[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08211161A - Prediction system of weather disaster - Google Patents

Prediction system of weather disaster

Info

Publication number
JPH08211161A
JPH08211161A JP7017802A JP1780295A JPH08211161A JP H08211161 A JPH08211161 A JP H08211161A JP 7017802 A JP7017802 A JP 7017802A JP 1780295 A JP1780295 A JP 1780295A JP H08211161 A JPH08211161 A JP H08211161A
Authority
JP
Japan
Prior art keywords
snow
prediction
mesh
meteorological
warning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7017802A
Other languages
Japanese (ja)
Inventor
Kenji Iida
健二 飯田
Yoshio Ijichi
良雄 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP7017802A priority Critical patent/JPH08211161A/en
Publication of JPH08211161A publication Critical patent/JPH08211161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Alarm Devices (AREA)

Abstract

PURPOSE: To realize a prediction method in which both a miss and an overlook can be reduced by a method wherein the existence of a weather disaster in every region is predicted by a neural network on the basis of weather data and a physical quantity as a cause of the weather disaster is computed for every region. CONSTITUTION: A prediction-range comparison device 4 uses a prediction by a snow-damage prediction neural network device 1 and a prediction by a threshold judgment device 3, and it controls the operation of a warning output device 5 on the basis of the overlap of a mesh predicted as snow damage with a mesh in which a snow accumulated amount exceeds a threshold. The device 5 outputs snow damage information and a snow damage warning on the basis of a judgment by the device 1 and of a judgment by the device 3. Then, in a warning system, a snow damage prediction is performed for every region. As a result, e.g. a mesh which is partitioned by a mesh of a net at intervals of 6km is used as an object. By using weather data in every mesh for 6km around, the snow damage prediction of every mesh is performed, and a snow damage warning or the like is issued to individual meshes. As the weather data, a rainfall amount, a temperature and a wind velocity are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニューラルネットによ
る気象災害の予測に気象災害の原因となる物理量の算出
結果による気象災害の予測を加味して気象災害警報を出
す気象災害予測方式に係り、特に、空振り・見逃しを共
に少なくできる気象災害予測方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a meteorological disaster forecasting system for issuing a meteorological disaster warning by adding forecasts of meteorological disasters by neural networks to forecasts of meteorological disasters by calculation results of physical quantities that cause meteorological disasters. In particular, the present invention relates to a meteorological disaster prediction method that can reduce missed shots and misses.

【0002】[0002]

【従来の技術】雨、風、雪などにより土地や構造物が壊
されたり侵されたりする自然災害(以下、気象災害とい
う)は、被害地域に大きな損失をもたらす。気象災害
が、気象観測によって得られる気象データと強い関連が
あることは周知のとおりである。また、気象によって地
上にもたらされる物理量のために、構造物が変形力を受
けることも周知のとおりである。本発明は、こうした気
象データや物理量から気象災害を予測しようというもの
である。以下、従来の技術を説明する。
2. Description of the Related Art A natural disaster (hereinafter referred to as a meteorological disaster) in which a land or a structure is destroyed or invaded by rain, wind, snow, or the like causes a great loss in a damaged area. It is well known that meteorological disasters are strongly related to meteorological data obtained by meteorological observation. It is also well known that a structure receives a deforming force due to a physical quantity brought to the ground by the weather. The present invention is intended to predict a weather disaster from such weather data and physical quantities. The conventional technique will be described below.

【0003】高度に電化が進んだ現代においては、電気
の供給が一刻たりとも途絶えることがあってはならな
い。電気の供給が途絶えると、一般家庭から産業に至る
までの広範囲に亘って甚大な被害がもたらされるからで
ある。このため、送電線に万一の事故(災害)が発生し
たときには、その被害地点を即座に検出し、災害からの
復旧を迅速に行う保守管理システムが開発され、実用に
供せられている。
In today's highly electrified world, the supply of electricity should never be interrupted. If the supply of electricity is cut off, it will cause a great deal of damage over a wide range from ordinary households to industries. Therefore, in the event of an accident (disaster) in the power transmission line, a maintenance management system that immediately detects the damaged point and promptly recovers from the disaster has been developed and put into practical use.

【0004】更に、近年では事故発生を結果的に知るの
ではなく、一歩進んで気象データ等を利用して事故発生
を予見し、災害発生を未然に防止する予知保全システム
の開発が行われている。
Further, in recent years, a predictive maintenance system has been developed to prevent accidents from occurring by predicting the accidents by using weather data etc. rather than knowing the accidents as a result. There is.

【0005】こうしたシステムのなかに、冬季に広範囲
に被害の及ぶ送電線への着雪による雪害事故の発生を予
測する雪害予測システムがある。この雪害予測システム
は、気象官署や民間の気象サービス事業がオンライン等
で供給する気象データを基に、ニューラルネットを利用
して3時間先に雪害が発生するかどうかの判断を行って
いる(例;飯田他、ニューラルネットを利用した送電線
雪害警報システムの開発、平成6年、電気学会全大、1
164)。
[0005] Among these systems, there is a snow damage prediction system that predicts the occurrence of a snow damage accident due to snow accretion on a power transmission line which is widely damaged in winter. This snow damage prediction system uses neural networks to determine whether snow damage will occur 3 hours ahead, based on weather data supplied online by meteorological agencies and private weather service businesses (example Iida et al., Development of transmission line snow damage warning system using neural network, 1994, The Institute of Electrical Engineers of Japan, 1
164).

【0006】図2に示されるように、従来の送電線雪害
警報システムは、雪害予測ニューラルネット装置1、着
雪量推定装置2、閾値判定装置3、及び警報出力装置5
からなる。雪害予測ニューラルネット装置1は、過去の
事故時の気象データパターンを学習させ、気象データパ
ターンを入力すると雪害の有無を判断できるようにした
ものである。着雪量推定装置2は、気象データ入力より
送電線への推定着雪量を算出するものである。閾値判定
装置3は、過去の事故時の気象データを用いた検討によ
り、事故発生の確率の高い着雪量の閾値を定め、前記推
定着雪量がこの着雪量閾値を越えたときに警報レベルと
判定し、また、確率的にはこれよりも低いが事故発生の
可能性の高い着雪量の閾値を定め、前記推定着雪量がこ
の着雪量閾値に達したときに注意報レベルと判定するよ
うにしたものである。警報出力装置5は、雪害予測ニュ
ーラルネット装置1の判断と閾値判定装置3の判定とに
基づいて、雪害警報及び雪害注意報を出力するものであ
る。
As shown in FIG. 2, a conventional transmission line snow damage warning system includes a snow damage prediction neural network device 1, a snow accretion amount estimation device 2, a threshold value judgment device 3, and an alarm output device 5.
Consists of The snow damage prediction neural network device 1 is configured to learn weather data patterns from past accidents and to determine the presence or absence of snow damage by inputting the weather data patterns. The snow accretion amount estimation device 2 calculates an estimated snow accretion amount on a power transmission line based on weather data input. The threshold determination device 3 determines the threshold value of the snow accretion amount with a high probability of accident occurrence by the examination using the weather data at the time of the past accident, and gives an alarm when the estimated snow accretion amount exceeds the snow accretion amount threshold value. It is judged as a level, and a threshold value of snow accretion that is lower than this probability but is highly likely to cause an accident is set, and when the estimated snow accretion amount reaches this snow accretion amount threshold, a warning level Is determined. The alarm output device 5 outputs a snow damage warning and a snow damage warning based on the judgment of the snow damage prediction neural net device 1 and the judgment of the threshold value judgment device 3.

【0007】図2の送電線雪害警報システムにあって
は、雪害予測を地域毎に行うために、6Km間隔の網の
目で区切った地域(メッシュという)を対象とする。こ
の6Km四方のメッシュ毎の気象データを用いて各メッ
シュの雪害予測を行い、個々のメッシュに対して雪害警
報等を出す。気象データとしては、降水量・気温・風速
を用いる。
In the transmission line snow damage warning system of FIG. 2, in order to predict the snow damage for each area, an area (mesh) divided by meshes of 6 km intervals is targeted. Snow damage prediction for each mesh is performed using the meteorological data for each 6 km square, and a snow damage warning or the like is issued for each mesh. Precipitation, temperature, and wind speed are used as meteorological data.

【0008】雪害予測ニューラルネット装置1に入力す
る気象データは、現時刻を含む過去3時間のデータ及び
3時間先の予報データからなる合計6時間分の数値デー
タである。この数値データを雪害予測ニューラルネット
装置1に入力すれば、3時間先の雪害の有無を予測する
ことができる。
The meteorological data input to the snow damage prediction neural network device 1 is numerical data for a total of 6 hours including past 3 hours data including the current time and forecast data 3 hours ahead. By inputting this numerical data to the snow damage prediction neural network device 1, it is possible to predict the presence or absence of snow damage 3 hours ahead.

【0009】雪害予測ニューラルネット装置1単独で、
事故の可能性、事故の程度まで予測できることが望まし
いが、現状では事故データの不足等により、なかなか良
好な予測結果を得ることができない。そこで、事故の可
能性の程度を分類するために、実験を基に導出された着
雪量推定式により推定着雪量を算出する着雪量推定装置
2を併用し、この推定着雪量により警報と注意報とに分
類することになった。このために、閾値判定装置3で
は、過去の事故時の気象データを用いた検討により、推
定着雪量が10g/cm以上のときには警報レベルを出
力し、5g/cm以上のときには注意報レベルを出力す
る。そして、警報出力装置5では、雪害予測ニューラル
ネット装置1の予測結果と閾値判定装置3の判定結果と
を組み合わせ、推定着雪量が10g/cm以上でかつ事
故有りの予測のとき雪害警報を出し、推定着雪量が5g
/cm以上でかつ事故有りの予測のとき雪害注意報を出
す。
With the snow damage prediction neural network device 1 alone,
It is desirable to be able to predict the probability of an accident and the extent of the accident, but at present it is difficult to obtain good prediction results due to lack of accident data. Therefore, in order to classify the degree of possibility of an accident, the snow accretion amount estimation device 2 which calculates the estimated snow accretion amount by the snow accretion amount estimation formula derived based on the experiment is also used. It was decided to classify it into a warning and a warning. For this reason, the threshold determination device 3 outputs an alarm level when the estimated snow accretion amount is 10 g / cm or more, and outputs a warning level when the estimated snow accretion amount is 10 g / cm or more, based on an examination using the weather data in the past accident. Output. Then, the alarm output device 5 combines the prediction result of the snow damage prediction neural net device 1 and the judgment result of the threshold value judgment device 3 to issue a snow damage warning when the estimated snow accretion amount is 10 g / cm or more and an accident is predicted. , Estimated snow accretion amount is 5g
/ Cm or more and if there is an accident, a snow damage warning will be issued.

【0010】[0010]

【発明が解決しようとする課題】図2の従来の送電線雪
害警報システムを実際に運用してみると、警報が出ない
地域に事故が発生したり(これを見逃しという)、逆に
警報が出た地域に事故が発生しなかったり(これを空振
りという)することが多発していた。
When the conventional transmission line snow damage warning system of FIG. 2 is actually operated, an accident occurs in an area where the warning is not issued (this is called overlooking), or conversely, the warning is given. There were frequent occurrences of accidents that did not occur in the area where they came out (this is called a miss).

【0011】この原因について調査するために、2つの
基本的な予測手法であるニューラルネットと着雪量推定
とのそれぞれについて、事故が発生する予測が出たメッ
シュの広がる範囲がどのようになっているかを調べた。
その結果、ニューラルネットが事故を予測しているにも
かかわらず、着雪量が閾値以下であったため見逃す例が
多かった。また、ニューラルネットによる予測と着雪量
推定による予測とがよく一致しているときには、見逃し
は少ないが空振りが多発する傾向があった。
In order to investigate the cause, what is the extent to which the mesh where the accident occurs is predicted for each of the two basic prediction methods, the neural network and the snow accretion estimation? I checked if there was something.
As a result, although the neural network predicted the accident, there were many cases where the snowfall was missed because the snow accretion amount was below the threshold value. Moreover, when the prediction by the neural network and the prediction by the snow accretion amount estimation are in good agreement, there was a tendency for missed shots to occur frequently but missed frequently.

【0012】ニューラルネットも着雪量推定も、同じ事
故時の気象データを用いて学習或いは閾値設定を行い、
過去の事故については事故の有無をほぼ同じ程度に判断
できるようになっている。従って、同じ気象データから
雪害予測を行うと、それぞれの予測手法での予測は、本
来、ほぼ一致するはずである。実際、図2の送電線雪害
警報システムに過去の実況値からなる気象実況データを
入力してみたところ、気象予報データを入力した場合に
見逃しが多かった例については見逃しが少なく、空振り
が多かった例については空振りが少なくなった。即ち、
気象実況データを入力すると予測確度が高く、気象予報
データを入力すると、それよりも予測確度が低いという
ことがわかった。
Both the neural network and the estimation of the amount of snowfall are learned or threshold values are set by using the weather data at the same accident,
With regard to past accidents, it is possible to judge the existence of accidents to almost the same extent. Therefore, if snow damage prediction is performed from the same meteorological data, the predictions made by the respective prediction methods should essentially match. Actually, when the weather actual condition data consisting of the past actual condition values was input to the transmission line snow damage warning system of FIG. 2, there were few overlooked cases when there were many overlooked cases when the weather forecast data was input, and there were many missed events. As for the example, there are fewer misses. That is,
It was found that when the meteorological data is input, the prediction accuracy is high, and when the weather forecast data is input, the prediction accuracy is lower than that.

【0013】この原因としては、気象予報データの値と
実況値とにずれがあることである。とくに、気温に関し
ては気象予報データに持続性予測値が用いられている。
持続性予測値とは、3時間後の予測値を現在の実況値で
代用したものであり、気象の分野では一般的に3時間程
度の短時間では現在の実況値が持続すると考えて問題な
いとされている。ところが、気温は、着雪量推定におい
て重要なパラメータであり、気温が違うと推定着雪量が
大きく違う。このため、気象予報データの気温に持続性
予測値が用いられていることが着雪量推定に大きく影響
し、これが予測確度に影響していることが分かった。
The cause of this is that there is a discrepancy between the value of the weather forecast data and the actual value. In particular, regarding the temperature, the sustainability forecast value is used in the weather forecast data.
The sustainability forecast value is a substitute of the forecast value after 3 hours by the current live performance value, and in the field of meteorology, it is generally considered that the current live performance value lasts for a short time of about 3 hours, so there is no problem. It is said that. However, the temperature is an important parameter in estimating the snow accretion amount, and the estimated snow accretion amount greatly differs when the temperature is different. Therefore, it was found that the use of the sustainability prediction value for the temperature of the weather forecast data has a great influence on the estimation of the amount of snow accretion, which affects the prediction accuracy.

【0014】このように、ニューラルネット及び着雪量
推定による雪害予測それぞれが気象予報誤差により予測
を誤るが、気象予報に誤差があることは避けられないの
で、気象予報誤差があっても送電線雪害警報システム全
体として高い予測確度となるようにすることを目指し
た。
As described above, the snow damage predictions by the neural network and the snow accretion amount estimation are erroneous due to the weather forecast error, but it is unavoidable that there is an error in the weather forecast. We aimed to make the snow damage warning system as a whole highly predictive.

【0015】そこで、本発明の目的は、上記課題を解決
し、空振り・見逃しを共に少なくできる気象災害予測方
式を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a meteorological disaster prediction method capable of reducing both missed shots and missed shots.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に本発明は、気象データから地域毎の気象災害の有無を
ニューラルネットで予測すると共に、前記気象データか
ら気象災害の原因となる物理量を地域毎に算出してこの
物理量が気象災害を引き起こす閾値を越えたかどうかを
判定し、気象災害有りと予測された地域と閾値を越えた
地域との重なり方から気象災害警報を出す地域を決定す
るものである。
In order to achieve the above object, the present invention predicts the presence / absence of a weather disaster for each region from meteorological data by a neural network, and from the meteorological data, determines the physical quantity that causes the weather disaster. It is calculated for each area to determine whether or not this physical quantity exceeds a threshold value that causes a meteorological disaster, and the area that issues a meteorological hazard warning is determined based on how the area predicted to have a meteorological disaster and the area that exceeds the threshold value overlap. It is a thing.

【0017】気象災害有りと予測された地域と閾値を越
えた地域との共通範囲が所定範囲より広いときには、共
通範囲内の地域のうち隣接する地域でも気象災害有りと
予測された地域のみ警報を出し、共通範囲が所定範囲よ
り狭いときには、共通範囲内の地域に警報を出すと共に
気象災害有りと予測された地域に注意報を出してもよ
い。
When the common range between the area predicted to have a meteorological disaster and the area exceeding the threshold value is wider than the predetermined range, an alarm is issued only to the area adjacent to the area within the common range that is predicted to have a meteorological disaster. If the common range is narrower than the predetermined range, a warning may be issued to an area within the common range and a warning may be issued to an area predicted to have a weather disaster.

【0018】[0018]

【作用】前述したように、それぞれの予測手法で事故が
発生する予測が出たメッシュの広がる範囲を調べたとこ
ろ、ニューラルネットが事故を予測しているにもかかわ
らず、着雪量が閾値以下であったため見逃す例が多く、
また、ニューラルネットによる予測と着雪量推定による
予測とがよく一致しているときには、見逃しは少ないが
空振りが多発する傾向があった。従って、メッシュの重
なり方から見逃しが多いケースにあたるのか、空振りが
多いケースにあたるのかが判断できる。
As described above, as a result of investigating the spread range of the mesh in which the prediction that an accident will occur is made by each prediction method, the snow accretion amount is below the threshold value even though the neural network predicts the accident. Because there were many cases that I missed,
Moreover, when the prediction by the neural network and the prediction by the snow accretion amount estimation are in good agreement, there was a tendency for missed shots to occur frequently but missed frequently. Therefore, it is possible to determine whether the mesh is often overlooked or the missed case is frequently detected depending on how the meshes overlap.

【0019】即ち、それぞれの予測手法で事故が発生す
る予測が出たメッシュの重なり方から気象災害警報を出
すメッシュを決定することにより、空振り・見逃しを共
に少なくできる。
That is, by determining the mesh for issuing the weather disaster warning from the overlapping manner of the meshes predicted to cause an accident by each prediction method, both miss and miss can be reduced.

【0020】好適には、事故が発生する予測が出たメッ
シュの共通範囲が広いときには、メッシュを削減するこ
とによって空振りを低減させ、共通範囲が狭いときに
は、ニューラルネット単独による予測を注意報とするこ
とによって見逃しを低減させる。
Preferably, when the common range of the mesh in which the accident is predicted is wide, the number of meshes is reduced to reduce the idling, and when the common range is narrow, the prediction by the neural network alone is used as a warning. By doing so, the oversight is reduced.

【0021】[0021]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0022】図1に示されるように、本発明の送電線雪
害警報システムは、雪害予測ニューラルネット装置1、
着雪量推定装置2、閾値判定装置3、予測範囲比較装置
4及び警報出力装置5からなる。雪害予測ニューラルネ
ット装置1、着雪量推定装置2閾値判定装置3は、図2
のものと同じであるから、説明を省略する。
As shown in FIG. 1, the transmission line snow damage warning system of the present invention is a snow damage prediction neural network device 1,
It comprises a snow accretion amount estimation device 2, a threshold value determination device 3, a prediction range comparison device 4, and an alarm output device 5. The snow damage prediction neural network device 1, the snow accretion amount estimation device 2, and the threshold value determination device 3 are shown in FIG.
The description is omitted because it is the same as the above.

【0023】予測範囲比較装置4は、雪害予測ニューラ
ルネット装置1の予測と閾値判定装置3の予測とを用
い、雪害有りと予測されたメッシュと着雪量が閾値を越
えたメッシュとの重なり方から警報出力装置5の動作を
制御するものである。警報出力装置5は、雪害予測ニュ
ーラルネット装置1の判断と閾値判定装置3の判定とに
基づいて雪害警報及び雪害注意報を出力するものである
が、従来と異なり、予測範囲比較装置4によって制御さ
れる。具体的には、雪害有りと予測されたメッシュと閾
値を越えたメッシュとの共通範囲が所定範囲より広いと
きには、共通範囲内のメッシュのうち隣接するメッシュ
でも雪害有りと予測されたメッシュのみ警報を出し、共
通範囲が所定範囲より狭いときには、共通範囲内のメッ
シュに警報を出すと共に雪害有りと予測されたメッシュ
に注意報を出す。
The prediction range comparison device 4 uses the prediction of the snow damage prediction neural net device 1 and the prediction of the threshold value judgment device 3 to overlap the mesh predicted to have snow damage with the mesh whose snow accretion amount exceeds the threshold value. To control the operation of the alarm output device 5. The alarm output device 5 outputs a snow damage warning and a snow damage warning based on the judgment of the snow damage prediction neural network device 1 and the judgment of the threshold value judgment device 3, but unlike the conventional case, it is controlled by the prediction range comparison device 4. To be done. Specifically, when the common range between a mesh predicted to have snow damage and a mesh that exceeds the threshold is wider than a predetermined range, only the meshes that are predicted to have snow damage will be alarmed even if the adjacent meshes within the common range have an alarm. When the common range is narrower than the predetermined range, an alarm is issued to the meshes within the common range and a warning is issued to the meshes predicted to have snow damage.

【0024】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0025】図1の送電線雪害警報システムにあって
は、雪害予測を地域毎に行うために、6Km間隔の網の
目で区切ったメッシュを対象とする。この6Km四方の
メッシュ毎の気象データを用いて各メッシュの雪害予測
を行い、個々のメッシュに対して雪害警報等を出す。気
象データとしては、降水量・気温・風速を用いる。
In the transmission line snow damage warning system of FIG. 1, in order to predict snow damage for each region, a mesh divided by meshes of 6 Km intervals is targeted. Snow damage prediction for each mesh is performed using the meteorological data for each 6 km square, and a snow damage warning or the like is issued for each mesh. Precipitation, temperature, and wind speed are used as meteorological data.

【0026】雪害予測ニューラルネット装置1に入力す
る気象データは、現時刻を含む過去3時間のデータ及び
3時間先の予報データからなる合計6時間分の数値デー
タである。この数値データを雪害予測ニューラルネット
装置1に入力すれば、3時間先の雪害の有無を予測する
ことができる。
The meteorological data input to the snow damage prediction neural network device 1 is numerical data for a total of 6 hours including past 3 hours data including the current time and forecast data 3 hours ahead. By inputting this numerical data to the snow damage prediction neural network device 1, it is possible to predict the presence or absence of snow damage 3 hours ahead.

【0027】着雪量推定装置2では、同じ気象データを
用い、実験を基に導出された着雪量推定式により推定着
雪量を算出する。
The snow accretion amount estimation device 2 uses the same meteorological data to calculate the estimated snow accretion amount by a snow accretion amount estimation formula derived based on experiments.

【0028】閾値判定装置3では、過去の事故時の気象
データを用いた検討により、推定着雪量が10g/cm
以上のときには警報レベルを出力し、5g/cm以上の
ときには注意報レベルを出力する。
In the threshold determination device 3, the estimated snow accretion amount is 10 g / cm, as a result of the examination using the meteorological data at the time of the past accident.
In the above cases, the alarm level is output, and in the case of 5 g / cm or more, the warning level is output.

【0029】予測範囲比較装置4は、雪害有りと予測さ
れたメッシュの広がる範囲と、閾値を越えたメッシュ広
がる範囲との共通範囲を求める。この共通範囲が所定範
囲より広いときには、気象予報データの確度が高いこと
が予想され、雪害の見逃しは少ない傾向となる。反面、
空振りが多くなる傾向となり、気象予報データが6Km
四方の平均値であることを考慮すると、雪害が予測され
た当該メッシュだけでなく、その周辺のメッシュでも雪
害が予測されていることが多い。従って、単独のメッシ
ュで雪害が予測されているような場合は、その確度が高
いことは希であり、警報を出しても空振りとなることが
多い。そこで、隣接するメッシュでも雪害が予測されて
いるメッシュのみ警報を出すようにする。
The prediction range comparison device 4 obtains a common range between the range in which the mesh predicted to have snow damage spreads and the range in which the mesh exceeds the threshold spreads. When this common range is wider than the predetermined range, the accuracy of the weather forecast data is expected to be high, and there is a tendency that snow damage will not be overlooked. On the other hand,
The number of misses tends to increase, and the weather forecast data is 6 km.
Considering that it is the average value on all sides, snow damage is often predicted not only in the mesh where snow damage was predicted, but also in the surrounding meshes. Therefore, when snow damage is predicted with a single mesh, its accuracy is rarely high, and even if an alarm is issued, it is often missed. Therefore, an alarm is issued only for the meshes where snow damage is predicted even in adjacent meshes.

【0030】これと反対に、共通範囲が所定範囲より狭
いときには、空振りは少ないものの見逃しが多くなる傾
向にある。気象予報データの確度が低いことが予想され
る。ここで送電線雪害警報システムとしての確度の低下
を防ぐことが必要となる。ニューラルネットは、その汎
化能力により、入力が多少変動しても大きく誤る可能性
が少ない。一方、着雪量推定演算式は、送電線への着雪
条件を基に実験的に求めたものであるので、現実の着雪
現象と同様に気温の変化に特に敏感である。従って、実
際には気温が変化して着雪が増大しているにもかかわら
ず、気温予報誤差のために推定着雪量が変化せず、雪害
の可能性を見逃してしまうこともある。そこで、共通範
囲が所定範囲より狭いときには、雪害予測ニューラルネ
ット装置1のみが雪害を予測しているメッシュにはすべ
て注意報を出すようにして、見逃しを防ぐ。
On the other hand, when the common range is narrower than the predetermined range, the number of misses tends to increase, but the number of misses tends to increase. The accuracy of the weather forecast data is expected to be low. Here, it is necessary to prevent a decrease in the accuracy of the transmission line snow damage warning system. Due to its generalization ability, the neural network is unlikely to make a large error even if the input changes a little. On the other hand, the snow accretion amount estimation calculation formula is experimentally obtained based on the snow accretion condition on the power transmission line, and is therefore particularly sensitive to changes in temperature as in the actual snow accretion phenomenon. Therefore, although the temperature actually changes and snow accretion increases, the estimated snow accretion amount does not change due to a temperature forecast error, and the possibility of snow damage may be overlooked. Therefore, when the common range is narrower than the predetermined range, the snow damage prediction neural net device 1 only issues a warning to all the meshes that are predicting snow damage to prevent overlooking.

【0031】[0031]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0032】(1)気象予報誤差があっても、空振り・
見逃しを共に少なくでき、気象災害警報システム全体と
して高い予測確度となる。
(1) Even if there is an error in the weather forecast
Both misses can be reduced, and the forecast accuracy of the weather warning system as a whole will be high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す送電線雪害警報システ
ムのブロック図である。
FIG. 1 is a block diagram of a power line snow damage warning system according to an embodiment of the present invention.

【図2】従来例を示す送電線雪害警報システムのブロッ
ク図である。
FIG. 2 is a block diagram of a conventional transmission line snow damage warning system.

【符号の説明】[Explanation of symbols]

1 雪害予測ニューラルネット装置 2 着雪量推定装置 3 閾値判定装置 4 予測範囲比較装置 5 警報出力装置 1 Snow Damage Prediction Neural Network Device 2 Snow Accumulation Amount Estimation Device 3 Threshold Judgment Device 4 Prediction Range Comparison Device 5 Alarm Output Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 気象データから地域毎の気象災害の有無
をニューラルネットで予測すると共に、前記気象データ
から気象災害の原因となる物理量を地域毎に算出してこ
の物理量が気象災害を引き起こす閾値を越えたかどうか
を判定し、気象災害有りと予測された地域と閾値を越え
た地域との重なり方から気象災害警報を出す地域を決定
することを特徴とする気象災害予測方式。
1. A neural network is used to predict the presence / absence of a weather disaster in each region from meteorological data, and a physical quantity that causes a meteorological disaster is calculated for each area from the meteorological data. A meteorological disaster prediction method characterized by determining whether or not the meteorological disaster has occurred, and determining an area for issuing a meteorological hazard warning based on how the area predicted to have a meteorological disaster and the area exceeding the threshold value overlap.
【請求項2】 気象災害有りと予測された地域と閾値を
越えた地域との共通範囲が所定範囲より広いときには、
共通範囲内の地域のうち隣接する地域でも気象災害有り
と予測された地域のみ警報を出し、共通範囲が所定範囲
より狭いときには、共通範囲内の地域に警報を出すと共
に気象災害有りと予測された地域に注意報を出すことを
特徴とする請求項1記載の気象災害予測方式。
2. When the common range between an area predicted to have a meteorological disaster and an area exceeding a threshold is wider than a predetermined range,
Only adjacent areas within the common range that are predicted to have meteorological disasters will be issued a warning, and if the common range is narrower than the specified range, an alarm will be issued to the areas within the common range and a meteorological disaster will be predicted. The meteorological disaster prediction method according to claim 1, wherein a warning is issued to the area.
JP7017802A 1995-02-06 1995-02-06 Prediction system of weather disaster Pending JPH08211161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7017802A JPH08211161A (en) 1995-02-06 1995-02-06 Prediction system of weather disaster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7017802A JPH08211161A (en) 1995-02-06 1995-02-06 Prediction system of weather disaster

Publications (1)

Publication Number Publication Date
JPH08211161A true JPH08211161A (en) 1996-08-20

Family

ID=11953861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7017802A Pending JPH08211161A (en) 1995-02-06 1995-02-06 Prediction system of weather disaster

Country Status (1)

Country Link
JP (1) JPH08211161A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066141A (en) * 2001-08-21 2003-03-05 Foundation Of River & Basin Integrated Communications Japan Explanation displaying system for river information
US7242641B2 (en) * 2000-11-01 2007-07-10 Citizen Seimitus Co., Ltd. Timepiece dial and production method therefor
CN107121297A (en) * 2017-06-19 2017-09-01 吉林大学 A kind of system and control method for simulating wind and rain coupling
CN107703564A (en) * 2017-10-13 2018-02-16 中国科学院深圳先进技术研究院 A kind of precipitation predicting method, system and electronic equipment
CN108922129A (en) * 2018-06-25 2018-11-30 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242641B2 (en) * 2000-11-01 2007-07-10 Citizen Seimitus Co., Ltd. Timepiece dial and production method therefor
JP2003066141A (en) * 2001-08-21 2003-03-05 Foundation Of River & Basin Integrated Communications Japan Explanation displaying system for river information
CN107121297A (en) * 2017-06-19 2017-09-01 吉林大学 A kind of system and control method for simulating wind and rain coupling
CN107703564A (en) * 2017-10-13 2018-02-16 中国科学院深圳先进技术研究院 A kind of precipitation predicting method, system and electronic equipment
CN107703564B (en) * 2017-10-13 2020-04-14 中国科学院深圳先进技术研究院 Rainfall prediction method and system and electronic equipment
CN108922129A (en) * 2018-06-25 2018-11-30 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value
CN108922129B (en) * 2018-06-25 2019-06-14 深圳市中电数通智慧安全科技股份有限公司 A kind of method, apparatus, cloud and system adjusting security sensor alarm threshold value

Similar Documents

Publication Publication Date Title
CN114333245B (en) Multi-parameter model dynamic early warning method based on landslide three-dimensional monitoring
CN112365100B (en) Disaster risk comprehensive assessment-based power grid disaster early warning and response method
CN107169645B (en) Power transmission line fault probability online evaluation method considering influence of rainstorm disaster
CN115096373A (en) Bridge engineering health detection system based on sensor
CN103033855A (en) Grid meteorological disaster monitoring and early warning system
CN109544912B (en) Urban road network ponding state prediction method based on multi-source data fusion
CN110533890B (en) Simple sewer blockage emergency early warning and issuing system
KR102308526B1 (en) Flood forecasting system
CN117057616B (en) Water conservancy monitoring method and system based on digital twin
CN111738617B (en) Transformer substation risk assessment method and early warning system in heavy rainfall weather
CN109961631B (en) Road water accumulation point identification method and road water accumulation point identification system
Yang et al. Joint occurrence probability analysis of typhoon-induced storm surges and rainstorms using trivariate Archimedean copulas
CN109409713A (en) Road network appraisal procedure based on Bayesian model and three times standard deviation criterion
CN111091295A (en) Urban area boundary control system
CN115640967B (en) Power grid resource elastic allocation method based on extreme rainfall disaster prediction
JPH08211161A (en) Prediction system of weather disaster
CN109471205B (en) Monitoring and early warning method based on gridding meteorological data in power grid operation
JP3220606B2 (en) Transmission line snow damage alarm system
CN117894178A (en) Intelligent cloud supervision system based on intelligent high speed
Anuar et al. Early prediction system using neural network in Kelantan River, Malaysia
Guan et al. Traffic incident duration prediction based on artificial neural network
JP3172647B2 (en) Transmission line snow damage prediction method and device
CN115759599A (en) Power supply guarantee method and device, electronic equipment and storage medium
CN114819501A (en) Road traffic meteorological Internet of things multi-source heterogeneous data processing method and system
CN112464536A (en) Method and device for predicting icing fault of power transmission line, computer equipment and medium