[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08195510A - Thermoelectric power generating module - Google Patents

Thermoelectric power generating module

Info

Publication number
JPH08195510A
JPH08195510A JP7004675A JP467595A JPH08195510A JP H08195510 A JPH08195510 A JP H08195510A JP 7004675 A JP7004675 A JP 7004675A JP 467595 A JP467595 A JP 467595A JP H08195510 A JPH08195510 A JP H08195510A
Authority
JP
Japan
Prior art keywords
thermoelectric
type element
conductive
power generation
generation module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7004675A
Other languages
Japanese (ja)
Inventor
Osamu Shiono
修 塩野
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7004675A priority Critical patent/JPH08195510A/en
Publication of JPH08195510A publication Critical patent/JPH08195510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To install a module irrespective of pipings of existing equipment and positions or shapes of walls thereof by connecting a plurality of thermoelectric elements each of which is provided with at least one conductive rotating part which is located between power takeout part of a P-type element or an N-type element and a conductive coupler connected with another P on N element and rotates them. CONSTITUTION: A thermoelectric element is installed for a cylindrical piping and it is prepared by integrating a P-type element 10 and an N-type element 20 of which the sectional areas of high-temperature-side end parts coming into contact with a high-temperature heating medium are different from those of low-temperature-side end parts thereof coming into contact with a low-temperature heating medium and by providing at least one conductive rotating part 50 which is located between a power takeout part of the element and a conductive coupler 40 connected with another P or N element and rotates them. In the conductive rotating part 50, rotating plates 70 rotate around the axis 60 of rotation and a P-type element 11 or an N-type element 21 and a conductive coupler 41 rotate along with it. By connecting a plurality of thermoelectric elements prepared in this way, a thermoelectric power generating module is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電発電器に係り、特
に、熱エネルギを電気エネルギに変換する熱電素子を備
えた熱電発電器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator, and more particularly to a thermoelectric generator having a thermoelectric element that converts heat energy into electric energy.

【0002】[0002]

【従来の技術】熱源または冷却源となる配管や壁に設置
する熱電モジュールとして、例えば、特開平3−177082
号公報に記載の熱電発電器がある。
2. Description of the Related Art As a thermoelectric module to be installed on a pipe or a wall serving as a heat source or a cooling source, for example, Japanese Patent Application Laid-Open No. 3-177082
There is a thermoelectric generator described in the publication.

【0003】[0003]

【発明が解決しようとする課題】従来、配管や壁に熱電
発電器を設置する場合、特開平3−177082 号公報に記載
のように、配管との間に特殊な形状の設置材を設ける
か、または配管自体を加工し、配管表面を包むように取
り付けるものが多い。そのため、例えば、片側が壁に密
接しているような既存設備の配管には設置することが難
しいことがある。また、このような既存設備のものに設
置する場合は、素子単体で扱うよりモジュール化したも
のを取り付ける方が作業が簡単化される。
Conventionally, when a thermoelectric generator is installed on a pipe or a wall, as described in Japanese Patent Application Laid-Open No. 3-177082, is an installation material of a special shape provided between the pipe and the wall? In many cases, the pipe itself is processed and attached so as to wrap the surface of the pipe. Therefore, for example, it may be difficult to install the pipe in the existing equipment in which one side is in close contact with the wall. Further, in the case of installing in such existing equipment, it is easier to install a modularized one than to handle the element alone.

【0004】本発明の目的は、既存設備の配管や壁の位
置,形状に関係なく、設置できる熱電発電モジュールを
提供することにある。
An object of the present invention is to provide a thermoelectric power generation module that can be installed regardless of the positions and shapes of the pipes and walls of existing equipment.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する第一
の手段は、P型素子及びN型素子を接合一体化してなる
熱電素子に於いて、P型素子またはN型素子の電力取り
出し部と他のP,N素子を接続する導電性連結体との間
に両者を回転させる導電性を有する回転部を少なくとも
一つ設けた熱電素子を複数個接続することにある。
A first means for achieving the above object is a thermoelectric element formed by joining and integrating a P-type element and an N-type element. It is to connect a plurality of thermoelectric elements each having at least one electrically conductive rotating portion for rotating both of them and another electrically conductive coupling body for connecting the other P and N elements.

【0006】上記目的を達成する第二の手段は、回転体
をP型素子及びN型素子の電力取り出し部または導電性
連結体が兼ねる熱電素子を複数個接続することにある。
A second means for achieving the above-mentioned object is to connect a plurality of thermoelectric elements, which serve also as power take-out portions of P-type elements and N-type elements or conductive connecting bodies, to the rotating body.

【0007】上記目的を達成する第三の手段は、熱電素
子同士をつなぐ柔軟性に富む導電性連結体を用いて熱電
素子を複数個接続することにある。
A third means for achieving the above object is to connect a plurality of thermoelectric elements by using a flexible conductive connecting body that connects the thermoelectric elements.

【0008】[0008]

【作用】第一の手段によれば、導電性回転部が回転する
ことにより、熱電素子と導電性連結体の向きを変えられ
るので、モジュールを構成する熱電素子同士の連結方法
を変化させることができる。
According to the first means, since the direction of the thermoelectric element and the conductive connecting body can be changed by rotating the conductive rotating portion, it is possible to change the method of connecting the thermoelectric elements forming the module. it can.

【0009】第二の手段によれば、熱電素子と導電性連
結体とが回転することにより、モジュールを構成する熱
電素子同士の連結方法を変化させることができる。
According to the second means, the method of connecting the thermoelectric elements forming the module can be changed by rotating the thermoelectric element and the conductive connecting body.

【0010】第三の手段によれば、導電性連結体自身も
自由に向きを変えられるので、上記二つの手段よりも、
モジュールを構成する熱電素子同士の連結方法を変化さ
せることができる。
According to the third means, since the conductive connecting body itself can freely change its direction, it is more preferable than the above two means.
The method of connecting the thermoelectric elements forming the module can be changed.

【0011】[0011]

【実施例】以下に本発明の一実施例を示す。EXAMPLE An example of the present invention will be described below.

【0012】図1から図8に本発明の第一実施例を示
す。図1は図2の熱電素子三つ用いて成る熱電発電モジ
ュールである。熱電素子の構成を図2を用いて説明す
る。図2(a)の熱電素子は、円筒配管に設置すること
を想定したもので、高温熱媒体と接触する高温側端部の
断面積と低温熱媒体と接触する低温側端部の断面積が異
なるP型素子10とN型素子20を接合一体化し、素子
の電力取り出し部と他のP,N素子を接続する導電性連
結体40との間に両者を回転させせる導電性回転部50
を一つ設けたものである。導電性連結体40は、シート
状や板状のもので、P型素子及びN型素子とオーミック
接触する金属であれば良い。導電性回転部50は図2
(b)に示すように回転軸60と回転板70からなり、
回転軸60を中心として回転板70が回転し、それに伴
いP型素子11またはN型素子21と導電性連結体41
とが回転するようになっている。図3は図2(a)の熱
電素子の導電性連結体40を90度回転させたものであ
る。一例として、この熱電素子三つ用いて成る熱電発電
モジュールを図4に示す。この例では、P型素子10ま
たはN型素子20と導電性連結体50が回転したとき、
他のP,N素子に接触しないように若干のスペースを設
けてある。本発明の熱電発電モジュールの特徴は図1及
び図4に示すように、1種類の熱電発電モジュールでP
N素子の連結方法が異なるものが得られることにある。
これにより、例えば、配管の円周上を囲むようにも長さ
方向に並べるようにも1種類のモジュールで実現でき
る。図5は熱電素子のP型素子16,17とN型素子2
6,27の接合部断面に曲率を付けたものである。これ
らの構成をとると、配管表面と熱電素子モジュールとを
密着させることができるので、配管からの伝熱損失を少
なくできる。また、配管が振動を伴うものであれば、応
力を分散できるので、素子の破損を低減することができ
る。図6はP型素子12とN型素子22を接合一体化し
た熱電素子の電力取り出し部以外の表面を電気的絶縁素
材8で被覆したものである。電気的絶縁素材は前述と同
様に、SiO2 ,Al23等を蒸着法やスパッタリング
法等を用いて堆積させるか、樹脂系材料を塗布する。こ
の構成をとると、個々の熱電素子同士を密着させられる
ので、モジュールにおける熱電素子の個数を増やすこと
ができ、出力電力を増加することができる。また、熱電
素子が高温で酸化反応を起こしたり、構成元素が気化し
て抜けることにより格子欠陥を生じる材料に対して、素
子特性の劣化を防止することができる。さらに、何らか
の原因により熱電素子同士が接触した場合に、電気回路
的な短絡を防止できるので、熱電発電モジュールの信頼
性及び安全性を向上できる。
1 to 8 show a first embodiment of the present invention. FIG. 1 shows a thermoelectric power generation module using three thermoelectric elements shown in FIG. The structure of the thermoelectric element will be described with reference to FIG. The thermoelectric element of FIG. 2 (a) is assumed to be installed in a cylindrical pipe, and the cross-sectional area of the high temperature side end that contacts the high temperature heat medium and the cross section of the low temperature side end that contacts the low temperature heat medium are A conductive rotating part 50 that joins and integrates different P-type elements 10 and N-type elements 20 and rotates both between the power extraction part of the element and the conductive coupling body 40 connecting the other P and N elements.
One is provided. The conductive coupling body 40 is a sheet-shaped or plate-shaped material, and may be any metal that makes ohmic contact with the P-type element and the N-type element. The conductive rotating part 50 is shown in FIG.
As shown in (b), it is composed of a rotating shaft 60 and a rotating plate 70,
The rotary plate 70 rotates about the rotary shaft 60, and the P-type element 11 or the N-type element 21 and the conductive connecting body 41 rotate accordingly.
And are designed to rotate. FIG. 3 is a view obtained by rotating the conductive coupling body 40 of the thermoelectric element of FIG. 2A by 90 degrees. As an example, FIG. 4 shows a thermoelectric power generation module including three thermoelectric elements. In this example, when the P-type element 10 or the N-type element 20 and the conductive coupling body 50 rotate,
A small space is provided so as not to contact other P and N elements. As shown in FIGS. 1 and 4, the thermoelectric power generation module of the present invention is characterized by one type of thermoelectric power generation module.
The reason is that different connection methods of N elements can be obtained.
Accordingly, for example, one type of module can be used to surround the circumference of the pipe or to arrange the pipes in the length direction. FIG. 5 shows P-type elements 16 and 17 and N-type element 2 of thermoelectric elements.
The cross section of the joint portion of 6, 27 has a curvature. With these configurations, since the surface of the pipe and the thermoelectric element module can be brought into close contact with each other, heat transfer loss from the pipe can be reduced. Further, if the pipe is accompanied by vibration, the stress can be dispersed, so that damage to the element can be reduced. In FIG. 6, the surface of the thermoelectric element in which the P-type element 12 and the N-type element 22 are joined and integrated is covered with the electrically insulating material 8 except for the power extraction portion. As the electrically insulating material, similarly to the above, SiO 2 , Al 2 O 3 or the like is deposited by using a vapor deposition method, a sputtering method or the like, or a resin material is applied. With this configuration, since the individual thermoelectric elements can be brought into close contact with each other, the number of thermoelectric elements in the module can be increased and the output power can be increased. In addition, it is possible to prevent deterioration of element characteristics for a material that causes a lattice defect due to an oxidation reaction of the thermoelectric element at a high temperature or vaporization and escape of constituent elements. Furthermore, when thermoelectric elements come into contact with each other for some reason, it is possible to prevent a short circuit in terms of electric circuits, so that the reliability and safety of the thermoelectric power generation module can be improved.

【0013】次に、本発明の熱電発電モジュールを配管
に設置した例を以下に示す。
Next, an example in which the thermoelectric power generation module of the present invention is installed in a pipe is shown below.

【0014】図7(a)は図1の連結方法で熱電発電モ
ジュールを円筒配管99に設置したものである。熱電発
電モジュールと配管との取付方法は図中の電力取り出し
電極部63同士をシート状または板状の絶縁性素材9で
止め、モジュールで配管を締めるようにする。また、配
管とモジュールの間に熱伝導率の良好な接着剤を用いて
固定しても良い。配管が壁に接しているような既存配管
には図7(b)に示すように図4の連結方法で配管に設
置することもできる。モジュールと配管との取付方法は
配管とモジュールの間に熱伝導率の良好な接着剤を用い
て固定する。さらに、熱電発電モジュールの取付向きは
図8に示すように配管に設置することもできる。以上の
ように、図7及び図8の連結方法により、導電性連結体
の向きを変えるだけで配管の位置,形状に関係なく熱電
発電モジュールを設置することができ、配管の表面を有
効に使い熱電発電モジュールを敷き詰めることができ
る。図9から図11に第二実施例を示す。図9はP型素
子及びN型素子側または導電性連結体が導電性回転部を
兼ねたものである。図9(a)は導電性回転部の回転軸
61をP型素子12またはN型素子22の電力取り出し
部に埋め込み、窪みのあいてある導電性連結体42に差
し込んだものである。また、図9(b)は逆に導電性連
結体43に回転軸62埋めてあり、P型素子13または
N型素子23の電力取り出し部に差し込んだものであ
る。この構成をとると導電性回転部が簡略化されるの
で、電極の接触部で生じる熱抵抗を低減することができ
る。図10及び図11はP型素子及びN型素子と導電性
連結体をねじ状電極とナット状電極を用いて接続したも
のである。図10はP型素子14及びN型素子24の電
力取り出し部にねじ穴がきってあり、このねじ穴に導電
性連結体44をはさんでねじ状電極材90で止めたもの
である。尚、素子の電力取り出し部に開けたねじ穴の表
面にオーミック電極を形成させても良い。また、図11
はP型素子15及びN型素子25の電力取り出し部にね
じ状電極材91が埋めてあり、導電性連結体45をはさ
んでナット状電極材95で止めたものである。これら
は、ねじ止めしただけの簡単な構造なので熱電素子が破
損したり、素子特性が劣化した時に、容易に素子の交換
ができる。
FIG. 7A shows the thermoelectric power generation module installed in the cylindrical pipe 99 by the connecting method shown in FIG. The thermoelectric power generation module and the pipe are attached to each other by fixing the electric power take-out electrode portions 63 to each other with a sheet-shaped or plate-shaped insulating material 9 and tightening the pipe with the module. Further, the pipe and the module may be fixed with an adhesive having a good thermal conductivity. For an existing pipe in which the pipe is in contact with the wall, the pipe can be installed by the connecting method shown in FIG. 4 as shown in FIG. 7B. As for the method of attaching the module and the pipe, the adhesive is fixed between the pipe and the module with a good thermal conductivity. Further, the thermoelectric generation module can be installed in the pipe as shown in FIG. As described above, according to the connecting method of FIGS. 7 and 8, the thermoelectric power generation module can be installed regardless of the position and shape of the pipe by simply changing the direction of the conductive connecting body, and the surface of the pipe can be used effectively. Thermoelectric power generation modules can be spread. A second embodiment is shown in FIGS. 9 to 11. In FIG. 9, the P-type element and the N-type element side or the conductive connecting body also serves as the conductive rotating portion. In FIG. 9A, the rotating shaft 61 of the conductive rotating part is embedded in the power extraction part of the P-type element 12 or the N-type element 22 and inserted into the conductive coupling body 42 having a recess. On the contrary, in FIG. 9B, the rotating shaft 62 is embedded in the conductive coupling body 43 and is inserted into the power extraction portion of the P-type element 13 or the N-type element 23. With this configuration, the conductive rotating part is simplified, so that the thermal resistance generated at the contact part of the electrode can be reduced. 10 and 11 show a P-type element, an N-type element, and a conductive connector that are connected using a screw-shaped electrode and a nut-shaped electrode. In FIG. 10, the P-type element 14 and the N-type element 24 are provided with a screw hole in the power extraction portion, and the conductive connector 44 is sandwiched in this screw hole and fixed by the screw electrode material 90. In addition, an ohmic electrode may be formed on the surface of the screw hole formed in the power extraction portion of the device. In addition, FIG.
The screw-shaped electrode material 91 is embedded in the power extraction portion of the P-type element 15 and the N-type element 25, and the conductive coupling body 45 is sandwiched and fixed by the nut-shaped electrode material 95. Since these are simple structures that are simply screwed, the elements can be easily replaced when the thermoelectric element is damaged or the element characteristics are deteriorated.

【0015】図12及び図13に本発明の第三実施例を
示す。図12は柔軟性に富む導電性連結体を用いて素子
を接続した熱電発電モジュールである。導電性連結体4
9は、例えば、プラスチックやゴム状のものの表面にP
型素子及びN型素子とオーミック接触する金属を形成さ
せたものが挙げられる。この構成をとると、導電性連結
体自身も自由に向きを変えられ、熱電素子を取り付ける
向きを変える自由度を増すことができる。
12 and 13 show a third embodiment of the present invention. FIG. 12 shows a thermoelectric power generation module in which elements are connected using a conductive connector having high flexibility. Conductive connector 4
9 is, for example, P on the surface of plastic or rubber.
Examples include a metal formed in ohmic contact with the mold element and the N-type element. With this configuration, the direction of the conductive coupling body itself can be freely changed, and the degree of freedom for changing the direction in which the thermoelectric element is attached can be increased.

【0016】次に、本発明の熱電発電モジュールを配管
に設置した例を以下に示す。図13は図12の連結方法
でそれぞれ熱電発電モジュールを炉壁面に設置したもの
である。尚、炉壁110には壁面を冷却するために冷却
配管100とフィン120が設けてあるものを想定し
た。熱電発電モジュールと炉壁面との取付方法は壁面側
が導体であれば、絶縁性素材を介して熱伝導率の良好な
接着剤を用いて固定する。また、冷却配管100が導体
であれば導電性連結体80と配管との間にも絶縁性素材
を設けておく。
Next, an example in which the thermoelectric power generation module of the present invention is installed in a pipe is shown below. FIG. 13 shows the thermoelectric power generation modules installed on the wall surface of the furnace by the connecting method shown in FIG. It is assumed that the furnace wall 110 is provided with cooling pipes 100 and fins 120 for cooling the wall surface. As for the method of attaching the thermoelectric power generation module and the furnace wall surface, if the wall surface side is a conductor, it is fixed with an adhesive having good thermal conductivity via an insulating material. If the cooling pipe 100 is a conductor, an insulating material is also provided between the conductive connector 80 and the pipe.

【0017】[0017]

【発明の効果】本発明の熱電発電モジュールによれば、
既存設備の配管や壁の位置,形状に関係なく、設置でき
るので、汎用性及び簡便性が向上する。
According to the thermoelectric power generation module of the present invention,
Since it can be installed regardless of the position and shape of pipes and walls of existing equipment, versatility and simplicity are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例を示す熱電発電モジュール
の斜視図。
FIG. 1 is a perspective view of a thermoelectric power generation module showing a first embodiment of the present invention.

【図2】(a)は第一実施例のモジュールを構成する熱
電素子の斜視図、(b)は第一実施例のモジュールを構
成する熱電素子の断面図。
FIG. 2A is a perspective view of a thermoelectric element that constitutes the module of the first embodiment, and FIG. 2B is a sectional view of the thermoelectric element that constitutes the module of the first embodiment.

【図3】第一実施例のモジュールを構成する熱電素子の
斜視図。
FIG. 3 is a perspective view of a thermoelectric element that constitutes the module of the first embodiment.

【図4】第一実施例を示す熱電発電モジュールの斜視
図。
FIG. 4 is a perspective view of the thermoelectric power generation module showing the first embodiment.

【図5】第一実施例のモジュールを構成する熱電素子の
斜視図。
FIG. 5 is a perspective view of a thermoelectric element that constitutes the module of the first embodiment.

【図6】第一実施例のモジュールを構成する熱電素子の
断面図。
FIG. 6 is a cross-sectional view of a thermoelectric element that constitutes the module of the first embodiment.

【図7】本発明の熱電発電モジュールを設置したときの
説明図。
FIG. 7 is an explanatory diagram when the thermoelectric power generation module of the present invention is installed.

【図8】本発明の熱電発電モジュールを設置したときの
説明図。
FIG. 8 is an explanatory diagram when the thermoelectric power generation module of the present invention is installed.

【図9】本発明の第二実施例を示す熱電発電モジュール
を構成する熱電素子の断面図。
FIG. 9 is a sectional view of a thermoelectric element that constitutes a thermoelectric power generation module showing a second embodiment of the present invention.

【図10】本発明の第二実施例を示す熱電発電モジュー
ルを構成する熱電素子の断面図。
FIG. 10 is a sectional view of a thermoelectric element that constitutes a thermoelectric power generation module showing a second embodiment of the present invention.

【図11】本発明の第二実施例を示す熱電発電モジュー
ルを構成する熱電素子の断面図。
FIG. 11 is a sectional view of a thermoelectric element that constitutes a thermoelectric power generation module showing a second embodiment of the present invention.

【図12】本発明の第三実施例を示す熱電発電モジュー
ルの斜視図。
FIG. 12 is a perspective view of a thermoelectric power generation module showing a third embodiment of the present invention.

【図13】本発明の熱電発電モジュールを設置したとき
の説明図。
FIG. 13 is an explanatory diagram when the thermoelectric power generation module of the present invention is installed.

【符号の説明】[Explanation of symbols]

8,9…電気的絶縁素材、10,11,12,13,1
4,15,16,17,18,19,30,32…P型
素子、20,21,22,23,24,25,26,2
7,28,29,31,33…N型素子、40,41,
42,43,44,45,47,48,49,80…導
電性連結体、50,51,53…導電性回転部、60,
61,62…回転軸、63,64…電力取り出し電極
部、70…回転板、90,91…ねじ状電極材、95…
ナット状電極材、99,100…配管、110…炉壁、
120…フィン。
8,9 ... Electrically insulating material 10,11,12,13,1
4, 15, 16, 17, 18, 19, 30, 32 ... P-type element, 20, 21, 22, 23, 24, 25, 26, 2
7, 28, 29, 31, 33 ... N-type element, 40, 41,
42, 43, 44, 45, 47, 48, 49, 80 ... Conductive coupling body, 50, 51, 53 ... Conductive rotating part, 60,
61, 62 ... Rotating shafts, 63, 64 ... Power extraction electrode parts, 70 ... Rotating plate, 90, 91 ... Screw-shaped electrode material, 95 ...
Nut-shaped electrode material, 99, 100 ... Piping, 110 ... Furnace wall,
120 ... Fins.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】P型素子及びN型素子を接合一体化してな
る熱電素子に於いて、前記P型素子または前記N型素子
の電力取り出し部と他のP,N素子を接続する導電性連
結体との間に両者を回転させる導電性を有する回転部を
少なくとも一つ設けた熱電素子を複数個接続したことを
特徴とする熱電発電モジュール。
1. A thermoelectric element in which a P-type element and an N-type element are joined and integrated, and a conductive connection for connecting a power extraction portion of the P-type element or the N-type element to another P, N element. A thermoelectric power generation module, characterized in that a plurality of thermoelectric elements having at least one electrically conductive rotating portion for rotating both of them are provided between the body and the body.
【請求項2】請求項1に於いて、前記回転部を前記P型
素子及び前記N型素子の電力取出し部または導電性連結
体が兼ねる熱電発電モジュール。
2. The thermoelectric power generation module according to claim 1, wherein the rotating portion is also used as a power extracting portion or a conductive connecting body of the P-type element and the N-type element.
【請求項3】請求項1または2に於いて、前記導電性連
結体が柔軟性を有する熱電発電モジュール。
3. The thermoelectric power generation module according to claim 1, wherein the conductive connector has flexibility.
JP7004675A 1995-01-17 1995-01-17 Thermoelectric power generating module Pending JPH08195510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7004675A JPH08195510A (en) 1995-01-17 1995-01-17 Thermoelectric power generating module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7004675A JPH08195510A (en) 1995-01-17 1995-01-17 Thermoelectric power generating module

Publications (1)

Publication Number Publication Date
JPH08195510A true JPH08195510A (en) 1996-07-30

Family

ID=11590480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7004675A Pending JPH08195510A (en) 1995-01-17 1995-01-17 Thermoelectric power generating module

Country Status (1)

Country Link
JP (1) JPH08195510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011181A (en) * 2015-06-24 2017-01-12 積水化学工業株式会社 Thermoelectric conversion material sheet, and thermoelectric conversion device having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011181A (en) * 2015-06-24 2017-01-12 積水化学工業株式会社 Thermoelectric conversion material sheet, and thermoelectric conversion device having the same

Similar Documents

Publication Publication Date Title
JP4398948B2 (en) Electrical connector
US3129116A (en) Thermoelectric device
US6548750B1 (en) Solid state thermoelectric device
US10211545B2 (en) Method for making a power connection
US7922518B1 (en) Connection structure
JP2775410B2 (en) Thermoelectric module
JP2002084007A (en) Thermoelectric module proved with integrated heat exchanger and its usage
JP2011113946A (en) Connection structure
JPH10234194A (en) Waste-heat power generation apparatus
CA2290802A1 (en) Electronic power component with means of cooling
US6733324B1 (en) Coaxial heat sink connector
JP2896497B2 (en) Flexible thermoelectric module
US20040178517A9 (en) Split body peltier device for cooling and power generation applications
JP2005009582A (en) Fastening structure for use at low temperature
JPH08335722A (en) Thermoelectric conversion module
JPH08195510A (en) Thermoelectric power generating module
JP2000297699A (en) Exhaust heat recovery power generation system for automobile
JP3404841B2 (en) Thermoelectric converter
JPH1140864A (en) Thermoelectric power generating device
JPH08293628A (en) Thermoelectricity conversion device
JPH07176797A (en) Thermoelectric converter
JP2008153069A (en) Connecting device
JPH07335945A (en) Thermocouple array
CN116631668A (en) Power generation module and power generation device
JPH07326803A (en) Thermoelectric couples array