JPH08198675A - Lead-containing combined perovskite type dielectric porcelain - Google Patents
Lead-containing combined perovskite type dielectric porcelainInfo
- Publication number
- JPH08198675A JPH08198675A JP7007452A JP745295A JPH08198675A JP H08198675 A JPH08198675 A JP H08198675A JP 7007452 A JP7007452 A JP 7007452A JP 745295 A JP745295 A JP 745295A JP H08198675 A JPH08198675 A JP H08198675A
- Authority
- JP
- Japan
- Prior art keywords
- grain size
- crystal grain
- lead
- type dielectric
- dielectric porcelain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、積層セラミックコンデ
ンサの誘電体として用いられる鉛系複合ペロブスカイト
型誘電体磁器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-based composite perovskite type dielectric ceramic used as a dielectric of a laminated ceramic capacitor.
【0002】[0002]
【従来の技術】従来、誘電体磁器として、チタン酸バリ
ウム(BaTiO3 )を主成分とするものが広く実用化
されているが、チタン酸バリウムを主成分とするもの
は、通常1300〜1400℃という高い焼結温度を必
要とした。このため、これを積層コンデンサの誘電体と
して用いる場合には、内部電極としてこの焼結温度に耐
え得る材料、例えば白金、パラジウムなどの高価な貴金
属を使用しなければならず、製造コストが高くなるとい
う欠点があった。2. Description of the Related Art Conventionally, dielectric ceramics containing barium titanate (BaTiO 3 ) as a main component have been widely put into practical use. However, dielectric ceramics containing barium titanate as a main component are usually 1300 to 1400 ° C. High sintering temperature was required. Therefore, when this is used as a dielectric of a multilayer capacitor, a material that can withstand this sintering temperature, for example, an expensive noble metal such as platinum or palladium must be used as an internal electrode, which increases the manufacturing cost. There was a drawback.
【0003】したがって、積層コンデンサの製造コスト
を低減させるために、銀などを主成分とする安価な金属
を内部電極に使用できるような、できるだけ低い温度、
特に1000℃以下で焼結できる磁器組成物が必要とさ
れた。さらに、誘電体磁器の電気的特性としては、誘電
率が高く誘電損失が小さく、絶縁抵抗が高いことが基本
的に要求されていた。Therefore, in order to reduce the manufacturing cost of the multilayer capacitor, it is possible to use an inexpensive metal containing silver or the like as a main component for the internal electrode at a temperature as low as possible.
In particular, there was a need for porcelain compositions that could be sintered below 1000 ° C. Further, as the electrical characteristics of the dielectric ceramic, it is basically required that the dielectric constant is high, the dielectric loss is small, and the insulation resistance is high.
【0004】このような要求に答えるために、1000
℃以下の温度で焼結できる磁器組成物として、Pb(F
e2/3 W1/3 )O3 −PbZrO3 系(特開昭55−2
1850号公報)、Pb(Fe2/3 W1/3 )O3 −Pb
ZrO3 −Pb(Mn2/3 W 1/3 )O3 系(特開昭55
−23058号公報)、Pb(Mn1/3 Nb2/3 )O3
−Pb(Mg1/2 W1/2 )O3 −PbTiO3 系(特開
昭58−60670号公報)などの鉛系複合ペロブスカ
イト型誘電体磁器組成物が提案されてきた。To meet such demands, 1000
As a porcelain composition that can be sintered at a temperature of ℃ or less, Pb (F
e2/3W1/3) O3-PbZrO3System (JP-A-55-2
1850), Pb (Fe2/3W1/3) O3-Pb
ZrO3-Pb (Mn2/3W 1/3) O3System (JP-A-55
-23058), Pb (Mn1/3Nb2/3) O3
-Pb (Mg1/2W1/2) O3-PbTiO3System
58-60670) and other lead-based composite perovskers
Ito-type dielectric ceramic compositions have been proposed.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、近年、
前記複合ペロブスカイト型誘電体磁器組成物がチップタ
イプの積層セラミックコンデンサの誘電体として用いら
れるにしたがって、従来の誘電率が高く誘電損失が小さ
く、絶縁抵抗が高いことに加えて、磁器の機械的強度が
大きいことが特に必要となってきた。However, in recent years,
As the composite perovskite-type dielectric ceramic composition is used as a dielectric for a chip-type multilayer ceramic capacitor, in addition to the conventional high dielectric constant, low dielectric loss, and high insulation resistance, the mechanical strength of porcelain is increased. Has become especially necessary.
【0006】即ち、チップタイプの積層セラミックコン
デンサを回路基板に実装したときに、回路基板と積層セ
ラミックコンデンサとの熱膨張係数の違いや、あるいは
回路基板の撓みなどによって、積層セラミックコンデン
サに機械的な歪みが加わっても破損しないように、積層
セラミックコンデンサを構成する誘電体磁器の機械的強
度を高めておく必要がある。That is, when a chip-type monolithic ceramic capacitor is mounted on a circuit board, the monolithic ceramic capacitor is mechanically affected by a difference in coefficient of thermal expansion between the circuit board and the monolithic ceramic capacitor or due to bending of the circuit board. It is necessary to increase the mechanical strength of the dielectric porcelain that composes the monolithic ceramic capacitor so that it will not be damaged even if strain is applied.
【0007】しかしながら、従来の鉛系複合ペロブスカ
イト型誘電体磁器は、機械的強度が比較的小さく、クラ
ックが入って破損する場合があった。However, the conventional lead-based composite perovskite-type dielectric ceramic has a relatively small mechanical strength and may be cracked and damaged.
【0008】そこで、本発明の目的は、上記問題を解決
し、1000℃以下の温度で焼結するものであって、誘
電率が高く、しかも機械的強度が大きい鉛系複合ペロブ
スカイト型誘電体磁器を提供することにある。Therefore, an object of the present invention is to solve the above problems and to sinter at a temperature of 1000 ° C. or lower, which has a high dielectric constant and a large mechanical strength, and is a lead-based composite perovskite type dielectric ceramic. To provide.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、本発明の鉛系複合ペロブスカイト型誘電体磁器は、
平均結晶粒子径が2μm〜5μmの範囲にあり、かつ、
最大結晶粒子径と最小結晶粒子径との比が4〜6の範囲
にあることを特徴とする。In order to achieve the above object, the lead-based composite perovskite type dielectric ceramic of the present invention comprises:
The average crystal grain size is in the range of 2 μm to 5 μm, and
The ratio of the maximum crystal grain size to the minimum crystal grain size is in the range of 4 to 6.
【0010】[0010]
【実施例】以下、本発明の鉛系複合ペロブスカイト型誘
電体磁器の実施例について説明する。EXAMPLES Examples of lead-based composite perovskite type dielectric ceramics of the present invention will be described below.
【0011】まず、出発原料として、工業用のPb3 O
4 、Fe2 O3 、WO3 、ZnO、Nb2 O5 、Mg
O、NiOを用意し、これらを表1に示す組成となるよ
うに秤量し、イオン交換水を溶媒として16時間ボ−ル
ミルで混合を行なった。得られた混合粉を大気中750
℃で2時間仮焼し、粉砕して仮焼粉末を得た。First, as a starting material, industrial Pb 3 O is used.
4 , Fe 2 O 3 , WO 3 , ZnO, Nb 2 O 5 , Mg
O and NiO were prepared, weighed so as to have the composition shown in Table 1, and mixed with a ball mill for 16 hours using ion-exchanged water as a solvent. 750 the obtained mixed powder in the air
It was calcined at ℃ for 2 hours and pulverized to obtain a calcined powder.
【0012】その後、得られた仮焼粉末にポリビニール
ブチラールなどのバインダ、DOPなどの可塑剤および
トルエンなどの有機溶媒を添加し、混合してスラリ−を
得た。そして、このスラリーを用いて、厚み50〜60
μmのグリ−ンシ−トを、ドクタ−ブレ−ド法によって
作製した。その後、このグリ−ンシ−トを積み重ねて圧
着した後、打ち抜き加工あるいは切断加工することによ
って、直径10mm、厚さ1.0mmの円板試料、およ
び45mm×5mm×1.5mmの直方体試料を得た。Thereafter, a binder such as polyvinyl butyral, a plasticizer such as DOP and an organic solvent such as toluene were added to the obtained calcined powder and mixed to obtain a slurry. Then, using this slurry, a thickness of 50 to 60
A green sheet of μm was prepared by the doctor blade method. After that, the green sheets are stacked and pressure-bonded, and then punched or cut to obtain a disk sample having a diameter of 10 mm and a thickness of 1.0 mm, and a rectangular parallelepiped sample having a size of 45 mm × 5 mm × 1.5 mm. It was
【0013】次に、これらの試料を大気中で加熱してバ
インダを除去した後、大気中で表1に示す温度で2時間
焼成して磁器試料を得た。さらに、円板状磁器試料につ
いては、その両面に銀ペーストを塗布し、大気中800
℃で焼き付けて円板状コンデンサとした。Next, these samples were heated in the air to remove the binder, and then fired in the air at the temperatures shown in Table 1 for 2 hours to obtain porcelain samples. Further, with respect to the disk-shaped porcelain sample, silver paste was applied to both surfaces of the sample, and the sample was exposed to 800
The disc-shaped capacitor was baked at ℃.
【0014】[0014]
【表1】 [Table 1]
【0015】その後、円板状コンデンサを用いて比誘電
率を求めた。この場合、比誘電率は、温度25℃、周波
数1KHz、測定電圧1Vrmsの条件下で測定した静
電容量と円板状コンデンサの寸法より算出した。After that, the relative permittivity was determined using a disk-shaped capacitor. In this case, the relative dielectric constant was calculated from the capacitance measured under the conditions of a temperature of 25 ° C., a frequency of 1 KHz, and a measurement voltage of 1 Vrms, and the dimensions of the disk-shaped capacitor.
【0016】また、直方体磁器試料を用いて、3点曲げ
による抗折強度を求めた。具体的には、オ−トグラフに
て支点間距離を30mmにして試料をセットし、0.5
mm/分の速度でクロスヘッドを進ませたときの破壊荷
重(P)を求め、抗折強度(σ)=3PL/2WT
2 (但し、Lは支点間距離、Tは試料の厚み、Wは試料
の幅)なる式にしたがって抗折強度を求めた。そして、
抗折強度の値としては、20個の値をワイブルプロット
し、ワイブル統計解析により得た平均値を採用した。Further, using a rectangular parallelepiped porcelain sample, the bending strength by three-point bending was determined. Specifically, the sample was set with an autograph with the distance between fulcrums set to 30 mm, and 0.5
The breaking load (P) when the crosshead is advanced at a speed of mm / min is calculated, and the bending strength (σ) = 3PL / 2WT
2 (where L is the distance between fulcrums, T is the thickness of the sample, and W is the width of the sample). And
As the value of the bending strength, an average value obtained by Weibull plotting 20 values and performing Weibull statistical analysis was adopted.
【0017】さらに、抗折強度を測定した試料表面の走
査型電子顕微鏡観察を行ない、任意にサンプリングした
100個の結晶粒子について平均結晶粒子径、最大結晶
粒子径および最小結晶粒子径を画像解析により求めた。
そして、最大結晶粒子径と最小結晶粒子径との比を算出
した。以上の結果を表2に示す。Further, the sample surface of which the bending strength was measured was observed by a scanning electron microscope, and the average crystal grain size, the maximum crystal grain size and the minimum crystal grain size of 100 arbitrarily sampled crystal grains were analyzed by image analysis. I asked.
Then, the ratio between the maximum crystal grain size and the minimum crystal grain size was calculated. Table 2 shows the above results.
【0018】[0018]
【表2】 [Table 2]
【0019】表2に示す結果から明らかなように、平均
結晶粒子径が2μm〜5μmであり、かつ、最大結晶粒
子径と最小結晶粒子径との比が4〜6である本発明の範
囲内(試料番号2,3,4,7,8)においては、比誘
電率が12000以上であって、抗折強度が115MP
a以上の鉛系複合ペロブスカイト型誘電体磁器が得られ
る。As is clear from the results shown in Table 2, within the range of the present invention, the average crystal grain size is 2 μm to 5 μm, and the ratio of the maximum crystal grain size to the minimum crystal grain size is 4 to 6. In (Sample Nos. 2, 3, 4, 7, 8), the relative dielectric constant is 12000 or more and the bending strength is 115MP.
A lead-based composite perovskite-type dielectric ceramic of a or higher is obtained.
【0020】これに対して、平均結晶粒子径が2μm未
満の場合は、試料番号1に示すように、比誘電率が30
00と低く、また抗折強度も103MPaとやや低い。
一方、平均結晶粒径が5μmを超える場合は、試料番号
5に示すように、抗折強度が80MPaと低い。On the other hand, when the average crystal grain size is less than 2 μm, the relative dielectric constant is 30 as shown in sample number 1.
It is as low as 00 and the bending strength is also as low as 103 MPa.
On the other hand, when the average crystal grain size exceeds 5 μm, the bending strength is as low as 80 MPa as shown in Sample No. 5.
【0021】また、最大結晶粒子径と最小結晶粒子径と
の比が4未満の場合は、試料番号6に示すように、抗折
強度が95MPaと低い。そして、最大結晶粒子径と最
小結晶粒子径との比が6を超える場合にも、試料番号9
に示すように、抗折強度が80MPaと低い。When the ratio of the maximum crystal grain size to the minimum crystal grain size is less than 4, as shown in sample No. 6, the bending strength is as low as 95 MPa. Even when the ratio of the maximum crystal grain size to the minimum crystal grain size exceeds 6, the sample number 9
As shown in, the bending strength is as low as 80 MPa.
【0022】なお、本発明は、上記実施例に示した誘電
体磁器に限定されるものではない。即ち、例えば、Pb
(Fe2/3 W1/3 )O3 −PbZrO3 系、Pb(Fe
2/3W1/3 )O3 −PbZrO3 −Pb(Mn2/3 W
1/3 )O3 系、Pb(Mn1/3Nb2/3 )O3 −Pb
(Mg1/2 W1/2 )O3 −PbTiO3 系などの鉛系複
合ペロブスカイト型誘電体磁器であれば、同様の結果が
得られる。The present invention is not limited to the dielectric ceramics shown in the above embodiments. That is, for example, Pb
(Fe 2/3 W 1/3 ) O 3 -PbZrO 3 system, Pb (Fe
2/3 W 1/3) O 3 -PbZrO 3 -Pb (Mn 2/3 W
1/3 ) O 3 system, Pb (Mn 1/3 Nb 2/3 ) O 3 -Pb
Similar results can be obtained with a lead-based composite perovskite type dielectric ceramic such as (Mg 1/2 W 1/2 ) O 3 -PbTiO 3 system.
【0023】[0023]
【発明の効果】以上の説明で明らかなように、磁器の平
均粒子径を2μm〜5μmの範囲に、かつ、最大結晶粒
子径と最小結晶粒子径との比を4〜6の範囲に抑えるこ
とにより、1000℃以下の温度で焼結するものであっ
て、誘電率が12000以上と高く、しかも機械的強度
が抗折強度で表して115MPa以上と大きい鉛系複合
ペロブスカイト型誘電体磁器を得ることができる。As is apparent from the above description, the average particle size of the porcelain is kept within the range of 2 μm to 5 μm, and the ratio of the maximum crystal grain size to the minimum crystal grain size is kept within the range of 4-6. To obtain a lead-based composite perovskite-type dielectric ceramic having a high dielectric constant of 12,000 or more and a mechanical strength of 115 MPa or more, which is sintered at a temperature of 1000 ° C. or less. You can
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C04B 35/46 35/48 C04B 35/48 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C04B 35/46 35/48 C04B 35/48 D
Claims (1)
にあり、かつ、最大結晶粒子径と最小結晶粒子径との比
が4〜6の範囲にあることを特徴とする、鉛系複合ペロ
ブスカイト型誘電体磁器。1. A lead-based composite perovskite having an average crystal grain size in the range of 2 μm to 5 μm and a ratio of the maximum crystal grain size to the minimum crystal grain size in the range of 4 to 6. Type dielectric porcelain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7007452A JPH08198675A (en) | 1995-01-20 | 1995-01-20 | Lead-containing combined perovskite type dielectric porcelain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7007452A JPH08198675A (en) | 1995-01-20 | 1995-01-20 | Lead-containing combined perovskite type dielectric porcelain |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08198675A true JPH08198675A (en) | 1996-08-06 |
Family
ID=11666225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7007452A Pending JPH08198675A (en) | 1995-01-20 | 1995-01-20 | Lead-containing combined perovskite type dielectric porcelain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08198675A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003051789A1 (en) * | 2001-12-19 | 2003-06-26 | Ngk Insulators,Ltd. | Piezoelectric/electrostrictive material and its production method |
US6887397B2 (en) | 2001-12-19 | 2005-05-03 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive material and process for production thereof |
US20130100578A1 (en) * | 2011-10-21 | 2013-04-25 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic part |
US20140185183A1 (en) * | 2012-12-28 | 2014-07-03 | Samsung Electro-Mechanics Co., Ltd. | Dielectric composition and multilayer ceramic capacitor using the same |
-
1995
- 1995-01-20 JP JP7007452A patent/JPH08198675A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003051789A1 (en) * | 2001-12-19 | 2003-06-26 | Ngk Insulators,Ltd. | Piezoelectric/electrostrictive material and its production method |
US6887397B2 (en) | 2001-12-19 | 2005-05-03 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive material and process for production thereof |
US20130100578A1 (en) * | 2011-10-21 | 2013-04-25 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic part |
US20140185183A1 (en) * | 2012-12-28 | 2014-07-03 | Samsung Electro-Mechanics Co., Ltd. | Dielectric composition and multilayer ceramic capacitor using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5105333A (en) | Temperature compensating ceramic dielectric | |
EP0605904B1 (en) | Nonreducible dielectric ceramic composition | |
EP0534378B1 (en) | Non-reducible dielectric ceramic composition | |
EP0737655B1 (en) | Non-reduced dielectric ceramic compositions | |
EP0630032B1 (en) | Non-reducible dielectric ceramic composition | |
KR100630417B1 (en) | Piezoelectric porcelain composition, laminated piezoelectric device therefrom and process for producing the same | |
CN112979308A (en) | Dielectric composition and electronic component | |
JP2762309B2 (en) | Dielectric ceramic composition and electronic component using the same | |
JP4717302B2 (en) | Dielectric porcelain composition and electronic component | |
EP0637041A2 (en) | Dielectric ceramic compositions | |
JPH08198675A (en) | Lead-containing combined perovskite type dielectric porcelain | |
JPH09208312A (en) | Dielectric ceramic composition | |
JP3634930B2 (en) | Dielectric porcelain composition | |
KR20030062262A (en) | Method of manufacturing monolithic piezoelectric ceramic device | |
JP3246104B2 (en) | Dielectric porcelain composition | |
JP2001278659A (en) | Dielectric ceramics composition and manufacturing method for ceramic capacitor using it | |
JP3600701B2 (en) | Dielectric porcelain composition | |
JP3235344B2 (en) | Dielectric porcelain composition | |
JP2803227B2 (en) | Multilayer electronic components | |
JP3235343B2 (en) | Dielectric porcelain composition | |
JP3318952B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3438334B2 (en) | Non-reducing dielectric porcelain composition | |
JP3215003B2 (en) | Dielectric porcelain composition | |
JP3245313B2 (en) | Dielectric porcelain composition | |
JP2952061B2 (en) | Non-reducing dielectric porcelain composition |