the image pickup device, and the control means for controlling the operation of the driving means of the deflecting device according to the timing of the image pickup are provided, and the control means is provided. An image shift type image pickup device characterized in that an image is formed on the image pickup device depending on whether or not a voltage is applied to the transparent electrode of the deflecting device and the image formation is shifted relative to the image pickup device. is there.

【0011】請求項3の発明は、電気光学結晶を透明電
極で挟んで積層し、奇数番目の電気光学結晶と偶数番目
の電気光学結晶との結晶軸を互いに鏡像の関係に配置し
た構造の偏向素子と、隣り合う奇数番目の透明電極と偶
数番目の透明電極の間にそれぞれ電圧を印加して隣接す
る電気光学結晶に逆向きの電場を印加する駆動手段と、
を備え、光軸方向に平行な電場を前記電気光学結晶に印
加するように前記偏向素子を配置し、光を偏向させるこ
とを特徴とする偏向装置である。
According to a third aspect of the present invention, the electro-optic crystal is laminated with the transparent electrodes sandwiched therebetween, and the crystal axes of the odd-numbered electro-optic crystal and the even-numbered electro-optic crystal are arranged in a mirror image relationship with each other. An element, a driving means for applying a voltage between the adjacent odd-numbered transparent electrodes and even-numbered transparent electrodes to apply a reverse electric field to the adjacent electro-optic crystal,
And a deflection device arranged to apply an electric field parallel to the optical axis direction to the electro-optic crystal to deflect light.

【0012】請求項4の発明は、請求項3記載の偏向装
置と、撮像素子と、撮像のタイミングに応じて前記偏向
装置の駆動手段の動作を制御する制御手段とを設け、該
制御手段により前記偏向装置の透明電極に電圧を印加し
ない場合と印加した場合で前記撮像素子に結像して、該
結像を撮像素子に対して相対的にずらすことを特徴とす
る画像シフト型撮像装置である。
According to a fourth aspect of the present invention, the deflecting device according to the third aspect, the image pickup element, and the control means for controlling the operation of the driving means of the deflecting device according to the timing of image pickup are provided, and the control means is provided. An image shift type image pickup device characterized in that an image is formed on the image pickup device depending on whether or not a voltage is applied to the transparent electrode of the deflecting device and the image formation is shifted relative to the image pickup device. is there.

【0013】[0013]

【作用】請求項1の偏向装置において、光軸方向に平行
な電場を偏向素子の電気光学結晶に駆動手段により印加
し、屈折率楕円体を回転させる。このことにより、光の
伝播方向を変化させ、結像位置を印加電圧に比例してシ
フトする。しかも、光軸に垂直に電圧印加する従来方式
に比べ、電圧を低減することができる。
In the deflecting device of the first aspect, an electric field parallel to the optical axis direction is applied to the electro-optic crystal of the deflecting element by the driving means to rotate the index ellipsoid. This changes the propagation direction of light and shifts the image forming position in proportion to the applied voltage. Moreover, the voltage can be reduced as compared with the conventional method in which the voltage is applied perpendicularly to the optical axis.

【0014】請求項3の偏向装置において、偏向素子が
電気光学結晶を透明電極で挟むように積層した構造で、
奇数番目の電気光学結晶と偶数番目の電気光学結晶との
結晶軸を互いに鏡像の関係に配置し、隣り合う奇数番目
の透明電極と偶数番目の透明電極の間にそれぞれ電圧を
印加し、光軸方向に平行な電場を電気光学結晶に印加す
るように偏向素子を配置する。したがって、各々の電気
光学結晶では、屈折率楕円体が同一方向に回転すること
になる。つまり、各々の電気光学結晶に入射された光
は、同一方向にそれぞれ変位されることになり、電気光
学結晶が1つの時に比較して大幅な変位量が得られる。
故に、同一変位量を得るには、低い電圧印加で済むこと
になる。
In the deflecting device of claim 3, the deflecting element has a structure in which electro-optical crystals are laminated so as to be sandwiched by transparent electrodes,
The crystal axes of the odd-numbered electro-optic crystal and the even-numbered electro-optic crystal are arranged in a mirror image relationship with each other, and a voltage is applied between the adjacent odd-numbered transparent electrode and even-numbered transparent electrode, respectively. The deflection element is arranged to apply an electric field parallel to the direction to the electro-optic crystal. Therefore, in each electro-optic crystal, the index ellipsoid rotates in the same direction. That is, the light incident on each electro-optical crystal is displaced in the same direction, and a large displacement amount can be obtained as compared with the case where there is one electro-optical crystal.
Therefore, in order to obtain the same displacement amount, it is sufficient to apply a low voltage.

【0015】請求項2及び4の画像シフト型撮像装置に
おいて、制御手段によって、請求項1あるいは請求項3
の偏向装置に電圧を印加しないとき撮像し、且つ前記偏
向装置に電圧を印加したとき撮像する。偏向装置は電圧
印加の有無で、結像位置が変位する。したがって、撮像
素子への結像と撮像素子との相対位置を変位させること
ができ、撮像素子自体の解像度を上げることなしに高解
像度化を図ることができる。しかも、印加電圧により結
像位置を自由に変位させることができ、印加する電圧も
低減できる。
In the image shift type image pickup device according to any one of claims 2 and 4, the control means is used to define the image shift type image pickup device.
When the voltage is not applied to the deflecting device, the image is taken, and when the voltage is applied to the deflecting device, the image is taken. The image forming position of the deflecting device is displaced depending on whether or not a voltage is applied. Therefore, the image formation on the image pickup device and the relative position of the image pickup device can be displaced, and the high resolution can be achieved without increasing the resolution of the image pickup device itself. Moreover, the image formation position can be freely displaced by the applied voltage, and the applied voltage can be reduced.

【0016】[0016]

【実施例】以下に、本発明を、実施例に基づき図面を参
照しながら説明する。図1は、本発明に係る偏向装置の
一実施例を示す模式図である。この偏向装置は、平行平
板の電気光学結晶C1とそれを挟んで形成した透明電極
1、T2とからなる偏向素子1と、透明電極T1が高電
位に、透明電極T2が低電位になるように電圧を印加す
る直流の駆動電圧2とを備える。ここで電気光学結晶C
1は、例えばLiNbO3(以下LN)、BaTiO
3(以下BaT)、KTa0.35Nb0.653(以下KT
N)あるいはKD2PO4(以下DKDP:先頭のDは重
水素化の意味)の単結晶とする。そして、LN、Ba
T、KTNの単結晶の場合、例えば結晶軸であるa軸方
向1mm、b軸方向10mm、c軸方向10mmの直方体に切
り出し、a軸に垂直な両切り出し面に透明電極としてI
TO膜をスパッタリング法にて形成する。DKDPの単
結晶の場合、例えばc軸方向1mm、a軸方向10mm、b
軸方向10mmの直方体に切り出し、c軸に垂直な両切り
出し面に透明電極としてITO膜をスパッタリング法に
て形成する。
The present invention will be described below based on embodiments with reference to the drawings. FIG. 1 is a schematic view showing an embodiment of a deflection device according to the present invention. In this deflecting device, a deflecting element 1 including a parallel plate electro-optical crystal C 1 and transparent electrodes T 1 and T 2 formed with the electro-optical crystal C 1 sandwiched therebetween, the transparent electrode T 1 is at a high potential, and the transparent electrode T 2 is at a low potential. And a direct-current drive voltage 2 for applying a voltage so as to have a potential. Where electro-optic crystal C
1 is, for example, LiNbO 3 (hereinafter LN), BaTiO 3
3 (hereinafter BaT), KTa 0.35 Nb 0.65 O 3 (hereinafter KT
N) or KD 2 PO 4 (hereinafter DKDP: D at the beginning means deuteration) as a single crystal. And LN, Ba
In the case of a single crystal of T or KTN, for example, it is cut into a rectangular parallelepiped having a crystal axis of 1 mm in the a-axis direction, 10 mm in the b-axis direction, and 10 mm in the c-axis direction.
The TO film is formed by the sputtering method. In the case of DKDP single crystal, for example, 1 mm in the c-axis direction, 10 mm in the a-axis direction, b
A rectangular parallelepiped having an axial direction of 10 mm is cut out, and an ITO film is formed as a transparent electrode on both cut-out surfaces perpendicular to the c-axis by a sputtering method.

【0017】さて、この偏向装置により、結像位置が変
位する動作原理を次に述べる。電気光学効果は2次の非
線形光学効果の一種であり、電気光学効果を示す結晶に
電圧を印加すると結晶の屈折率とその異方性に変化が生
じる。従来の技術の項で示した様に、従来、電気光学効
果による偏光では光の進行方向に対して垂直に電場を印
加する方法が検討されている。しかし、撮像装置に用い
る場合には電気光学結晶はCCDの受光面よりも広い面
積を有することが必要であり、この面に垂直に電場を印
加するには高電圧が必要となる。これに対して本発明は
光軸方向に平行に電場を印加し光路を変位させるもので
ある。電場印加により結晶のもつ屈折率楕円体を変化さ
せ、特に屈折率楕円体の回転を誘起させることにより、
異常光あるいは常光の伝播方向を変化させ、撮像素子へ
の結像位置を印加電圧に比例してシフトさせる。
Now, the principle of operation by which the image forming position is displaced by this deflecting device will be described below. The electro-optical effect is a kind of second-order nonlinear optical effect, and when a voltage is applied to a crystal exhibiting the electro-optical effect, the refractive index of the crystal and its anisotropy change. As described in the section of the related art, conventionally, in polarization by the electro-optic effect, a method of applying an electric field perpendicular to the traveling direction of light has been studied. However, when used in an image pickup device, the electro-optic crystal needs to have a larger area than the light receiving surface of the CCD, and a high voltage is required to apply an electric field perpendicularly to this surface. On the other hand, the present invention applies an electric field parallel to the optical axis direction to displace the optical path. By changing the refractive index ellipsoid of the crystal by applying an electric field, especially by inducing rotation of the refractive index ellipsoid,
By changing the propagation direction of the extraordinary light or the ordinary light, the image forming position on the image sensor is shifted in proportion to the applied voltage.

【0018】図2は屈折率楕円体の回転を示す説明図で
ある。(a)は結晶に電圧を印加していない場合であり、
(b)は結晶に電圧を印加する場合である。結晶中を進む
光の位相速度に対する偏光面依存性は屈折率楕円体とし
て表される。まず直交座標軸をx,y,zとし、電圧を
印加しない場合を考える。x方向を光軸方向とすると、
屈折率楕円体は、 ηxx・x2yy・y2zz・z2yz・yz+ηxz・xz+ηxy・xy=1 (1) と表すことができる。
FIG. 2 is an explanatory view showing the rotation of the index ellipsoid. (a) is the case where no voltage is applied to the crystal,
(b) is a case where a voltage is applied to the crystal. The polarization plane dependence on the phase velocity of light traveling in the crystal is expressed as an index ellipsoid. First, consider the case where the orthogonal coordinate axes are x, y, z and no voltage is applied. If the x direction is the optical axis direction,
The refractive index ellipsoid can be expressed as η xx · x 2 + η yy · y 2 + η zz · z 2 + η yz · yz + η xz · xz + η xy · xy = 1 (1).

【0019】図2に示すように、結晶内を進行する光の
波面ベクトルkの方向(x方向)に垂直かつ原点を通る
平面で、屈折率楕円体を切断する。このとき屈折率楕円
体の切断面の長軸及び短軸方向が偏光面となり、この長
軸及び短軸が屈折率楕円体と接する点における接平面へ
の垂線方向が光の電場ベクトルEとなる。光の磁場ベク
トルHは光の電場ベクトルEと波面ベクトルkに対して
垂直であり、光の進行方向はポインティングベルトルS
(電場ベクトルと磁場ベクトルの外積)方向となる。式
(1)の第4、5、6項は屈折率楕円体の主軸に対する
傾きを表している。
As shown in FIG. 2, the refractive index ellipsoid is cut along a plane perpendicular to the direction (x direction) of the wavefront vector k of light traveling in the crystal and passing through the origin. At this time, the major axis and minor axis directions of the cut surface of the index ellipsoid serve as polarization planes, and the perpendicular direction to the tangent plane at the point where the major axis and the minor axis contact the index ellipsoid becomes the electric field vector E of light. . The magnetic field vector H of light is perpendicular to the electric field vector E of light and the wavefront vector k, and the traveling direction of light is the pointing belt S.
The direction is (the outer product of the electric field vector and the magnetic field vector). The fourth, fifth, and sixth terms of Expression (1) represent the inclination of the index ellipsoid with respect to the principal axis.

【0020】光の波面ベクトルkの方向に電場Ekを印
加すると、次式が成り立つ。 ηii(E)=1/ni 2+rikEk(i,k=x,y,z) (2) ηij(E)=rijkEk(i≠j) (3) ここでniは主軸方向の屈折率である。電場印加によって
式(3)が値をもつことにより屈折率楕円体は回転し
て、主軸に対して傾きを生じる(図2の(b))。
When an electric field E k is applied in the direction of the wavefront vector k of light, the following equation holds. η ii (E) = 1 / n i 2 + r ik E k (i, k = x, y, z) (2) η ij (E) = r ijk E k (i ≠ j) (3) where n i is the refractive index in the principal axis direction. When the electric field is applied, the index ellipsoid rotates due to the value of the equation (3), and the tilt occurs with respect to the principal axis ((b) of FIG. 2).

【0021】例えば、 ηxz(E)=rxzxEx≠0 ならば、x方向への電場印加により屈折率楕円体がxz平
面内で回転し、x方向に波面ベクトルをもちxz平面内に
偏光面をもつ光は波面ベクトルk′がxz面内で傾き、ポ
インティングベルトルS′の方向が傾く。従って、光の
進む方向に平行に電場をかけて光の進行方向を変えるこ
とができるため、電気光学結晶を薄型化でき、低電圧化
できる。
For example, if η xz (E) = r xzx E x ≠ 0, the refractive index ellipsoid rotates in the xz plane by applying an electric field in the x direction, and has a wavefront vector in the x direction and in the xz plane. The light having a plane of polarization has a wavefront vector k ′ tilted in the xz plane, and the pointing belt S ′ tilts. Therefore, since the electric field can be changed by applying an electric field parallel to the light traveling direction, the electro-optic crystal can be thinned and the voltage can be reduced.

【0022】図1の偏向装置を用いて結像の変位量を測
定した。図3に変位量測定システムの説明図を示す。偏
向素子1の前段に第1のレンズ3を配置し、その後段に
ナイフエッジ4とそれを上下に移動させるピエゾ駆動装
置5と第2のレンズ6と光検出器7とを配置する。第1
のレンズ3によって平行光線が偏向素子1を通過後ナイ
フエッジ4の先端部に設定した焦点で一旦収束する。収
束した後拡散する光を第2のレンズ6で光検出器7に収
束させる。電気光学結晶C1に印加する電圧によって、
上述したように屈折率楕円体が回転し光の進行方向が変
わることにより、第1のレンズ3の焦点位置が上下に変
位する。ナイフエッジ4をピエゾ駆動装置5により上下
させ、光検出器7で光量を検出して、データ処理装置8
で焦点の変位量を検出する。
The displacement amount of image formation was measured using the deflecting device shown in FIG. FIG. 3 shows an explanatory diagram of the displacement amount measuring system. The first lens 3 is arranged in the front stage of the deflecting element 1, and the knife edge 4, the piezo drive device 5 for moving the knife edge 4 up and down, the second lens 6 and the photodetector 7 are arranged in the rear stage thereof. First
After passing through the deflecting element 1, the parallel rays are once converged by the lens 3 at the focal point set at the tip of the knife edge 4. The light that has converged and then diffused is converged on the photodetector 7 by the second lens 6. Depending on the voltage applied to the electro-optic crystal C 1 ,
As described above, the focal position of the first lens 3 is vertically displaced by rotating the refractive index ellipsoid and changing the traveling direction of light. The knife edge 4 is moved up and down by the piezo drive device 5, the light amount is detected by the photodetector 7, and the data processing device 8
The amount of focus displacement is detected with.

【0023】前述した電気光学結晶LN、BaT、KT
N、DKDPからなる偏向装置にレーザを通し、上述の
ナイフエッジ法にて印加電圧と焦点位置の変位量との関
係を測定したのが図4〜7である。各結晶とも印加電圧
にほぼ比例して変位量が増加することが確認できた。L
Nの場合はHeNeレーザ(633nm)を用いて20kVの電圧
印加で約5.4μmの変位(図4参照)、BaTの場合
はアルゴンイオンレーザ(514nm)を用いて400Vで
約6.4μmの変位(図5参照)、KTNの場合はHeNe
レーザ(633nm)を用いて100Vの電圧印加で約8.
3μmの変位が得られた(図6参照)。DKDPはアル
ゴンイオンレーザ(514nm)を用いて10kVで約6.5
μmの変位が得られた(図7参照)。本実施例において
は、結晶軸a,bを入れ換えても同一の効果が得られ
る。
The above-mentioned electro-optic crystals LN, BaT, KT
FIGS. 4 to 7 show the relationship between the applied voltage and the amount of displacement of the focus position measured by the above-mentioned knife edge method by passing a laser through a deflection device composed of N and DKDP. It was confirmed that the amount of displacement increased in each crystal almost in proportion to the applied voltage. L
In the case of N, a displacement of approximately 5.4 μm is applied by applying a voltage of 20 kV using a HeNe laser (633 nm) (see FIG. 4), and in the case of BaT, displacement of approximately 6.4 μm at 400 V using an argon ion laser (514 nm). (See Fig. 5), HeNe for KTN
Approximately 8. by applying a voltage of 100V using a laser (633nm).
A displacement of 3 μm was obtained (see FIG. 6). DKDP is about 6.5 at 10 kV using an argon ion laser (514 nm).
A displacement of μm was obtained (see FIG. 7). In this embodiment, the same effect can be obtained even if the crystal axes a and b are exchanged.

【0024】図8は、偏向装置の他の実施例を示す模式
図である。この偏向装置は、電気光学結晶C1、C2を挟
むように透明電極T1、T2、T3を形成した偏向素子1
1と、透明電極T1、T2、T3に電圧を印加する駆動電
圧12とを有する構造である。ここで電気光学結晶
1、C2は、例えばKTNの単結晶をa軸方向1mm、b
軸方向10mm、c軸方向10mmの直方体に切り出したも
のである。そして電気光学結晶C1においてa軸に垂直
な切り出した両面に透明電極としてITO膜をスパッタ
リング法にて形成する。電気光学結晶C1、C2をa軸が
互いに逆向きにかつ透明電極T2を挟む様に重ね合わせ
ホットプレスにて接着する。電気光学結晶C2の透明電
極T2に相対する面に透明電極T3を形成し偏向素子とす
る。透明電極T1、T3が高電位に、透明電極T2が低電
位になるように電圧を印加する。
FIG. 8 is a schematic view showing another embodiment of the deflecting device. This deflecting device includes a deflecting element 1 in which transparent electrodes T 1 , T 2 and T 3 are formed so as to sandwich electro-optical crystals C 1 and C 2.
1 and a driving voltage 12 for applying a voltage to the transparent electrodes T 1 , T 2 , and T 3 . Here, the electro-optic crystals C 1 and C 2 are, for example, a single crystal of KTN, 1 mm in the a-axis direction, b
It is cut into a rectangular parallelepiped having an axial direction of 10 mm and a c-axis direction of 10 mm. Then, an ITO film is formed as a transparent electrode on both surfaces of the electro-optic crystal C 1 cut out perpendicular to the a-axis by a sputtering method. The electro-optic crystals C 1 and C 2 are superposed so that the a-axes are opposite to each other and the transparent electrode T 2 is sandwiched therebetween, and they are bonded by a hot press. A transparent electrode T 3 is formed on the surface of the electro-optic crystal C 2 facing the transparent electrode T 2 to form a deflection element. A voltage is applied so that the transparent electrodes T 1 and T 3 have a high potential and the transparent electrode T 2 has a low potential.

【0025】電気光学結晶C1、C2は、a軸が互いに逆
向きに配置され、しかも電場が逆向きに印加されてい
る。したがって、電気光学結晶C1、C2では、屈折率楕
円体が同一方向に回転することになる。つまり、a軸に
平行に入射された光は同一方向にそれぞれ同じ距離だけ
変位されることになり、電気光学結晶が1つの時に比較
して2倍の変位量が得られる。故に、同一変位量を得る
には、1/2の電圧印加で済むことになる。
In the electro-optic crystals C 1 and C 2 , the a-axes are arranged in opposite directions, and the electric fields are applied in opposite directions. Therefore, in the electro-optic crystals C 1 and C 2 , the index ellipsoids rotate in the same direction. That is, the lights incident parallel to the a-axis are displaced by the same distance in the same direction, and a displacement amount twice as large as that when one electro-optic crystal is provided can be obtained. Therefore, in order to obtain the same amount of displacement, it is sufficient to apply 1/2 voltage.

【0026】これを図3に示したナイフエッジ法の測定
システムにより、印加電圧と焦点位置の変位量との関係
を測定したのが第9図である。HeNeレーザ(633nm)を
用いて50Vの電圧印加で約8.3μmの変位が得ら
れ、図1の電気光学結晶が1層のときに比べ、電圧が1
/2になり、低電圧化できる。
FIG. 9 shows the relationship between the applied voltage and the amount of displacement of the focus position measured by the knife edge method measuring system shown in FIG. A displacement of about 8.3 μm was obtained by applying a voltage of 50 V using a HeNe laser (633 nm), and the voltage was 1 when compared with the case where the electro-optic crystal in FIG. 1 was a single layer.
It becomes / 2, and the voltage can be lowered.

【0027】以上2層の場合を説明したが、これに止ま
らず3層以上にすることが可能である。この実施例の模
式図を図10に示す。この偏向装置は、各電気光学結晶
1〜Cnを挟むように透明電極T1〜Tn+1を形成し、こ
れらを積層して一体化している。ここで電気光学結晶C
1〜Cnは図8と同様の材質・形状であり、透明電極T1
〜Tn+1も同様の材質である。奇数番目の電気光学結晶
と偶数番目の電気光学結晶の結晶軸を互いに鏡像の関係
に配置する。すなわち隣接する電気光学結晶のa軸が互
いに逆向きになるように配置している。また、奇数番目
の透明電極が高電位に、偶数番目の透明電極が低電位に
なるように駆動電圧22から電圧が印加される。
The case of two layers has been described above, but the number of layers is not limited to this, and three or more layers are also possible. A schematic diagram of this example is shown in FIG. In this deflecting device, the transparent electrodes T 1 to T n + 1 are formed so as to sandwich the electro-optical crystals C 1 to C n , and these are laminated and integrated. Where electro-optic crystal C
1 to C n have the same material and shape as those in FIG. 8, and the transparent electrode T 1
.About.T n + 1 is the same material. The crystal axes of the odd-numbered electro-optic crystal and the even-numbered electro-optic crystal are arranged in a mirror image relationship with each other. That is, they are arranged so that the a-axes of the adjacent electro-optic crystals are opposite to each other. Further, a voltage is applied from the drive voltage 22 so that the odd-numbered transparent electrodes have a high potential and the even-numbered transparent electrodes have a low potential.

【0028】それぞれの隣接する電気光学結晶は、a軸
が互いに逆向きになるように配置され、しかも電場が逆
向きに印加されている。したがって、電気光学結晶C1
〜Cnでは、屈折率楕円体が同一方向に回転することに
なる。つまり、a軸に平行に入射された光は同一方向に
それぞれ同じ距離だけ変位されることになり、電気光学
結晶が1つの時に比較してn倍の変位量が得られる。故
に、同一変位量を得るには、1/nの電圧印加で済むこ
とになる。
Adjacent electro-optic crystals are arranged so that the a-axes are in opposite directions, and the electric fields are applied in opposite directions. Therefore, the electro-optic crystal C 1
In -C n, the refractive index ellipsoid will rotate in the same direction. That is, the lights incident in parallel to the a-axis are displaced by the same distance in the same direction, and an amount of displacement n times that obtained when one electro-optical crystal is obtained is obtained. Therefore, in order to obtain the same amount of displacement, it is sufficient to apply a voltage of 1 / n.

【0029】図1の偏向装置を用いた画像シフト型撮像
装置の実施例を第11図に示す。CCDの撮像素子33
としては1/4インチ41万画素、水平方向の画素ピッ
チが4.8μmのものを使用する。CCD撮像素子33
の直前に偏向装置を設置する。この偏向装置は、KTN
結晶C1と透明電極T1、T2からなる偏向素子31と、
この透明電極に電圧を印加する駆動部32とを有する。
偏向素子31の入射光側に偏光子34を置き、c軸に平
行な偏光面をもった光を通す。更に、その偏光子の入射
光側にレンズ35を配置して光を平行光としている。タ
イミング制御部36により駆動部32の電圧の無印加時
と印加時の撮像素子33の検出信号を、第1の画像メモ
リ37と第2の画像メモリ38を介して画像処理部39
へ出力する。それを、映像信号として出力する。
FIG. 11 shows an embodiment of an image shift type image pickup device using the deflecting device of FIG. CCD image sensor 33
1/4 inch pixel with a horizontal pixel pitch of 4.8 μm is used. CCD image sensor 33
Install the deflection device immediately before. This deflector is a KTN
A deflection element 31 comprising a crystal C 1 and transparent electrodes T 1 and T 2 ,
And a drive unit 32 for applying a voltage to the transparent electrode.
A polarizer 34 is placed on the incident light side of the deflecting element 31 to allow light having a polarization plane parallel to the c-axis to pass therethrough. Further, a lens 35 is arranged on the incident light side of the polarizer to collimate the light. The timing control unit 36 outputs the detection signals of the image pickup device 33 when the voltage of the drive unit 32 is not applied and when the voltage is applied to the image processing unit 39 via the first image memory 37 and the second image memory 38.
Output to. It is output as a video signal.

【0030】電圧を印加せずに偏向素子を通し、CCD
撮像素子33で撮像し、画像情報を第1の画像メモリ3
7に蓄積する。次に偏向素子31に28V印加し画像の
結像位置を水平方向に2.4μmずらしてCCD撮像素
子33で撮像し、画像情報を第2の画像メモリ38に蓄
積する。第1及び2の画像メモリ37、38の水平方向
データを交互に画像処理部39でシリンダ出力すること
により、水平方向2倍の高解像度の映像出力が得られ
る。
A CCD is passed through the deflection element without applying a voltage.
The image is captured by the image sensor 33, and the image information is stored in the first image memory 3
Accumulate to 7. Next, 28 V is applied to the deflection element 31, the image forming position of the image is shifted by 2.4 μm in the horizontal direction, the CCD image pickup element 33 picks up the image, and the image information is stored in the second image memory 38. By alternately outputting the horizontal data of the first and second image memories 37 and 38 in the cylinder by the image processing unit 39, a high-resolution video output of twice the horizontal direction can be obtained.

【0031】スタンダードなテレビジョン用の高解像度
化にとっては水平方向の解像度が重要であり、水平方向
の高解像度化でけでも効果は十分であるが、垂直方向の
高解像度化が同時にできることに越したことはない。本
偏向素子を用いて水平、垂直両方向の高解像度化を行う
には、水平方向の偏向素子の後に該素子に対して結晶軸
が光学軸を回転軸として90°回転させた垂直用の素子
を配置する。この場合垂直方向への変位には約1kVの電
圧印加を必要とする。しかし、水平用偏向素子と垂直用
偏向素子の間に1/2波長板を挿入し、偏向面を90°
回転させることにより、水平方向と同一の電圧印加で変
位させることができる。本実施例は垂直方向画素ピッチ
5.6μmであり、32Vの電圧印加により、2.8μm
の垂直方向シフトが得られた。これにより、水平方向2
倍、垂直方向2倍の高解像度が得られる。
The resolution in the horizontal direction is important for increasing the resolution for standard televisions, and the effect is sufficient even if the resolution is increased in the horizontal direction, but it is possible to achieve the resolution in the vertical direction at the same time. I have never done it. In order to increase the resolution in both the horizontal and vertical directions using the present deflection element, a vertical element in which the crystal axis is rotated by 90 ° about the optical axis with respect to the element after the horizontal deflection element is used. Deploy. In this case, a voltage application of about 1 kV is required for vertical displacement. However, a half-wave plate is inserted between the horizontal deflection element and the vertical deflection element, and the deflection surface is set to 90 °.
By rotating, it can be displaced by applying the same voltage as in the horizontal direction. In this embodiment, the vertical pixel pitch is 5.6 μm, and when a voltage of 32 V is applied, 2.8 μm
A vertical shift of was obtained. This allows horizontal 2
And twice the high resolution in the vertical direction.

【0032】本発明は上記の構成のみに限定されるもの
ではない。前記画像シフト型撮像装置の偏向装置は、電
気光学結晶が1層のものを用いたが、図8や図10に示
した多層のものでも構わない。電気光学結晶の材料は、
KTNに限らず、LN、BaT、DKDP等を用いても
構わない。
The present invention is not limited to the above configuration. Although the deflecting device of the image shift type image pickup device has one electro-optic crystal, it may have a multi-layered electro-optic crystal as shown in FIGS. The material of electro-optic crystal is
Not limited to KTN, LN, BaT, DKDP or the like may be used.

【0033】[0033]

【発明の効果】請求項1及び3の偏向装置は、電気光学
結晶を透明電極で挟み、前記透明電極間に電圧を印加
し、光軸方向に平行な電場を電気光学結晶に印加するよ
うに前記偏向素子を配置したから、屈折率楕円体を回転
させることにより、印加電圧に応じて結像の変位量を連
続的に可変でき、且つその印加電圧も、光軸に垂直に印
加する従来に比較して低電圧で済ますことができる。ま
た、機械振動を用いていないので、信頼性が高く、振動
音も発生せず、構造も簡単なため安価である利点があ
る。更に、従来の偏光面の回転を利用した装置に比較し
て、波長依存性を少なくすることもできる。
According to the deflecting device of the present invention, the electro-optic crystal is sandwiched by the transparent electrodes, a voltage is applied between the transparent electrodes, and an electric field parallel to the optical axis direction is applied to the electro-optic crystal. Since the deflection element is arranged, by rotating the refractive index ellipsoid, the displacement amount of the image formation can be continuously changed according to the applied voltage, and the applied voltage is also applied perpendicularly to the optical axis. In comparison, low voltage can be used. Further, since mechanical vibration is not used, there are advantages that the reliability is high, vibration noise is not generated, and the structure is simple, so that it is inexpensive. Further, the wavelength dependence can be reduced as compared with the conventional device using the rotation of the polarization plane.

【0034】更に請求項3の偏向装置は、偏向素子が電
気光学結晶を透明電極で挟んで積層し、奇数番目の電気
光学結晶と偶数番目の電気光学結晶との結晶軸を互いに
鏡像の関係に配置した構造として、隣り合う奇数番目の
透明電極と偶数番目の透明電極の間にそれぞれ電圧を印
加して隣接する電気光学結晶に逆向きの電場を印加する
ことにより、各電気光学結晶において同一方向に結像が
変位するから、電気光学結晶が1枚に比較し、電圧を低
くできる。
Further, in the deflecting device according to the third aspect, the deflecting element is laminated by sandwiching the electro-optical crystal with the transparent electrodes, and the crystal axes of the odd-numbered electro-optical crystal and the even-numbered electro-optical crystal are mirror images of each other. As a structure arranged, by applying a voltage between adjacent odd-numbered transparent electrodes and even-numbered transparent electrodes to apply an opposite electric field to the adjacent electro-optical crystals, the same direction is applied to each electro-optical crystal. Since the image formation is displaced at 1, the voltage can be reduced as compared with one electro-optic crystal.

【0035】請求項2及び4の画像シフト型撮像装置
は、撮像のタイミングに応じて請求項1あるいは請求項
3の偏向装置の動作を制御する制御手段とを設けたか
ら、透明電極への印加電圧の有無により撮像素子と結像
との位置を相対的にずらし、撮像素子を高解像度化する
ことなく、高精細の映像を得ることができる。
Since the image shift type image pickup device according to the second and fourth aspects is provided with the control means for controlling the operation of the deflecting device according to the first or third aspect in accordance with the timing of image pickup, the voltage applied to the transparent electrode is applied. With the presence or absence of the above, the positions of the image sensor and the image formation are relatively displaced, and a high-definition image can be obtained without increasing the resolution of the image sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る偏向装置の一実施例を示す模式図
である。
FIG. 1 is a schematic view showing an embodiment of a deflecting device according to the present invention.

【図2】(a)と(b)は、電気光学結晶の屈折率楕円体の回
転を示す説明図である。
2A and 2B are explanatory diagrams showing rotation of an index ellipsoid of an electro-optic crystal.

【図3】結像の変位量測定システムを示す説明略図であ
る。
FIG. 3 is an explanatory schematic diagram showing a displacement amount measuring system for image formation.

【図4】偏向素子にLNを用いた偏向装置の結像の変位
量と印加電圧の関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an image-forming displacement amount and an applied voltage in a deflecting device using an LN as a deflecting element.

【図5】偏向素子にBATを用いた偏向装置の結像の変
位量と印加電圧の関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a displacement amount of image formation and an applied voltage in a deflection device using BAT as a deflection element.

【図6】偏向素子にKTNを用いた偏向装置の結像の変
位量と印加電圧の関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the displacement amount of image formation and the applied voltage in a deflecting device using KTN as a deflecting element.

【図7】偏向素子にDKDPを用いた偏向装置の結像の
変位量と印加電圧の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a displacement amount of image formation and an applied voltage in a deflecting device using a DKDP as a deflecting element.

【図8】本発明に係る偏向装置の他の実施例を示す模式
図である。
FIG. 8 is a schematic view showing another embodiment of the deflecting device according to the present invention.

【図9】偏向素子にKTNを用いたこの偏向装置の結像
の変位量と印加電圧の関係を示すグラフである。
FIG. 9 is a graph showing a relationship between an image forming displacement amount and an applied voltage in this deflecting device using a KTN as a deflecting element.

【図10】本発明に係る偏向装置の更に他の実施例を示
す模式図である。
FIG. 10 is a schematic view showing still another embodiment of the deflecting device according to the present invention.

【図11】本発明に係る画像シフト型撮像装置の一実施
例を示す模式図である。
FIG. 11 is a schematic view showing an embodiment of an image shift type image pickup device according to the present invention.

【図12】硝子板を傾ける方式による従来の偏向装置を
示す模式図である。
FIG. 12 is a schematic view showing a conventional deflecting device by a method of tilting a glass plate.

【図13】圧電アクチュエータにより撮像素子を移動さ
せる方式による従来の偏向装置を示す模式図である。
FIG. 13 is a schematic diagram showing a conventional deflecting device based on a method of moving an image sensor by a piezoelectric actuator.

【図14】電気光学結晶と複屈折板を用いた従来の偏向
装置を示す模式図である。
FIG. 14 is a schematic view showing a conventional deflecting device using an electro-optic crystal and a birefringent plate.

【図15】楔形電気光学結晶を貼り合わせた従来の偏向
装置を示す模式図である。
FIG. 15 is a schematic diagram showing a conventional deflection device in which wedge-shaped electro-optic crystals are bonded together.

【符号の説明】[Explanation of symbols]

1 偏向素子 2 駆動電圧 C1 電気光学結晶 R1、R2、R3 透明電極1 deflection element 2 drive voltage C 1 electro-optic crystal R 1 , R 2 , R 3 transparent electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気光学結晶を透明電極で挟む構造の偏
向素子と、 前記透明電極間に電圧を印加して、前記電気光学結晶に
電場を印加する駆動手段と、を備え、 光軸方向に平行な電場を前記電気光学結晶に印加するよ
うに前記偏向素子を配置して、光を偏向させることを特
徴とする偏向装置。
1. A deflection element having a structure in which an electro-optic crystal is sandwiched between transparent electrodes, and a driving means for applying a voltage between the transparent electrodes to apply an electric field to the electro-optic crystal, the optical element being arranged in an optical axis direction. A deflecting device, wherein the deflecting element is arranged so as to apply a parallel electric field to the electro-optic crystal, and deflects light.
【請求項2】 請求項1記載の偏向装置と、撮像素子
と、撮像のタイミングに応じて前記偏向装置の駆動手段
の動作を制御する制御手段とを設け、 該制御手段により前記偏向装置の透明電極に電圧を印加
しない場合と印加した場合で前記撮像素子に結像して、
該結像を撮像素子に対して相対的にずらすことを特徴と
する画像シフト型撮像装置。
2. The deflecting device according to claim 1, an image pickup element, and a control means for controlling the operation of a driving means of the deflecting device according to the timing of image pickup. The control means makes the deflecting device transparent. An image is formed on the image sensor with and without voltage applied to the electrodes,
An image shift type image pickup device characterized in that the image formation is shifted relative to an image pickup element.
【請求項3】 電気光学結晶を透明電極で挟んで積層
し、奇数番目の電気光学結晶と偶数番目の電気光学結晶
との結晶軸を互いに鏡像の関係に配置した構造の偏向素
子と、 隣り合う奇数番目の透明電極と偶数番目の透明電極の間
にそれぞれ電圧を印加して隣接する電気光学結晶に逆向
きの電場を印加する駆動手段と、を備え、 光軸方向に平行な電場を前記電気光学結晶に印加するよ
うに前記偏向素子を配置し、光を偏向させることを特徴
とする偏向装置。
3. A deflection element having a structure in which electro-optic crystals are sandwiched between transparent electrodes and the crystal axes of odd-numbered electro-optic crystals and even-numbered electro-optic crystals are arranged in a mirror image relationship with each other, and are adjacent to each other. A driving means for applying a voltage between the odd-numbered transparent electrodes and the even-numbered transparent electrodes to apply a reverse electric field to the adjacent electro-optic crystal, and to apply an electric field parallel to the optical axis direction to the electric field. A deflecting device, wherein the deflecting element is arranged so as to be applied to an optical crystal and deflects light.
【請求項4】 請求項3記載の偏向装置と、撮像素子
と、撮像のタイミングに応じて前記偏向装置の駆動手段
の動作を制御する制御手段とを設け、 該制御手段により前記偏向装置の透明電極に電圧を印加
しない場合と印加した場合で前記撮像素子に結像して、
該結像を撮像素子に対して相対的にずらすことを特徴と
する画像シフト型撮像装置。
4. A deflection device according to claim 3, an image pickup element, and a control means for controlling the operation of the drive means of the deflection device according to the timing of image pickup, and the control means makes the deflection device transparent. An image is formed on the image sensor with and without voltage applied to the electrodes,
An image shift type image pickup device characterized in that the image formation is shifted relative to an image pickup element.
JP01717295A 1995-02-03 1995-02-03 Deflection device and image shift type imaging device using the same Expired - Fee Related JP3251798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01717295A JP3251798B2 (en) 1995-02-03 1995-02-03 Deflection device and image shift type imaging device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01717295A JP3251798B2 (en) 1995-02-03 1995-02-03 Deflection device and image shift type imaging device using the same

Publications (2)

Publication Number Publication Date
JPH08211423A true JPH08211423A (en) 1996-08-20
JP3251798B2 JP3251798B2 (en) 2002-01-28

Family

ID=11936547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01717295A Expired - Fee Related JP3251798B2 (en) 1995-02-03 1995-02-03 Deflection device and image shift type imaging device using the same

Country Status (1)

Country Link
JP (1) JP3251798B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066648A (en) * 1999-08-30 2001-03-16 Sony Corp Illumination device
JP2001066647A (en) * 1999-08-30 2001-03-16 Sony Corp Light refracting device
JP2001066644A (en) * 1999-08-30 2001-03-16 Sony Corp Memory device
JP2007187903A (en) * 2006-01-13 2007-07-26 Nippon Telegr & Teleph Corp <Ntt> Deflector
CN117289496A (en) * 2023-11-21 2023-12-26 武汉光谷航天三江激光产业技术研究院有限公司 High-precision laser beam scanning device based on electro-optic crystal and use method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066648A (en) * 1999-08-30 2001-03-16 Sony Corp Illumination device
JP2001066647A (en) * 1999-08-30 2001-03-16 Sony Corp Light refracting device
JP2001066644A (en) * 1999-08-30 2001-03-16 Sony Corp Memory device
JP2007187903A (en) * 2006-01-13 2007-07-26 Nippon Telegr & Teleph Corp <Ntt> Deflector
JP4557894B2 (en) * 2006-01-13 2010-10-06 日本電信電話株式会社 Deflector
CN117289496A (en) * 2023-11-21 2023-12-26 武汉光谷航天三江激光产业技术研究院有限公司 High-precision laser beam scanning device based on electro-optic crystal and use method
CN117289496B (en) * 2023-11-21 2024-02-23 武汉光谷航天三江激光产业技术研究院有限公司 High-precision laser beam scanning device based on electro-optic crystal and use method

Also Published As

Publication number Publication date
JP3251798B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
KR0166952B1 (en) Display and pick-up device for stereoscopic picture display
JP3184409B2 (en) Three-dimensional imaging device, camera, and microscope
US5689283A (en) Display for mosaic pattern of pixel information with optical pixel shift for high resolution
US4945423A (en) Reproducing apparatus for charge latent image recording medium
US20040001166A1 (en) Optical path deflecting element, optical path deflecting apparatus, image displaying apparatus, optical element and manufacturing method thereof
JP3465776B2 (en) Liquid crystal display
EP0608458B1 (en) A method of operating an optical modulator device
JP2556831B2 (en) Optical low pass filter and image pickup apparatus using the same
JP2000171824A (en) Spatial light modulating device
JP3963564B2 (en) Image display device
JPH0317620A (en) Reading element for charge image information
JP3251798B2 (en) Deflection device and image shift type imaging device using the same
JP4574428B2 (en) Optical axis deflection element, optical path deflection element, optical axis deflection method, optical path deflection method, optical axis deflection apparatus, optical path deflection apparatus, and image display apparatus
JPH05119341A (en) Optical device
JP2000193925A (en) Light deflector and shake preventive device provided with the same
JP3479631B2 (en) 3D display
JP3154839B2 (en) Camera shake correction device
US3807830A (en) Birefringence read {11 {11 {11 {11 display and memory device
JPH04115786A (en) Image shift type image pickup device
JPH0829779A (en) Optical wobbling display device by polarization rotation
JP4481178B2 (en) Imaging method and imaging apparatus
JP3270075B2 (en) Light modulation element
JPH0378378A (en) Solid state image pickup device
JPH0595517A (en) High resolution image pick-up device
JPH04294322A (en) Optical device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees