[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08196006A - Retarder - Google Patents

Retarder

Info

Publication number
JPH08196006A
JPH08196006A JP380395A JP380395A JPH08196006A JP H08196006 A JPH08196006 A JP H08196006A JP 380395 A JP380395 A JP 380395A JP 380395 A JP380395 A JP 380395A JP H08196006 A JPH08196006 A JP H08196006A
Authority
JP
Japan
Prior art keywords
capacitor
engine
battery
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP380395A
Other languages
Japanese (ja)
Other versions
JP3097482B2 (en
Inventor
Masato Yokota
正人 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP07003803A priority Critical patent/JP3097482B2/en
Publication of JPH08196006A publication Critical patent/JPH08196006A/en
Application granted granted Critical
Publication of JP3097482B2 publication Critical patent/JP3097482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PURPOSE: To reduce the energy loss due to the self-discharge of a capacitor for supplying power to a motor generator(M/G) in a retarder in which the motor generator(M/G) is connected to an engine output shaft. CONSTITUTION: A motor generator(M/G) 2 such as an induction motor is coupled to the output shaft of an engine 1, a power capacitor 4 of a high voltage (200V or more) of a power source is electrically connected through an inverter 3 to the M/G 2, and the inverter 3 is controlled by an electronic control unit ECU 7. An auxiliary unit battery 6 and the capacitor 4 are connected by a bidirectional DC-DC converter 5 to supply power from the capacitor 4 to the battery 6 or vice versa. When the engine stops, electric energy from the capacitor 4 is transferred to the battery 6 to reduce the loss of the energy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリターダ装置、特にモー
タ/ジェネレータを駆動するキャパシタの自己放電対策
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a retarder device, and more particularly to a self-discharge countermeasure for a capacitor that drives a motor / generator.

【0002】[0002]

【従来の技術】従来より、例えば特開平4−20790
0号公報等において、機関クランクシャフトとトランス
ミッションとの間に直列に接続されたモータ/ジェネレ
ータ(以下、M/Gという)と、インバータを介してこ
のM/Gのステータ側に電気的に接続されたキャパシタ
とを有し、機関制動時にM/Gをジェネレータとして機
能させて回生制動し機械エネルギを電気エネルギに変換
してキャパシタを充電し、一方、機関始動時及び加速時
にはキャパシタに充電された電気エネルギを利用してM
/Gをモータとして機能させ、スタータ及び加速アシス
トを行い燃費向上を図るリターダ装置が開発されてい
る。
2. Description of the Related Art Conventionally, for example, Japanese Unexamined Patent Publication No. 4-20790.
No. 0, etc., a motor / generator (hereinafter referred to as M / G) connected in series between an engine crankshaft and a transmission, and electrically connected to the stator side of this M / G via an inverter. When the engine is braked, the M / G functions as a generator to perform regenerative braking to convert mechanical energy into electric energy to charge the capacitor. On the other hand, when the engine is started and accelerated, the capacitor is charged with electricity. Energy is used M
/ G has been developed as a motor to provide a starter and acceleration assist to improve fuel efficiency.

【0003】このようなリターダ装置のM/Gは、機関
始動時及び加速時に直接機関クランクシャフトを回転さ
せるために高トルクを発生する必要があり、従ってキャ
パシタの電圧もそれに合わせて高電圧(200V以上)
のものが用いられる。
The M / G of such a retarder device needs to generate a high torque in order to directly rotate the engine crankshaft at the time of starting the engine and accelerating the engine. Therefore, the voltage of the capacitor is correspondingly high voltage (200V). that's all)
What is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、車両走
行終了後に長期間放置すると、キャパシタの自己放電に
より蓄積された電気エネルギが減少し、端子間電圧が著
しく低下してしまう。従って、長期間放置した後のエン
ジン始動及び車両加速時のトルクアシストが不可能とな
り、燃費向上という所期の目的が達成できなくなる問題
があった。
However, if the vehicle is left for a long time after the end of traveling, the electric energy accumulated by the self-discharge of the capacitor is reduced, and the voltage between terminals is significantly reduced. Therefore, there is a problem that the engine start after leaving it for a long time and the torque assist at the time of accelerating the vehicle become impossible, and the intended purpose of improving fuel efficiency cannot be achieved.

【0005】本発明は上記従来技術の有する課題に鑑み
なされたものであり、その目的は、期間停止後長期間放
置しても、キャパシタの電気エネルギの減少を防止して
燃費向上を図ることができるリターダ装置を提供するこ
とにある。
The present invention has been made in view of the above problems of the prior art. An object of the present invention is to prevent the electric energy of the capacitor from decreasing and improve the fuel consumption even if it is left for a long time after the period is stopped. It is to provide a retarder device that can perform.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載のリターダ装置は、機械駆動系に接続
されるM/Gと、インバータを介して前記M/Gに接続
されるキャパシタとを備えるリターダ装置において、前
記キャパシタと補機電力供給用のバッテリ間に接続され
る双方向DC−DCコンバータと、機関停止時は前記キ
ャパシタに保持された電力を前記バッテリに供給し、機
関始動時は前記バッテリに保持された電力を前記キャパ
シタに供給すべく前記DC−DCコンバータの動作を制
御する制御手段とを有することを特徴とする。
In order to achieve the above object, a retarder device according to claim 1 is connected to an M / G connected to a mechanical drive system and to the M / G via an inverter. In a retarder device including a capacitor, a bidirectional DC-DC converter connected between the capacitor and a battery for supplying auxiliary power, and when the engine is stopped, the power held in the capacitor is supplied to the battery, And a control means for controlling the operation of the DC-DC converter so as to supply the electric power held in the battery to the capacitor at the time of starting.

【0007】また、上記目的を達成するために、請求項
2記載のリターダ装置は、請求項1記載のリターダ装置
において、さらに、前記キャパシタの充電量を監視する
監視手段を有し、前記制御手段は、前記キャパシタから
前記バッテリへ電力を供給後、前記キャパシタの充電量
が第1の所定量以下となった場合に前記バッテリから前
記キャパシタへ電力を供給し前記キャパシタの充電量を
第2の所定量以上に保持すべく前記DC−DCコンバー
タの動作を制御することを特徴とする。
Further, in order to achieve the above object, the retarder device according to a second aspect is the retarder device according to the first aspect, further comprising a monitoring means for monitoring a charge amount of the capacitor, and the control means. After supplying power from the capacitor to the battery, when the charge amount of the capacitor becomes equal to or less than a first predetermined amount, power is supplied from the battery to the capacitor and the charge amount of the capacitor is set to a second value. It is characterized in that the operation of the DC-DC converter is controlled so as to maintain a fixed amount or more.

【0008】[0008]

【作用】請求項1記載のリターダ装置では、機関停止時
にキャパシタに蓄えられた電気エネルギを双方向DC−
DCコンバータで補機バッテリに移送し、キャパシタの
自己放電によるエネルギ損失を防止する。補機バッテリ
に移送された電気エネルギは、機関始動時に再びキャパ
シタに移送され、M/Gに供給される。
In the retarder device according to the first aspect of the present invention, the electric energy stored in the capacitor when the engine is stopped is converted into the bidirectional DC-
The DC converter transfers to the auxiliary battery to prevent energy loss due to self-discharge of the capacitor. The electric energy transferred to the auxiliary battery is transferred again to the capacitor when the engine is started and supplied to the M / G.

【0009】請求項2記載のリターダ装置では、キャパ
シタに蓄えられた電気エネルギを補機バッテリに移送す
るに際し、キャパシタの充電量をある一定値に保持す
る。これにより、キャパシタの自己放電による電気エネ
ルギの損失を抑えつつ、機関始動時に補機バッテリから
キャパシタに移送すべき電気エネルギ量を減らし、比較
的高価なDC−DCコンバータの容量を低減することが
できる。
In the retarder device according to the second aspect of the invention, when the electric energy stored in the capacitor is transferred to the auxiliary battery, the charge amount of the capacitor is maintained at a certain constant value. As a result, it is possible to reduce the amount of electrical energy to be transferred from the auxiliary battery to the capacitor at the time of engine start, while suppressing the loss of electrical energy due to self-discharge of the capacitor, and to reduce the capacity of the relatively expensive DC-DC converter. .

【0010】[0010]

【実施例】以下、図面に基づき本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】第1実施例 図1には本実施例の構成ブロック図が示されている。エ
ンジン1の出力軸には誘導モータ等のM/G2が結合さ
れ、さらにトランスミッションT/Mに接続されてい
る。また、M/G2には電源である高圧(200V以
上)のパワーキャパシタ4がインバータ3を介して電気
的に接続されており、インバータ3の動作は電子制御装
置ECU7により制御される。すなわち、ECU7は、
機関始動時あるいは加速時にはM/G2をモータとして
機能させるべくインバータ2のスイッチングを制御して
キャパシタ4からM/G2に電力を供給し、機関制動時
にはM/G2をジェネレータとして機能させるべくイン
バータ2のスイッチングを制御してキャパシタ4を充電
する。
First Embodiment FIG. 1 is a block diagram showing the configuration of this embodiment. An M / G 2 such as an induction motor is coupled to the output shaft of the engine 1 and further connected to the transmission T / M. A high-voltage (200 V or more) power capacitor 4 as a power source is electrically connected to the M / G 2 via an inverter 3, and the operation of the inverter 3 is controlled by an electronic control unit ECU 7. That is, the ECU 7
When starting or accelerating the engine, switching of the inverter 2 is controlled so that the M / G2 functions as a motor to supply electric power from the capacitor 4 to the M / G2, and when the engine is braked, the M / G2 functions as a generator. The switching is controlled to charge the capacitor 4.

【0012】また、車両には、ヘッドライト等の電装品
用の鉛蓄電池等の補機バッテリ(12Vあるいは24
V)6が搭載されており、この補機バッテリ6とキャパ
シタ4とは双方向のDC−DCコンバータ5で接続さ
れ、キャパシタ4から補機バッテリ6へ、あるいは補機
バッテリ6からキャパシタ4へ相互に電力を供給するこ
とができる構成となっている。この双方向DC−DCコ
ンバータ5の動作はECU7により制御され、ECU7
はイグニッションIGのロック/アンロック信号、及び
キャパシタの端子間電圧を検出する電圧センサ8からの
検出信号に基づいて電力移送を決定する。従って、本実
施例では、ECU7が制御手段を構成し、電圧センサ8
が監視手段を構成する。
In addition, an auxiliary battery (12V or 24V) such as a lead storage battery for electric components such as headlights is installed in a vehicle.
V) 6 is mounted, and the auxiliary battery 6 and the capacitor 4 are connected by a bidirectional DC-DC converter 5, and the capacitor 4 to the auxiliary battery 6 or the auxiliary battery 6 to the capacitor 4 are mutually connected. It is configured to be able to supply power to. The operation of the bidirectional DC-DC converter 5 is controlled by the ECU 7,
Determines the power transfer based on the lock / unlock signal of the ignition IG and the detection signal from the voltage sensor 8 which detects the voltage between the terminals of the capacitor. Therefore, in this embodiment, the ECU 7 constitutes the control means, and the voltage sensor 8
Constitutes the monitoring means.

【0013】本実施例の構成は以上のようであり、車両
減速時には、上述したようにECU7がM/G2をジェ
ネレータとして機能させて機械エネルギを電気エネルギ
としてキャパシタ4に蓄え、次の機関始動時及び加速時
のM/G2への電力供給に備えるが、機関停止期間が長
期間にわたると、キャパシタ4の自己放電により電気エ
ネルギがロスし、端子間電圧がクランシャフトを回転さ
せるために必要な電圧以下となってしまうとともに、加
速時でもトルクアシストを行うことができなくなる。
The configuration of the present embodiment is as described above, and when the vehicle is decelerated, the ECU 7 causes the M / G 2 to function as a generator to store mechanical energy as electric energy in the capacitor 4 as described above, and at the next engine start. In preparation for power supply to M / G2 during acceleration, when the engine is stopped for a long period of time, electric energy is lost due to self-discharge of the capacitor 4, and the voltage between terminals is the voltage required to rotate the clan shaft. In addition to the following, torque assist cannot be performed even during acceleration.

【0014】そこで、本実施例では、キャパシタ4に蓄
えられた電気エネルギを自己放電の比較的少ない補機バ
ッテリ6に移送して電気エネルギのロスを少なくし、機
関始動時には、移送された電気エネルギを再び補機バッ
テリ6からキャパシタ4へ移送してM/G2に電力を供
給する。
Therefore, in the present embodiment, the electric energy stored in the capacitor 4 is transferred to the auxiliary battery 6 having a relatively small amount of self-discharge to reduce the loss of the electric energy, and when the engine is started, the transferred electric energy is transferred. Is again transferred from the auxiliary battery 6 to the capacitor 4 to supply power to the M / G 2.

【0015】図2には本実施例の動作フローチャートが
示されている。まず、ECU7は、IGキーがロック状
態(機関停止)にあるか、アンロック状態(機関始動)
にあるか否かを判定する(S101)。IGキーがロッ
ク状態にある場合には、次に、電圧センサ8で検出され
たキャパシタ4の端子間電圧Vが所定値V1 より大きい
か否かを判定する(S102)。端子間電圧Vが所定値
V1 より大きい場合は、自己放電による電気エネルギの
ロスが大きいので、ECU7はDC−DCコンバータ5
を降圧動作させてキャパシタ4の電力をバッテリ6に移
送する(S103)。そして、端子間電圧VがV1 以下
となった場合には、キャパシタ4の電気エネルギのロス
はほとんどなくなるので、DC−DCコンバータ5の降
圧動作を停止する。
FIG. 2 shows an operation flowchart of this embodiment. First, the ECU 7 determines whether the IG key is locked (engine stopped) or unlocked (engine started).
(S101). When the IG key is in the locked state, it is then determined whether the inter-terminal voltage V of the capacitor 4 detected by the voltage sensor 8 is larger than the predetermined value V1 (S102). If the voltage V between the terminals is larger than the predetermined value V1, the loss of electric energy due to self-discharge is large, and therefore the ECU 7 operates the DC-DC converter 5
Is stepped down to transfer the electric power of the capacitor 4 to the battery 6 (S103). When the inter-terminal voltage V becomes V1 or less, the loss of the electric energy of the capacitor 4 is almost eliminated, so that the step-down operation of the DC-DC converter 5 is stopped.

【0016】一方、IGキーがアンロック状態の場合に
は、次に端子間電圧Vが所定値V2より大きいか否かを
判定する(S104)。この所定値V2 は、キャパシタ
4が機関クランクシャフトを駆動できるに充分な電圧で
ある。端子間電圧V2 が所定値V2 以下である場合に
は、ECU7はDC−DCコンバータ5を昇圧動作させ
て補機バッテリ6に移動させた電気エネルギを再びキャ
パシタ4に移送する(S105)。そして、端子間電圧
Vが所定値V2 に達した場合には、DC−DCコンバー
タ5の昇圧動作を停止する。
On the other hand, when the IG key is in the unlocked state, it is next determined whether the inter-terminal voltage V is larger than a predetermined value V2 (S104). This predetermined value V2 is a voltage sufficient for the capacitor 4 to drive the engine crankshaft. When the inter-terminal voltage V2 is equal to or lower than the predetermined value V2, the ECU 7 boosts the DC-DC converter 5 to transfer the electric energy transferred to the auxiliary battery 6 to the capacitor 4 again (S105). When the inter-terminal voltage V reaches the predetermined value V2, the step-up operation of the DC-DC converter 5 is stopped.

【0017】図3には、上述した処理が時間とキャパシ
タ電圧の関係で示されている。図中Aで示される破線
は、IGロックON(機関停止)した後、キャパシタ4
の電気エネルギを移送しない従来の端子間電圧の変化で
あり、図中Bで示される実線は、本実施例の端子間電圧
変化である。IGロックON後、電気エネルギを補機バ
ッテリ6側に移して端子間電圧をV1 にしているので、
その後のエネルギロスは少ないことがわかる。
FIG. 3 shows the above-mentioned processing in terms of time and capacitor voltage. The broken line indicated by A in the figure shows the capacitor 4 after the IG lock is turned on (the engine is stopped).
The change in the terminal voltage of the related art that does not transfer the electric energy is as follows. The solid line indicated by B in the figure is the change in the terminal voltage of the present embodiment. After the IG lock is turned on, the electric energy is transferred to the auxiliary battery 6 side and the voltage between terminals is set to V1.
It can be seen that the energy loss thereafter is small.

【0018】このように、本実施例では、機関停止時に
キャパシタ4の電気エネルギを自己放電の比較的少ない
補機バッテリ6に移し、機関始動時にこの電気エネルギ
を再びキャパシタに戻すので、機関停止期間中のエネル
ギ損失を抑え、機関始動時及び加速時にM/Gを正常に
モータとして機能させることができ、燃費を向上させる
ことができる。
As described above, in this embodiment, when the engine is stopped, the electric energy of the capacitor 4 is transferred to the auxiliary battery 6 which causes less self-discharge, and when the engine is started, the electric energy is returned to the capacitor again. The internal energy loss can be suppressed, the M / G can normally function as a motor at the time of engine start and acceleration, and fuel consumption can be improved.

【0019】なお、本実施例において、M/G2のステ
ータ側に高圧巻線及び低圧巻線を設け、高圧巻線側にキ
ャパシタ4を接続し、低圧巻線側に第2のインバータを
介して補機バッテリ6を接続する2重巻線構造を有する
リターダ装置を用いる場合には、インバータ3と第2の
インバータ、及び2重巻線を双方向DC−DCコンバー
タとして機能させることができるので、新たにDC−D
Cコンバータ5を設ける必要はない。
In this embodiment, the high-voltage winding and the low-voltage winding are provided on the stator side of the M / G 2, the capacitor 4 is connected to the high-voltage winding side, and the low-voltage winding side is connected via the second inverter. When the retarder device having the double winding structure for connecting the auxiliary battery 6 is used, the inverter 3, the second inverter, and the double winding can function as a bidirectional DC-DC converter. New DC-D
It is not necessary to provide the C converter 5.

【0020】第2実施例 図4には本実施例における機関停止後の処理フローチャ
ートが示されている。なお、本実施例の構成は第1実施
例と同様である。
Second Embodiment FIG. 4 shows a processing flowchart after the engine is stopped in this embodiment. The configuration of this embodiment is similar to that of the first embodiment.

【0021】本実施例では、IGロックONの場合に
は、タイマで所定時間をカウントした後(S201)、
キャパシタ端子間電圧Vが所定値V1 ´より大きいか否
かを判定する(S202)。この所定値V1 ´は、キャ
パシタ4が機関クランクシャフトを駆動できる最低電圧
端子間電圧(V2 >V1 ´)である。端子間電圧Vが所
定値より大きい場合には、第1実施例と同様にECU7
はDC−DCコンバータ5を降圧動作させてキャパシタ
4の電力をバッテリ6に移送する(S203)。そし
て、端子間電圧Vが所定値以下となった場合には、次
に、キャパシタ電圧Vが所定値V2 ´に達したか否かを
判定する(S204)。この所定値V2 ´は所定値V1
´よりわずかに小さい値である。端子間電圧Vが所定値
V2 ´まで低下した場合には、ECU7はDC−DCコ
ンバータ5を昇圧動作させて補機バッテリ6の電気エネ
ルギをキャパシタ4に移送し、端子間電圧Vを所定値V
1 ´に維持する(S205)。図5には上述した処理が
時間と端子間電圧の関係として示されている。端子間電
圧VはV1 ´とV2 ´の間に維持される。
In this embodiment, when the IG lock is ON, after counting a predetermined time with a timer (S201),
It is determined whether the voltage V between the capacitor terminals is larger than a predetermined value V1 '(S202). This predetermined value V1 'is the minimum voltage between terminals (V2>V1') at which the capacitor 4 can drive the engine crankshaft. When the terminal voltage V is larger than a predetermined value, the ECU 7 is operated as in the first embodiment.
Causes the DC-DC converter 5 to step down to transfer the electric power of the capacitor 4 to the battery 6 (S203). Then, when the inter-terminal voltage V becomes equal to or lower than the predetermined value, it is next determined whether or not the capacitor voltage V reaches the predetermined value V2 '(S204). This predetermined value V2 'is the predetermined value V1
It is a value slightly smaller than ´. When the terminal voltage V drops to a predetermined value V2 ', the ECU 7 boosts the DC-DC converter 5 to transfer the electric energy of the auxiliary battery 6 to the capacitor 4, and the terminal voltage V to the predetermined value V2.
It is maintained at 1 '(S205). FIG. 5 shows the above-mentioned processing as a relationship between time and terminal voltage. The terminal voltage V is maintained between V1 'and V2'.

【0022】このように、本実施例では機関停止期間中
においても、キャパシタ4の端子間電圧はV1 ´近傍に
保持され(この場合にも、機関停止時に電気エネルギを
補機バッテリ6に移送しているため、従来に比べて自己
放電によるエネルギロスは少ない)、従って機関始動時
に補機バッテリ6からキャパシタ4に移送すべき電気エ
ネルギが少なくてすみ、第1実施例に比べてDC−DC
コンバータ5の容量を小さく設定できる。
As described above, in this embodiment, the voltage across the terminals of the capacitor 4 is maintained in the vicinity of V1 'even during the engine stop period (also in this case, the electric energy is transferred to the auxiliary battery 6 when the engine is stopped). Therefore, the energy loss due to self-discharge is less than that in the prior art). Therefore, less electric energy needs to be transferred from the auxiliary battery 6 to the capacitor 4 at the time of engine start, and DC-DC compared to the first embodiment.
The capacity of the converter 5 can be set small.

【0023】[0023]

【発明の効果】以上説明したように、請求項1乃至請求
項2記載のリターダ装置によれば、機関停止期間中にキ
ャパシタの電気エネルギが自己放電により失われること
を防止し、機関始動時及び加速時にこの電気エネルギを
M/Gに供給して機関の燃費向上を図ることができる。
As described above, according to the retarder device of the first or second aspect, it is possible to prevent the electric energy of the capacitor from being lost due to self-discharge during the engine stop period, and at the time of engine start and This electric energy can be supplied to the M / G during acceleration to improve the fuel efficiency of the engine.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例の構成ブロック図であ
る。
FIG. 1 is a configuration block diagram of a first embodiment of the present invention.

【図2】 同実施例の処理フローチャートである。FIG. 2 is a processing flowchart of the embodiment.

【図3】 同実施例のキャパシタ端子間電圧の時間変化
を示すグラフ図である。
FIG. 3 is a graph showing a change with time of a voltage across a capacitor terminal of the embodiment.

【図4】 本発明の第2実施例の処理フローチャートで
ある。
FIG. 4 is a processing flowchart of a second embodiment of the present invention.

【図5】 同実施例のキャパシタ端子間電圧の時間変化
を示すグラフ図である。
FIG. 5 is a graph showing a change with time of a voltage between capacitor terminals of the embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン、2 モータ/ジェネレータM/G、3
インバータ、4 キャパシタ、5 DC−DCコンバー
タ、6 補機バッテリ、7 ECU。
1 engine, 2 motor / generator M / G, 3
Inverter, 4 capacitors, 5 DC-DC converter, 6 auxiliary battery, 7 ECU.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02P 15/00 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H02P 15/00 H

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機械駆動系に接続されるモータ/ジェネ
レータと、 インバータを介して前記モータ/ジェネレータに接続さ
れるキャパシタと、 を備えるリターダ装置において、 前記キャパシタと補機電力供給用のバッテリ間に接続さ
れる双方向DC−DCコンバータと、 機関停止時は前記キャパシタに保持された電力を前記バ
ッテリに供給し、機関始動時は前記バッテリに保持され
た電力を前記キャパシタに供給すべく前記DC−DCコ
ンバータの動作を制御する制御手段と、 を有することを特徴とするリターダ装置。
1. A retarder device comprising: a motor / generator connected to a mechanical drive system; and a capacitor connected to the motor / generator via an inverter, wherein a capacitor is connected between the capacitor and a battery for supplying auxiliary power. A bidirectional DC-DC converter connected to the DC-DC converter to supply the electric power held in the capacitor to the battery when the engine is stopped and to supply the electric power held in the battery to the capacitor when the engine is started. A retarder device comprising: a control unit that controls the operation of the DC converter.
【請求項2】 請求項1記載のリターダ装置において、
さらに、 前記キャパシタの充電量を監視する監視手段を有し、 前記制御手段は、前記キャパシタから前記バッテリへ電
力を供給後、前記キャパシタの充電量を所定量近傍に保
持すべく前記DC−DCコンバータの動作を制御するこ
とを特徴とするリターダ装置。
2. The retarder device according to claim 1, wherein
Furthermore, the DC-DC converter includes a monitoring unit that monitors a charge amount of the capacitor, and the control unit holds the charge amount of the capacitor near a predetermined amount after supplying power from the capacitor to the battery. Retarder device characterized by controlling the operation of.
JP07003803A 1995-01-13 1995-01-13 Retarder device Expired - Fee Related JP3097482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07003803A JP3097482B2 (en) 1995-01-13 1995-01-13 Retarder device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07003803A JP3097482B2 (en) 1995-01-13 1995-01-13 Retarder device

Publications (2)

Publication Number Publication Date
JPH08196006A true JPH08196006A (en) 1996-07-30
JP3097482B2 JP3097482B2 (en) 2000-10-10

Family

ID=11567360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07003803A Expired - Fee Related JP3097482B2 (en) 1995-01-13 1995-01-13 Retarder device

Country Status (1)

Country Link
JP (1) JP3097482B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281609A (en) * 2001-03-21 2002-09-27 Masayuki Hattori Combined secondary battery circuit and regenerative control system
JP2004507996A (en) * 2000-08-31 2004-03-11 本田技研工業株式会社 Automotive dual voltage battery
EP1122857A3 (en) * 2000-01-31 2004-04-28 Sanyo Electric Co., Ltd. Hybrid car power supply apparatus
WO2006014016A1 (en) * 2004-08-04 2006-02-09 Toyota Jidosha Kabushiki Kaisha Motor driving apparatus capable of driving motor with reliability
JP2009512416A (en) * 2005-10-17 2009-03-19 ピーブイアイ Charging station and associated electric vehicle
JP2010104123A (en) * 2008-10-22 2010-05-06 Mitsubishi Electric Corp Vehicular power supply unit
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
JP2011201441A (en) * 2010-03-26 2011-10-13 Ikuo Baba Bi-directional energy conversion device for vehicle
DE102010049911A1 (en) 2010-04-28 2011-11-03 Mitsubishi Electric Corporation Electric power regulator for a vehicle with stop-start system
JP2011235895A (en) * 2007-11-28 2011-11-24 Toyota Motor Corp Device for control of power supply
KR101323916B1 (en) * 2012-10-30 2013-10-31 엘에스산전 주식회사 Apparatus and method for early starting of vehicle
JP2014107910A (en) * 2012-11-26 2014-06-09 Toyota Motor Corp Power supply system
JP2014162480A (en) * 2013-02-25 2014-09-08 Fairfield Manufacturing Co Inc Hybrid electric vehicle
JP2016033345A (en) * 2014-07-31 2016-03-10 いすゞ自動車株式会社 Engine starter system
EP3006293A4 (en) * 2013-06-03 2016-06-15 Nissan Motor Hybrid vehicle control device
JPWO2014073106A1 (en) * 2012-11-12 2016-09-08 ボルボトラックコーポレーション Charge / discharge system
JP2021166428A (en) * 2020-04-06 2021-10-14 トヨタ自動車株式会社 Retarder-equipped rotary electric machine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1122857A3 (en) * 2000-01-31 2004-04-28 Sanyo Electric Co., Ltd. Hybrid car power supply apparatus
KR100758868B1 (en) * 2000-01-31 2007-09-14 산요덴키가부시키가이샤 Power supply apparatus for hybrid car
JP2004507996A (en) * 2000-08-31 2004-03-11 本田技研工業株式会社 Automotive dual voltage battery
JP2002281609A (en) * 2001-03-21 2002-09-27 Masayuki Hattori Combined secondary battery circuit and regenerative control system
WO2006014016A1 (en) * 2004-08-04 2006-02-09 Toyota Jidosha Kabushiki Kaisha Motor driving apparatus capable of driving motor with reliability
US7764044B2 (en) 2004-08-04 2010-07-27 Toyota Jidosha Kabushiki Kaisha Motor driving apparatus capable of driving motor with reliability
JP2009512416A (en) * 2005-10-17 2009-03-19 ピーブイアイ Charging station and associated electric vehicle
US8669673B2 (en) 2007-11-28 2014-03-11 Toyota Jidosha Kabushiki Kaisha Power supply controller
JP2011235895A (en) * 2007-11-28 2011-11-24 Toyota Motor Corp Device for control of power supply
JP2010104123A (en) * 2008-10-22 2010-05-06 Mitsubishi Electric Corp Vehicular power supply unit
JP2010273428A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp Vehicle drive power supply unit
JP2011201441A (en) * 2010-03-26 2011-10-13 Ikuo Baba Bi-directional energy conversion device for vehicle
DE102010049911A1 (en) 2010-04-28 2011-11-03 Mitsubishi Electric Corporation Electric power regulator for a vehicle with stop-start system
US9018794B2 (en) 2010-04-28 2015-04-28 Mitsubishi Electric Corporation Electric power controller for vehicle with stop start system
DE102010049911B4 (en) * 2010-04-28 2016-09-29 Mitsubishi Electric Corp. Electric power regulator for a vehicle with stop-start system
KR101323916B1 (en) * 2012-10-30 2013-10-31 엘에스산전 주식회사 Apparatus and method for early starting of vehicle
JPWO2014073106A1 (en) * 2012-11-12 2016-09-08 ボルボトラックコーポレーション Charge / discharge system
JP2014107910A (en) * 2012-11-26 2014-06-09 Toyota Motor Corp Power supply system
JP2014162480A (en) * 2013-02-25 2014-09-08 Fairfield Manufacturing Co Inc Hybrid electric vehicle
EP3006293A4 (en) * 2013-06-03 2016-06-15 Nissan Motor Hybrid vehicle control device
JP2016033345A (en) * 2014-07-31 2016-03-10 いすゞ自動車株式会社 Engine starter system
JP2021166428A (en) * 2020-04-06 2021-10-14 トヨタ自動車株式会社 Retarder-equipped rotary electric machine

Also Published As

Publication number Publication date
JP3097482B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3097482B2 (en) Retarder device
EP1043825B1 (en) Battery charger for hybrid vehicle
US6861767B2 (en) Power supply equipment for motor vehicle with battery and capacitor
US20040140139A1 (en) Hybrid drive
JP3180304B2 (en) Power circuit of hybrid car
JP2003235105A (en) Load drive device, charge control method for power storage apparatus therein and computer readable recording medium on which program for making computer execute charge control is recorded
CN109715426B (en) Method for operating a hybrid vehicle
US6109229A (en) Auxiliary starter unit for use with a diesel engine, and method for starting a diesel engine
JP2879486B2 (en) Braking and auxiliary power units for internal combustion engines
US11884221B2 (en) On-board electrical network of a motor vehicle
WO2017154778A1 (en) Hybrid vehicle control device
JP3892528B2 (en) Auxiliary power supply battery charge control device for hybrid electric vehicle
JP2002176704A (en) Driving gear for hybrid vehicle having two power supplying sources
JP3908907B2 (en) Automatic vehicle energy supply device
JP2006304390A (en) Power unit for hybrid vehicle
JP7373113B2 (en) Vehicle power control device
JP4166753B2 (en) System for power supply of an automobile having an internal combustion engine
JP3094839B2 (en) Retarder device
JPH0549101A (en) Power supply protective circuit for vehicle
JP7373114B2 (en) Vehicle power control device
JP3169094B2 (en) Power supply for vehicles
JPH02206302A (en) Automobile auxiliary driver
JP5076918B2 (en) Power storage device
JPH06294369A (en) Retarder device
JP2004229477A (en) Device for controlling vehicular power supply

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees