JPH08217472A - Method for forming optical element - Google Patents
Method for forming optical elementInfo
- Publication number
- JPH08217472A JPH08217472A JP2170395A JP2170395A JPH08217472A JP H08217472 A JPH08217472 A JP H08217472A JP 2170395 A JP2170395 A JP 2170395A JP 2170395 A JP2170395 A JP 2170395A JP H08217472 A JPH08217472 A JP H08217472A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- molding surface
- glass material
- optical element
- temperature distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/12—Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラス等の光学素材を
加熱軟化し、その後加圧成形して光学素子を得る光学素
子の成形方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding an optical element in which an optical material such as glass is softened by heating and then pressure-molded to obtain an optical element.
【0002】[0002]
【従来の技術】従来、ガラス素材を加熱軟化した後、成
形用金型により光学素子を押圧成形する方法にあって
は、所望の光学素子の形状に対応した成形面を有する一
対の成形用金型が用いられている。2. Description of the Related Art Conventionally, in a method of press-molding an optical element with a molding die after heating and softening a glass material, a pair of molding metals having a molding surface corresponding to a desired optical element shape is used. The mold is used.
【0003】特公平4−20855号公報には、一方の
成形用型を輪帯状に分割構成し、分割された部分を別々
に温度設定しつつ光学素子を押圧成形する方法が記載さ
れている。Japanese Patent Publication No. 4-20855 discloses a method in which one molding die is divided into ring-shaped zones and the optical elements are press-molded while separately setting the temperatures of the divided zones.
【0004】また、特開平2−133325号公報に
は、ガラス素材を加熱軟化するにあたり、上記ガラス素
材の厚肉部の温度より薄肉部が高温度となるように加熱
する方法が開示されている。Further, Japanese Patent Laid-Open No. 2-133325 discloses a method of heating and softening a glass material so that a thin portion of the glass material is heated to a temperature higher than a temperature of a thick portion of the glass material. .
【0005】さらに、特開平5−24858号公報に
は、下型上に加熱軟化状態のガラスを取付け、ガラス素
材の上面形状を反転した形状の加熱部材をガラス素材に
接近させ、加熱部材から加熱気体をガラス素材の上面に
吹き付けて加熱し、ガラス素材における薄肉部の固化を
遅延させながら成形する。そして、その後に加熱部材を
後退させて上型と交替し、ガラス素材の上面に上型を押
し付けて押圧成形する方法が開示されている。Further, in JP-A-5-24858, a glass in a heat-softened state is attached on a lower mold, a heating member having a shape in which the upper surface of the glass material is inverted is brought close to the glass material, and heating is performed from the heating member. Gas is blown onto the upper surface of the glass material to heat it, and molding is performed while delaying the solidification of the thin portion of the glass material. Then, after that, the heating member is retracted to replace the upper mold, and the upper mold is pressed against the upper surface of the glass material to perform press molding.
【0006】[0006]
【発明が解決しようとする課題】しかし、特公平4−2
0855号公報においては、成形用金型を分割構成して
いるため、成形した光学素子面上に分割線が発生し、こ
の分割線が光学機能面に位置すると研磨加工等の後加工
が必要となる。後加工を不要とするには分割線が光学機
能面に位置しないようにしなければならなく、したがっ
て光学素子の光学機能面が光学素子の外径と同等または
外径に近い場合は使用できないという欠点をもってい
る。[Problems to be Solved by the Invention] However, Japanese Patent Publication No. 4-2
In 0855, since the molding die is divided, a dividing line is generated on the surface of the molded optical element, and if this dividing line is located on the optical function surface, post-processing such as polishing is required. Become. In order to eliminate the need for post-processing, the dividing line must not be located on the optical functional surface, and therefore cannot be used if the optical functional surface of the optical element is equal to or close to the outer diameter of the optical element. I have
【0007】また、特開平2−133325号公報にお
いては、ガラス素材に温度差を設けるために、加熱ヒー
ターを接近させて温度差を設けようとしているが、実際
にはガラス素材の薄肉部分を加熱するため、ガラスのも
っている熱容量が小さい薄肉部ではすぐ冷えてしまい、
加熱ヒーターによりガラス素材に温度差を設ける効果が
それ程得られないという欠点をもっている。Further, in JP-A-2-133325, in order to provide a temperature difference in the glass material, a heating heater is brought close to the temperature difference to provide a temperature difference. However, in reality, a thin portion of the glass material is heated. Therefore, the thin part of the glass that has a small heat capacity will quickly cool down,
It has a drawback that the effect of providing a temperature difference in the glass material by the heater cannot be obtained so much.
【0008】さらに、特開平5−24858号公報にお
いては、ガラス素材の上面が加熱部材と非接触時には大
きな圧力が掛けられないために、ほとんど成形ができ
ず、上面を押圧成形する上型に変えた時には、前述のよ
うに薄肉部分のガラスのもっている熱容量が小さいため
に、すぐに冷えてしまい、ガラス素材の薄肉部分を加熱
した効果がそれ程得られない欠点をもっている。Further, in JP-A-5-24858, since a large pressure cannot be applied when the upper surface of the glass material is not in contact with the heating member, almost no molding is possible, and the upper surface is replaced with an upper mold for press molding. In this case, as mentioned above, the thin portion of the glass has a small heat capacity, so that the glass is immediately cooled and the effect of heating the thin portion of the glass material cannot be obtained so much.
【0009】本発明は上記従来技術の問題点に鑑みてな
されたもので、請求項1の発明は、ヒケのない高精度な
凸形状を有するガラス光学素子を得ることのできる光学
素子の成形方法を提供することを目的とする。The present invention has been made in view of the above problems of the prior art, and the invention of claim 1 is a method of molding an optical element capable of obtaining a glass optical element having a highly accurate convex shape without sink marks. The purpose is to provide.
【0010】請求項2の発明は、ヒケのない高精度な凹
形状を有するガラス光学素子を得ることのできる光学素
子の成形方法を提供することを目的とする。It is an object of the invention of claim 2 to provide a method of molding an optical element capable of obtaining a glass optical element having a highly accurate concave shape without sink marks.
【0011】請求項3の発明は、請求項1、2にあっ
て、ガラス光学素子を成形する際の冷却手段を提供する
ことを目的とする。A third aspect of the present invention is, in the first and second aspects, an object of the present invention is to provide a cooling means for molding a glass optical element.
【0012】[0012]
【課題を解決するための手段】上記課題を解決するため
に、請求項1の発明は、ガラス素材を加熱軟化した後、
凹状の成形面を有する一対の成形型間に搬送して凸形状
の光学素子を押圧成形する光学素子の成形方法におい
て、ガラス素材を押圧成形する直前に凹状成形面の中心
部を成形面の表面側から冷却し、成形面に温度分布を設
けるように構成した。In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that after the glass material is softened by heating,
In a method of molding an optical element that conveys between a pair of molds having a concave molding surface and press-molds a convex optical element, the center of the concave molding surface is formed on the surface of the molding surface immediately before pressing the glass material. It was configured to be cooled from the side and to have a temperature distribution on the molding surface.
【0013】また、請求項2の発明は、ガラス素材を加
熱軟化した後、凸状の成形面を有する一対の成形型間に
搬送して凹形状の光学素子を押圧成形する光学素子の成
形方法において、ガラス素材を押圧成形する直前に凸状
成形面の外周部を成形面の表面側から冷却し、成形面に
温度分布を設けるように構成した。Further, the invention of claim 2 is a method for molding an optical element, in which a glass material is heated and softened and then conveyed between a pair of molding dies having a convex molding surface to press-mold a concave optical element. In the above, the outer peripheral portion of the convex molding surface was cooled from the surface side of the molding surface immediately before press molding the glass material, and the temperature distribution was provided on the molding surface.
【0014】さらに、請求項3の発明は、請求項1,2
の光学素子の成形方法にあって、成形面を冷却するに際
して、成形面の表面に冷却ガスを吹き付けるか、または
冷却ガスによって冷却された冷却部材を接触させ、成形
面に温度分布を設けるように構成した。Further, the invention of claim 3 relates to claims 1 and 2.
In the method of molding an optical element, when cooling the molding surface, a cooling gas is blown onto the surface of the molding surface, or a cooling member cooled by the cooling gas is brought into contact with the molding surface to provide a temperature distribution. Configured.
【0015】[0015]
【作用】請求項1の構成にあっては、ガラス素材の押圧
成形直前に型の成形面側から凹状成形面の中心部が冷却
され、外周部に向って温度が高くなるように成形面に温
度分布が生じる。According to the structure of claim 1, the central portion of the concave molding surface is cooled from the molding surface side of the mold immediately before the pressure molding of the glass material, and the temperature is increased toward the outer peripheral portion of the molding surface. A temperature distribution occurs.
【0016】請求項2の構成にあっては、ガラス素材の
押圧成形直前に型の成形面側から凸状成形面の外周部が
冷却され、中心部に向って温度が高くなるように成形面
に温度分布が生じる。According to the structure of claim 2, the outer peripheral portion of the convex molding surface is cooled from the molding surface side of the mold immediately before the pressure molding of the glass material, and the molding surface is heated toward the central portion. Temperature distribution occurs.
【0017】請求項3の構成にあっては、成形面に対し
て、型の成形面側から冷却ガスを吹き付けるか、または
冷却ガスによって冷却された部材を接触させることで、
成形面に温度分布が生じる。According to the structure of claim 3, cooling gas is blown to the molding surface from the molding surface side of the mold, or a member cooled by the cooling gas is brought into contact with the molding surface,
Temperature distribution occurs on the molding surface.
【0018】すなわち、成形面の一部に冷却ガスを吹き
付けるか、または冷却ガスによって冷却された部材を接
触させることにより、成形面上に温度分布ができる。こ
の温度分布は、凸レンズを成形する場合、成形面は凹形
状なので成形面中心部の温度が外周部に対して低く、凹
レンズを成形する場合、型成形面は凸形状なので型成形
面外周部の温度が中心部に対して低くなる。したがっ
て、型に温度分布ができた状態のまま、加熱軟化された
ガラス素材を一対の型間で挟持して押圧成形すると、ガ
ラス素材の厚肉部に相当する部分(凸レンズでは中心
部、凹レンズでは外周部)は、成形面の温度が相対的に
低いために早く冷却されるので、ガラス成形素材の薄肉
部と厚肉部の温度差がなくなり、熱ダマリ部分がなくな
って、成形完了したレンズにヒケが発生しなくなる。That is, a temperature distribution can be formed on the molding surface by spraying a cooling gas on a part of the molding surface or by bringing a member cooled by the cooling gas into contact with the molding surface. This temperature distribution shows that when molding a convex lens, the molding surface is concave, so the temperature at the center of the molding surface is lower than the outer peripheral portion, and when molding a concave lens, the mold molding surface is convex, so The temperature is lower than the center. Therefore, if the heat-softened glass material is sandwiched between a pair of molds and pressure-molded while the temperature distribution is formed in the mold, the part corresponding to the thick part of the glass material (the center part of the convex lens, the concave lens Since the temperature of the molding surface is relatively low, the outer peripheral part is cooled quickly, so there is no temperature difference between the thin and thick parts of the glass molding material, and there is no thermal damage part, and the lens that has been molded is completed. No sink marks occur.
【0019】[0019]
【実施例】以下、図面に基づいて本発明の各実施例を説
明する。 [実施例1]本発明の実施例1を図1〜図3に基づいて
説明する。本実施例は凸レンズを成形する場合である。
図1は本実施例における成形面に温度分布を生じさせる
工程を示す断面図、図2は成形面に温度分布を生じさせ
た後のガラス素材の押圧成形工程を示す断面図、図3は
ガラス素材の押圧成形してからの冷却工程における温度
変化を示した図である。Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, a convex lens is molded.
FIG. 1 is a cross-sectional view showing a step of producing a temperature distribution on a forming surface in the present embodiment, FIG. 2 is a cross-sectional view showing a pressure forming step of a glass material after producing a temperature distribution on a forming surface, and FIG. 3 is a glass. It is a figure showing the temperature change in the cooling process after the press molding of the material.
【0020】まず、本実施例に用いる成形装置を説明す
る。図1に示すように、円柱形状で先端面に凹形状の成
形面を形成した上型1が、成形装置に設けた上型1の加
熱手段を具備した固定部材(図示省略)に固定装着され
ている。上型1の成形面と対向した下方向位置の同軸上
には、上型1の成形面に対向する先端面に凹状の成形面
を形成した下型2が、成形装置に設けた下型2の加熱手
段を具備した駆動手段(図示省略)に連結されて上下動
可能に設けられている。First, the molding apparatus used in this embodiment will be described. As shown in FIG. 1, an upper mold 1 having a cylindrical shape and a concave molding surface formed on a tip end surface thereof is fixedly mounted on a fixing member (not shown) equipped with a heating means of the upper mold 1 provided in a molding apparatus. ing. A lower mold 2 having a concave molding surface formed on a tip end surface facing the molding surface of the upper mold 1 is coaxially arranged at a lower position facing the molding surface of the upper mold 1. It is provided so as to be vertically movable by being connected to a driving means (not shown) equipped with the heating means.
【0021】上記上型1の成形面と下型2の成形面との
間には、図示を省略した冷却ガス供給装置に接続された
冷却ガス供給パイプ3が図示を省略した駆動装置に連結
されて出退可能に設けられている。この冷却ガス供給パ
イプ3の先端には上型1と下型2の各成形面中心に向け
て穴3a,3bが設けられており、冷却ガス供給装置か
ら供給されて冷却ガス供給パイプ3中を通り穴3a,3
bから吐出された冷却ガス4a,4bが、それぞれ上型
1の成形面中心1aと下型2の成形面中心部2aに吹き
付けられるようになっている。すなわち、この冷却ガス
4a,4bの吐出により上下両型1,2の各成形面は温
度がそれぞれ低下し、成形面中心部1a,2aを中心に
その部分の温度が一番低い温度となるような温度分布を
生じさせるようになっている。Between the molding surface of the upper mold 1 and the molding surface of the lower mold 2, a cooling gas supply pipe 3 connected to a cooling gas supply device (not shown) is connected to a driving device (not shown). It is provided so that you can move in and out. Holes 3a and 3b are provided at the tip of the cooling gas supply pipe 3 toward the center of the molding surfaces of the upper mold 1 and the lower mold 2, and the holes 3a and 3b are supplied from the cooling gas supply device to pass through the cooling gas supply pipe 3. Through holes 3a, 3
The cooling gas 4a, 4b discharged from b is blown to the molding surface center 1a of the upper mold 1 and the molding surface center portion 2a of the lower mold 2, respectively. That is, the temperature of each molding surface of the upper and lower molds 1 and 2 is lowered by the discharge of the cooling gas 4a and 4b, and the temperature of the molding surface center portions 1a and 2a becomes the lowest temperature. It produces a wide temperature distribution.
【0022】次に、前記温度分布を生じさせた後の工程
であるプレス中における構成を図2の断面図に基づいて
説明する。上記上型1と下型2とのそれぞれの成形面間
には、押圧成形されたガラス素材6がドーナッツ状のホ
ルダー5内に載置されて配設されている。すなわち、成
形装置外にてホルダー5の内径内に形成された段部5a
上に、成形される光学素材6を載置したホルダー5を載
置したホルダー搬送用アーム(図示省略)により搬送さ
れて、成形の前工程である加熱手段(図示省略)にて成
形可能な所望の加熱温度に加熱軟化されて、予め成形さ
れるガラス素材6の転移点温度近くに加熱され、しかも
成形面に上記温度分布をもった上型1と下型2との間に
搬送されて、押圧成形されるよう構成されている。Next, the structure in the press which is a step after the temperature distribution is generated will be described with reference to the sectional view of FIG. Between the molding surfaces of the upper mold 1 and the lower mold 2, a glass material 6 press-molded is placed and disposed in a donut-shaped holder 5. That is, the step 5a formed inside the inner diameter of the holder 5 outside the molding apparatus.
A desired shape that is conveyed by a holder conveying arm (not shown) on which a holder 5 having an optical material 6 to be formed thereon is placed and can be formed by a heating means (not shown) which is a pre-step of forming. Is heated and softened to the heating temperature of, and heated to near the transition point temperature of the glass material 6 to be molded in advance, and is conveyed between the upper mold 1 and the lower mold 2 having the temperature distribution on the molding surface, It is configured to be press molded.
【0023】次に、本実施例の光学素子の成形方法を説
明する。冷却ガス供給パイプ3が図示されない駆動装置
により前進され、冷却ガス供給パイプ3の先端部を上型
1と下型2とのそれぞれの成形面の間に挿入配置した
後、冷却ガス供給パイプ3の先端部に設けられた穴3
a,3bから、図示されない冷却ガス供給装置により供
給され冷却ガス供給パイプ3中を通ってきた冷却ガス4
a,4bが、それぞれ上型1と下型2の成形面中心部1
a,2aに向って吐出する。すると、上記上型1と下型
2の成形面は成形面中心部1a,2aを中心に温度が低
下し、温度分布が生じる。そして、冷却ガス供給パイプ
3を成形面の間から退出させた直後、予めホルダー搬送
用アーム(図示省略)に載置したホルダー5内に載置さ
れた状態で、図示を省略した加熱手段により成形可能な
状態に加熱軟化されたガラス素材6が、上型1と下型2
の成形面間に搬送される。Next, a method of molding the optical element of this embodiment will be described. The cooling gas supply pipe 3 is advanced by a drive device (not shown), and the tip end portion of the cooling gas supply pipe 3 is inserted and arranged between the molding surfaces of the upper mold 1 and the lower mold 2, and then the cooling gas supply pipe 3 is moved. Hole 3 at the tip
Cooling gas 4 supplied from a and 3b by a cooling gas supply device (not shown) and passing through the cooling gas supply pipe 3.
a and 4b are the center parts 1 of the molding surfaces of the upper mold 1 and the lower mold 2, respectively.
It discharges toward a and 2a. Then, the temperature of the molding surfaces of the upper mold 1 and the lower mold 2 decreases around the molding surface center portions 1a and 2a, and a temperature distribution is generated. Immediately after the cooling gas supply pipe 3 is withdrawn from between the molding surfaces, the cooling gas supply pipe 3 is molded by the heating means (not shown) in the state of being mounted in the holder 5 previously mounted on the holder carrying arm (not shown). The glass material 6 heat-softened to a possible state is the upper mold 1 and the lower mold 2.
It is conveyed between the molding surfaces of.
【0024】次に、搬送されてきたホルダー5とガラス
素材6の下方位置の下型駆動手段により下型2が上昇移
動して下型2の上端部外周縁辺部とホルダー6の下面に
設けられた嵌合部とが当接嵌着し、さらに上昇してホル
ダー搬送用アーム上よりホルダー5とガラス素材6を持
ち上げて離脱する。そして、ホルダー搬送用アームから
離脱したガラス素材6の上端面は上型1の成形面に当接
し、ガラス素材6の上下両面は上下両型1,2の成形面
により押圧成形される。Next, the lower mold 2 is moved upward by the lower mold driving means located below the holder 5 and the glass material 6 being conveyed, and the lower mold 2 is provided on the outer peripheral edge of the lower mold 2 and the lower surface of the holder 6. Then, the holder 5 and the glass material 6 are lifted from the holder transporting arm and separated from each other. Then, the upper end surface of the glass material 6 separated from the holder carrying arm contacts the molding surface of the upper mold 1, and the upper and lower surfaces of the glass material 6 are pressed by the molding surfaces of the upper and lower molds 1 and 2.
【0025】押圧成形されるガラス素材6は上型1およ
び下型2の温度分布により、図3に示すように、厚肉に
相当する中心部と薄肉部の相当する周辺部とでは、温度
差が広がらなく均等に冷却される。Due to the temperature distribution of the upper die 1 and the lower die 2, the glass material 6 to be press-molded has a temperature difference between the central portion corresponding to the thick wall and the peripheral portion corresponding to the thin wall as shown in FIG. Is cooled evenly without spreading.
【0026】しかるのち、下型2を下降させることによ
り成形された光学素子はホルダー5と共にホルダー搬送
用アーム上に載置されて外部に搬出し取り出され、成形
を終了する。Thereafter, the optical element molded by lowering the lower mold 2 is placed on the holder carrying arm together with the holder 5 and carried out to the outside to be taken out, thus completing the molding.
【0027】本実施例の成形方法によれば、冷却速度が
遅い肉厚部を成形する中心部の温度が低く、かつ冷却速
度が早い薄肉部を成形する周辺部の温度が高くなるよう
に、冷却ガス供給パイプ3から吐出させた冷却ガス4
a,4bにより上型1と下型2の成形面に温度分布を生
じせるようにしたので、図3に示すように、押圧成形時
にガラス素材6の肉厚部と肉薄部の温度差を小さくする
ことができるため、収縮量の差によるヒケや歪のない光
学素子が得られる。また、熱容量の大きい上型1と下型
2に温度分布を生じさせるようにしたので、冷却ガス供
給パイプ3を成形面間から退出させた後、ガラス素材6
を成形面間に搬送する間に成形面に生じさせた温度分布
が解消することがない。According to the molding method of this embodiment, the temperature of the central portion for molding the thick portion having the slow cooling rate is low, and the temperature of the peripheral portion for molding the thin portion having the fast cooling rate is high. Cooling gas 4 discharged from cooling gas supply pipe 3
Since a temperature distribution is generated on the molding surfaces of the upper mold 1 and the lower mold 2 by means of a and 4b, as shown in FIG. 3, the temperature difference between the thick and thin portions of the glass material 6 is reduced during press molding. Therefore, it is possible to obtain an optical element free from sink marks and distortion due to the difference in shrinkage amount. Further, since the temperature distribution is generated in the upper mold 1 and the lower mold 2 having a large heat capacity, the glass material 6 is removed after the cooling gas supply pipe 3 is withdrawn from between the molding surfaces.
The temperature distribution generated on the molding surface is not eliminated during the transportation of the resin between the molding surfaces.
【0028】[実施例2]本発明の実施例2を図4〜図
7に基づいて説明する。図4は本実施例における成形面
に温度分布を生じさせる工程を示す断面図、図5は成形
面の冷却用部材を示す断面図、図6は成形面に温度分布
を生じさせた後のガラス素材の押圧成形工程を示す断面
図、図7はガラス素材の押圧成形してからの冷却工程に
おける温度変化を示した図である。なお、図中において
上記実施例1と同一部材、同一形状、同一構成について
は、同一符号を付しその説明は省略する。[Second Embodiment] A second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a cross-sectional view showing a step of producing a temperature distribution on the molding surface in this embodiment, FIG. 5 is a cross-sectional view showing a cooling member on the molding surface, and FIG. 6 is a glass after the temperature distribution is generated on the molding surface. FIG. 7 is a cross-sectional view showing the pressure molding step of the material, and FIG. 7 is a diagram showing the temperature change in the cooling step after the glass material is pressure molded. In the drawings, the same members, shapes and configurations as those of the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
【0029】本実施例は、凹レンズを成形する場合の実
施例である。本実施例に用いる上型11と下型12に
は、その先端面に凸形状の成形面がそれぞれ形成されて
いる。また、冷却ガス供給パイプ13の先端部はリング
状に形成されるとともに、そのリング状部には図5に示
すように複数の穴13a,13bが上下方向に設けられ
ており、穴13a,13bより冷却ガス4a,4bがそ
れぞれ上型11の成形面外周部11aと下型12の成形
面外周部12aに向って吐出する構成となっている。す
なわち、上型11の成形面および下型12の成形面は冷
却ガス4a,4bの吐出によりそれぞれ温度が低下し、
成形面外周部11a,12aにおける温度が一番低い状
態で成形面の中心を中心にして同心円状に温度分布が生
じるように構成されている。その他の構成は実施例1と
同じである。The present embodiment is an example of molding a concave lens. Each of the upper mold 11 and the lower mold 12 used in this embodiment is provided with a convex molding surface on its tip surface. Further, the tip of the cooling gas supply pipe 13 is formed in a ring shape, and the ring-shaped portion is provided with a plurality of holes 13a, 13b in the vertical direction as shown in FIG. 5, and the holes 13a, 13b. As a result, the cooling gases 4a and 4b are discharged toward the molding surface outer peripheral portion 11a of the upper mold 11 and the molding surface outer peripheral portion 12a of the lower mold 12, respectively. That is, the temperatures of the molding surface of the upper mold 11 and the molding surface of the lower mold 12 are lowered by the discharge of the cooling gases 4a and 4b, respectively.
It is configured such that temperature distribution occurs concentrically around the center of the molding surface in the lowest temperature at the molding surface outer peripheral portions 11a and 12a. Other configurations are the same as those in the first embodiment.
【0030】次に、本発明の実施例2の光学素子の成形
方法を説明する。冷却ガス供給パイプ13が図示されな
い駆動装置により前進され、冷却ガス供給パイプ13の
リング状先端部を上型11と下型12とのそれぞれの成
形面の間に挿入配置した後、冷却ガス供給パイプ13の
先端部に設けられた複数の穴13a,13bから、図示
されない冷却ガス供給装置により供給され冷却ガス供給
パイプ13中を通ってきた冷却ガス4a,4bが、それ
ぞれ上型11と下型12の成形面外周部11a,12a
に向って吐出する。すると、上記上型11と下型12の
成形面は成形面外周部11a,12aから温度が低下
し、上下両型11,12の中心を中心にした同心円状の
温度分布が生じる。そして、冷却ガス供給パイプ13を
成形面の間から退出させた直後、予めホルダー搬送用ア
ーム(図示省略)に載置したホルダー5内に載置された
状態で、図示を省略した加熱手段により成形可能な状態
に加熱軟化されたガラス素材6が、上型11と下型12
の成形面間に搬送される。Next, a method of molding the optical element of Example 2 of the present invention will be described. The cooling gas supply pipe 13 is advanced by a driving device (not shown), and the ring-shaped tip of the cooling gas supply pipe 13 is inserted and arranged between the molding surfaces of the upper mold 11 and the lower mold 12, and then the cooling gas supply pipe 13 is inserted. Cooling gas 4a, 4b supplied from a cooling gas supply device (not shown) and passing through the cooling gas supply pipe 13 through a plurality of holes 13a, 13b provided at the tip of the upper and lower molds 12, 13 respectively. Molding surface outer peripheral portions 11a, 12a
Discharge toward. Then, the temperature of the molding surfaces of the upper mold 11 and the lower mold 12 decreases from the molding surface outer peripheral portions 11a and 12a, and a concentric temperature distribution centering on the centers of the upper and lower molds 11 and 12 is generated. Immediately after the cooling gas supply pipe 13 is withdrawn from between the molding surfaces, the cooling gas supply pipe 13 is mounted in the holder 5 previously mounted on the holder transfer arm (not shown) and molded by the heating means (not shown). The glass material 6 heat-softened to a possible state is the upper mold 11 and the lower mold 12.
It is conveyed between the molding surfaces of.
【0031】押圧成形されるガラス素材6は上型11お
よび下型12の温度分布により、図7に示すように、厚
肉に相当する外周部と薄肉部の相当する中心部とでは、
温度差が広がらなく均等に冷却される。その他の成形方
法については、実施例1と同じである。Due to the temperature distribution of the upper mold 11 and the lower mold 12, the press-molded glass material 6 has, as shown in FIG. 7, an outer peripheral portion corresponding to a thick wall and a central portion corresponding to a thin wall,
The temperature difference does not spread and it is cooled evenly. Other molding methods are the same as in Example 1.
【0032】本実施例の成形方法によれば、冷却速度が
遅いガラス素材6の肉厚部を成形する外周部の温度が低
く、かつ冷却速度が早いガラス素材6の薄肉部を成形す
る中心部の温度が高くなるように、冷却ガス供給パイプ
13から吐出させた冷却ガス4a,4bにより上型11
と下型12の成形面に温度分布を生じせるようにしたの
で、図7に示すように、押圧成形時にガラス素材6の肉
厚部と肉薄部の温度差を小さくすることができるため、
収縮量の差によるヒケや歪のない光学素子が得られる。
また、熱容量の大きい上型11と下型12に温度分布を
生じさせるようにしたので、冷却ガス供給パイプ13を
成形面間から退出させた後、ガラス素材6を成形面間に
搬送する間に成形面に生じさせた温度分布が解消するこ
とがない。According to the forming method of this embodiment, the temperature of the outer peripheral portion forming the thick portion of the glass material 6 having a low cooling rate is low, and the central portion forming the thin portion of the glass material 6 having a high cooling rate. So that the temperature of the upper mold 11 is increased by the cooling gases 4a and 4b discharged from the cooling gas supply pipe 13.
Since a temperature distribution is generated on the molding surface of the lower mold 12, the temperature difference between the thick portion and the thin portion of the glass material 6 can be reduced during press molding as shown in FIG.
An optical element free from sink marks and distortion due to the difference in shrinkage amount can be obtained.
Further, since the temperature distribution is generated in the upper mold 11 and the lower mold 12 having a large heat capacity, after the cooling gas supply pipe 13 is withdrawn from between the molding surfaces, the glass material 6 is conveyed between the molding surfaces. The temperature distribution generated on the molding surface is not eliminated.
【0033】[実施例3]本発明の実施例3を図8〜図
10に基づいて説明する。図8は凸レンズを成形する際
の成形面に温度分布を生じさせる工程を示す断面図、図
9は凹レンズを成形する際の成形面に温度分布を生じさ
せる工程を示す断面図、図10は凹レンズを成形する成
形面の冷却用部材を示す断面図である。[Third Embodiment] A third embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a sectional view showing a step of producing a temperature distribution on a molding surface when molding a convex lens, FIG. 9 is a sectional view showing a step of producing a temperature distribution on a molding surface when molding a concave lens, and FIG. 10 is a concave lens. FIG. 6 is a cross-sectional view showing a cooling member of a molding surface for molding the.
【0034】本実施例にあっては、上記実施例1,2に
示した冷却ガス供給パイプ3,13を中に挿入配置した
冷却部材21,22が用いられ、この冷却部材21,2
2には型成形面に接触する可能な接触部21a,22a
が形成されている。すなわち、凸レンズを成形する際に
用いる冷却部材21には、図8に示すように、凹面型2
5の成形面中心に接触可能なように先端部を成形面方向
に折曲して接触部21aが設けらている。また、凹レン
ズを成形する際に用いる冷却部材22には、図9および
図10に示すように、凸面型26の成形面外周部に接触
可能なように先端部を成形面方向に向けた筒状からなる
接触部22aが設けられている。この冷却部材21,2
2は、図示を省略した駆動装置により、型25,26の
成形面に対して接触・離反および成形面間に対して出退
可能に設けられ、その内部には冷却ガス供給パイプ3,
13を介して冷却ガス23,24が図示を省略した冷却
ガス供給装置により流入可能になっており、接触部21
aが成形面に接触することで凹面型25の成形面中心部
を冷却し、接触部22aが成形面に接触することで凸面
型26の成形面外周部を冷却し、これにより成形面に温
度分布を生じさせる構成となっている。その他の構成
は、実施例1,2と同一である。In this embodiment, the cooling members 21 and 22 in which the cooling gas supply pipes 3 and 13 shown in Embodiments 1 and 2 are inserted and arranged are used. The cooling members 21 and 22 are used.
2 includes contact portions 21a and 22a capable of contacting the molding surface.
Are formed. That is, as shown in FIG. 8, the cooling member 21 used when molding the convex lens has a concave surface 2
The tip end portion is bent in the molding surface direction so that it can come into contact with the center of the molding surface, and a contact portion 21a is provided. In addition, as shown in FIGS. 9 and 10, the cooling member 22 used when molding the concave lens has a cylindrical shape with its tip end facing the molding surface direction so as to be able to contact the outer peripheral surface of the molding surface of the convex mold 26. Is provided with a contact portion 22a. This cooling member 21,2
2 is provided by a drive device (not shown) so that it can come into contact with and separate from the molding surfaces of the molds 25 and 26, and can move in and out between the molding surfaces.
Cooling gas 23, 24 can flow in via a cooling gas supply device (not shown) through the contact portion 21.
When a contacts the molding surface, the center of the molding surface of the concave die 25 is cooled, and when the contact portion 22a contacts the molding surface, the outer periphery of the molding surface of the convex die 26 is cooled. It is configured to generate a distribution. Other configurations are the same as those of the first and second embodiments.
【0035】本発明の光学素子の成形方法を説明する。
上記実施例1,2に示した冷却ガス供給パイプ3,13
を内部に配置した冷却部材21,22が成形面間に挿入
配置した後、冷却ガス23,24により冷却されたその
接触部21a,22aを型成形面に接触させる。これに
より、ガラス素材の肉厚部を成形する型成形面の部位を
冷却し、凹面型25および凸面型26の各成形面に実施
例1および実施例2と同様な温度分布を生じさせる。そ
の他の方法は、実施例1,2と同じである。A method of molding the optical element of the present invention will be described.
Cooling gas supply pipes 3, 13 shown in the above Examples 1 and 2
After the cooling members 21 and 22 inside of which are inserted and arranged between the molding surfaces, the contact portions 21a and 22a cooled by the cooling gas 23 and 24 are brought into contact with the molding surface. As a result, the portion of the die forming surface for forming the thick portion of the glass material is cooled, and the same temperature distribution as that of the first and second embodiments is generated on each of the forming surfaces of the concave die 25 and the convex die 26. The other method is the same as in the first and second embodiments.
【0036】本実施例によれば、実施例1,2と同じで
あるが、冷却部材21,22を直接、成形面に接触させ
るので、さらに細かな部分の冷却が効率よくできる。According to this embodiment, the same as in Embodiments 1 and 2, but the cooling members 21 and 22 are brought into direct contact with the molding surface, so that even finer parts can be cooled efficiently.
【0037】[0037]
【発明の効果】以上のように、本発明の光学素子の成形
方法によれば、以下の効果を得ることができる。請求項
1の発明によれば、凹状成形面の中心部を冷却して成形
面に温度分布を生じさせているので、凸レンズを押圧成
形する際にガラス素材の中心の厚肉部と外周の薄肉部の
温度差を小さくすることができるため、収縮量の差によ
るヒケや歪のない凸形状の光学素子を成形することがで
きる。As described above, according to the method of molding an optical element of the present invention, the following effects can be obtained. According to the invention of claim 1, since the central portion of the concave molding surface is cooled to generate the temperature distribution on the molding surface, when the convex lens is press-molded, the thick portion at the center of the glass material and the thin wall at the outer periphery are formed. Since the temperature difference between the portions can be reduced, it is possible to form a convex optical element that is free from sink marks and distortion due to the difference in shrinkage amount.
【0038】請求項2の発明によれば、凸状成形面の外
周部を冷却して成形面に温度分布を生じさせているの
で、凹レンズを押圧成形する際にガラス素材の中心の薄
肉部と外周の厚肉部の温度差を小さくすることができる
ため、収縮量の差によるヒケや歪のない凹形状の光学素
子を成形することができる。According to the second aspect of the present invention, since the outer peripheral portion of the convex molding surface is cooled to generate the temperature distribution on the molding surface, when the concave lens is press-molded, the thin wall portion at the center of the glass material Since it is possible to reduce the temperature difference in the thick portion on the outer periphery, it is possible to mold a concave optical element that is free from sink marks and distortion due to the difference in shrinkage amount.
【0039】請求項3の発明によれば、冷却ガスを吹き
付けるか、または冷却部材を接触させることにより、確
実に成形面に温度分布を設けることができる。According to the third aspect of the invention, the temperature distribution can be surely provided on the molding surface by blowing the cooling gas or bringing the cooling member into contact.
【図1】本発明の実施例1において成形面に温度分布を
生じさせる工程を示す断面図である。FIG. 1 is a cross-sectional view showing a process of producing a temperature distribution on a molding surface in Example 1 of the present invention.
【図2】本発明の実施例1において成形面に温度分布を
生じさせた後のガラス素材の押圧成形工程を示す断面図
である。FIG. 2 is a cross-sectional view showing the pressure molding step of the glass material after the temperature distribution is generated on the molding surface in Example 1 of the present invention.
【図3】本発明の実施例1においてガラス素材の押圧成
形してからの冷却工程における温度変化を示した図であ
る。FIG. 3 is a diagram showing a temperature change in a cooling step after the glass material is press-molded in Example 1 of the present invention.
【図4】本発明の実施例2において成形面に温度分布を
生じさせる工程を示す断面図である。FIG. 4 is a cross-sectional view showing a step of producing a temperature distribution on a molding surface in Example 2 of the present invention.
【図5】図4におけるA−A線に沿って切断した冷却用
部材を示す断面図である。5 is a cross-sectional view showing a cooling member taken along line AA in FIG.
【図6】本発明の実施例2において成形面に温度分布を
生じさせた後のガラス素材の押圧成形工程を示す断面図
である。FIG. 6 is a cross-sectional view showing a pressure molding step of a glass material after a temperature distribution is generated on a molding surface in Example 2 of the present invention.
【図7】本発明の実施例2においてガラス素材の押圧成
形してからの冷却工程における温度変化を示した図であ
る。FIG. 7 is a diagram showing a temperature change in a cooling step after the glass material is press-molded in Example 2 of the present invention.
【図8】本発明の実施例3において凸レンズを成形する
際の成形面に温度分布を生じさせる工程を示す断面図で
ある。FIG. 8 is a cross-sectional view showing a step of producing a temperature distribution on a molding surface when molding a convex lens in Example 3 of the present invention.
【図9】本発明の実施例3において凹レンズを成形する
際の成形面に温度分布を生じさせる工程を示す断面図で
ある。FIG. 9 is a cross-sectional view showing a step of producing a temperature distribution on the molding surface when molding a concave lens in Example 3 of the present invention.
【図10】図9におけるB−B線に沿って切断した冷却
用部材を示す断面図である。10 is a cross-sectional view showing the cooling member taken along line BB in FIG.
1 上型 1a 成形面の中心部 2 下型 2a 成形面の中心部 3 冷却ガス供給パイプ 4a,4b 冷却ガス 11 上型 11a 成形面の外周部 12 下型 12a 成形面の外周部 13 冷却ガス供給パイプ 21,22 冷却部材 23,24 冷却ガス 25 凹面型 26 凸面型 1 Upper Mold 1a Center of Molding Surface 2 Lower Mold 2a Center of Molding Surface 3 Cooling Gas Supply Pipes 4a, 4b Cooling Gas 11 Upper Mold 11a Molding Surface Outer Part 12 Lower Mold 12a Molding Surface Outer Part 13 Cooling Gas Supply Pipes 21 and 22 Cooling members 23 and 24 Cooling gas 25 Concave type 26 Convex type
Claims (3)
形面を有する一対の成形型間に搬送して凸形状の光学素
子を押圧成形する光学素子の成形方法において、ガラス
素材を押圧成形する直前に凹状成形面の中心部を成形面
の表面側から冷却し、成形面に温度分布を設けることを
特徴とする光学素子の成形方法。1. A glass material is press-molded in a method of molding an optical element, which comprises heating and softening a glass material, and then conveying it between a pair of molds having a concave molding surface to press-mold a convex optical element. A method of molding an optical element, characterized in that the central part of the concave molding surface is cooled immediately before from the surface side of the molding surface to provide a temperature distribution on the molding surface.
形面を有する一対の成形型間に搬送して凹形状の光学素
子を押圧成形する光学素子の成形方法において、ガラス
素材を押圧成形する直前に凸状成形面の外周部を成形面
の表面側から冷却し、成形面に温度分布を設けることを
特徴とする光学素子の成形方法。2. A glass material is press-molded in a method of molding an optical element, which comprises heating and softening a glass material, and then conveying the glass material between a pair of molds having a convex molding surface to press-mold a concave optical element. Immediately before the cooling, the outer peripheral portion of the convex molding surface is cooled from the surface side of the molding surface to provide a temperature distribution on the molding surface.
面に冷却ガスを吹き付けるか、または冷却ガスによって
冷却された冷却部材を接触させ、成形面に温度分布を設
けることを特徴とする請求項1、2記載の光学素子の成
形方法。3. When cooling the molding surface, a cooling gas is blown to the surface of the molding surface, or a cooling member cooled by the cooling gas is brought into contact with the molding surface to provide a temperature distribution on the molding surface. 1. The method for molding an optical element according to 1, 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2170395A JPH08217472A (en) | 1995-02-09 | 1995-02-09 | Method for forming optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2170395A JPH08217472A (en) | 1995-02-09 | 1995-02-09 | Method for forming optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08217472A true JPH08217472A (en) | 1996-08-27 |
Family
ID=12062423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2170395A Withdrawn JPH08217472A (en) | 1995-02-09 | 1995-02-09 | Method for forming optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08217472A (en) |
-
1995
- 1995-02-09 JP JP2170395A patent/JPH08217472A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001180946A (en) | Method for forming optical glass element and forming apparatus for optical glass with method | |
JPH08217472A (en) | Method for forming optical element | |
JP4076251B2 (en) | Glass gob for optical element molding, molding apparatus therefor, molding method therefor, and optical element forming method using glass gob | |
JPH11171564A (en) | Production of glass formed body | |
JP2000233934A (en) | Method for press-forming glass product and device therefor | |
JP2718452B2 (en) | Glass optical element molding method | |
JP4436561B2 (en) | Optical element manufacturing method | |
JP3359235B2 (en) | Press forming equipment for optical elements | |
JP3585260B2 (en) | Apparatus and method for manufacturing optical element | |
JP4358406B2 (en) | Optical element molding apparatus and molding method | |
JP2509305B2 (en) | Glass lens forming method and apparatus | |
JPH0248498B2 (en) | KOGAKUBUHINNOSEIKEISOCHI | |
JP2723139B2 (en) | Optical element molding method and molding apparatus | |
JPH0710567A (en) | Production of optical element | |
JPH08245224A (en) | Production of glass formed part and apparatus therefor | |
JPS6374926A (en) | Forming of optical glass part | |
JPH04338120A (en) | Method for forming glass optical element | |
JP2004345880A (en) | Production method for lens having ball casing | |
JP2004231477A (en) | Method and apparatus for molding optical element | |
JPH07138031A (en) | Forming method of lens | |
JP2001335330A (en) | Method for forming optical elements | |
JP4030799B2 (en) | Optical element molding method | |
JPH0717723A (en) | Method and apparatus for forming optical element | |
JP2001226126A (en) | Forming method of optical glass element | |
JPH0333024A (en) | Method and device for forming optical glass part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020507 |