[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0819529B2 - Plasma processing device - Google Patents

Plasma processing device

Info

Publication number
JPH0819529B2
JPH0819529B2 JP62279239A JP27923987A JPH0819529B2 JP H0819529 B2 JPH0819529 B2 JP H0819529B2 JP 62279239 A JP62279239 A JP 62279239A JP 27923987 A JP27923987 A JP 27923987A JP H0819529 B2 JPH0819529 B2 JP H0819529B2
Authority
JP
Japan
Prior art keywords
gas
plasma
chamber
microwave
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62279239A
Other languages
Japanese (ja)
Other versions
JPH01123077A (en
Inventor
康道 鈴木
裕 斉藤
俊二 笹部
和博 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62279239A priority Critical patent/JPH0819529B2/en
Priority to KR1019880008942A priority patent/KR920002864B1/en
Priority to US07/221,272 priority patent/US5021114A/en
Priority to DE3854541T priority patent/DE3854541T2/en
Priority to EP88111684A priority patent/EP0300447B1/en
Publication of JPH01123077A publication Critical patent/JPH01123077A/en
Publication of JPH0819529B2 publication Critical patent/JPH0819529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、CVD装置に係り、特にガスをプラズマによ
つて活性化するプラズマCVD装置で被処理物にプラズマ
による損傷を与えることなく、高品質な膜を高速で堆積
するCVD電極に関する。
Description: TECHNICAL FIELD The present invention relates to a CVD apparatus, and more particularly to a plasma CVD apparatus in which a gas is activated by plasma without increasing damage to an object to be processed by plasma. It relates to a CVD electrode for depositing a quality film at high speed.

〔従来の技術〕[Conventional technology]

従来の枚葉式のプラズマ処理装置としては、平行平板
電極からなる容量結合型がある。該平行平板電極は、2
枚の電極板を平行に配置すると供に片方の電極板に被処
理物を載置し、これと対の電極間に高周波電力を印加し
てプラズマを発生する構造を持ち、プラズマCVDに使用
する場合、被処理物に対向する電極部分を中空構造と
し、被処理物に向つて多数の小孔を開けておき、CVD反
応ガスを前記中空部を介して小孔から被処理物に向つて
流し、プラズマによつて活性化させ被処理物上に膜を堆
積させる。(例えば「プラズマと成膜の基礎」小沼光晴
著 日刊工業新聞社p158 昭61)、しかし、平行平板型
の処理速度は約200nm/分(SiO2成膜時)であり、通常の
膜厚である約1μmを成膜するのに約5分間を必要とし
処理速度の向上が望まれた。
As a conventional single-wafer type plasma processing apparatus, there is a capacitively coupled type including parallel plate electrodes. The parallel plate electrodes are 2
With a structure in which one electrode plate is placed in parallel, the object to be processed is placed on one electrode plate, and high frequency power is applied between this electrode and a pair of electrodes to generate plasma, which is used for plasma CVD In this case, the electrode portion facing the object to be processed has a hollow structure, a large number of small holes are opened toward the object to be processed, and the CVD reaction gas is flowed from the small holes toward the object to be processed through the hollow portion. , Is activated by plasma to deposit a film on the object to be processed. (For example, "Basics of Plasma and Film Formation" by Mitsuharu Onuma, Nikkan Kogyo Shimbun, p158 Sho 61) However, the processing speed of the parallel plate type is about 200 nm / min (during SiO 2 film formation) It took about 5 minutes to form a film of about 1 μm, and it was desired to improve the processing speed.

上記記載の装置において、処理速度を向上させるため
平行平板に印加する高周波電力を大きくすると、処理速
度は大きくなるが、被処理物にダメージが発生したり、
膜質が劣化するという問題が生じる。
In the apparatus described above, if the high frequency power applied to the parallel plate in order to improve the processing speed is increased, the processing speed is increased, but damage to the object to be processed occurs,
There is a problem that the film quality deteriorates.

この原因としては、大電力の印加により自己励起電位
が高まり高エネルギーイオンが被処理物に衝突するこ
と、ガス種によつて励起のされ易さが異なり活性化ガス
濃度のバランスが崩れることが原因と考えられる。これ
を解決する発明に特開昭57−26441があり、該発明によ
る装置は、反応室の他にプラズマが発生可能な予備励起
室を持つている。予備励起室には、活性化しにくいガス
だけを流し予備励起し、反応室に活性化しやすいガスと
供に導入していることにより、成膜に直接寄与する活性
化ガス濃度を高くできるため反応室内の電極に大電力を
印加する必要がなく被処理物のダメージの発生を防止で
き、また、予備発生室と反応室に印加する電力の調整に
より堆積膜の組成比の制御等も可能となり高品質の膜が
得られるが、本方法は活性化しにくいガスの励起を高周
波放電によつて行つているためガスの活性化が不十分で
ある。
This is because the self-excitation potential is increased by the application of high power, and high-energy ions collide with the object to be processed, and the ease with which they are excited depends on the gas species and the balance of the activated gas concentration is lost. it is conceivable that. An invention that solves this problem is Japanese Patent Laid-Open No. 57-26441, and the apparatus according to the invention has a pre-excitation chamber capable of generating plasma in addition to the reaction chamber. In the pre-excitation chamber, only the gas that is difficult to activate is flowed to pre-excite it and introduce it into the reaction chamber along with the gas that is easy to activate. Since it is not necessary to apply a large amount of power to the electrodes of the above, damage to the workpiece can be prevented, and the composition ratio of the deposited film can be controlled by adjusting the power applied to the preliminary generation chamber and the reaction chamber. However, in this method, the gas that is difficult to activate is excited by high-frequency discharge, so that the activation of the gas is insufficient.

ガスの活性化濃度を増加させる手段としては、特開昭
57−167631号に記載のように、反応ガスの予備励起をマ
イクロ波プラズマによつて行うものがある。高周波(通
常は13.56MHz)の代りにマイクロ波(通常は2.45GHz)
を使用するとプラズマ密度は1〜2桁高くなるため(
1011/cm3)、反応ガスがプラズマ中の電子と衝突し励起
する割合が高まり、活性化ガス濃度は増加する。
As means for increasing the activation concentration of gas, there is disclosed in
As described in Japanese Patent No. 57-167631, there is a method in which a reactive gas is pre-excited by microwave plasma. Microwave (typically 2.45GHz) instead of high frequency (typically 13.56MHz)
, The plasma density will increase by 1 to 2 digits (
10 11 / cm 3 ), the rate at which the reaction gas collides with the electrons in the plasma and is excited increases, and the concentration of the activated gas increases.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来の装置は、活性化室と反応室の距離が長く、
また導入口も偏つているため、予備励起した活性化ガス
を被処理物上に濃度を低下させることなく、かつ均一に
導入することは難しく、被処理基板上に高品質の膜は得
られるが、処理を高速・均一に行うことは困難である。
In the above conventional device, the distance between the activation chamber and the reaction chamber is long,
Further, since the introduction ports are also biased, it is difficult to uniformly introduce the pre-excited activated gas onto the object to be processed without lowering the concentration, and a high-quality film can be obtained on the substrate to be processed. However, it is difficult to perform processing at high speed and uniformly.

即ち上記従来技術は、プラズマのダメージ等がない高
品質の膜を均一に、かつ高速に生成する点について配慮
がされておらず、処理速度を大きくすると膜質の劣化、
あるいは均一性の低下が生じ、また高品質で均一な膜を
得ようとすると処理速度が小さくなるという問題があつ
た。
That is, the above-mentioned conventional technology does not consider the point that a high-quality film without plasma damage or the like is generated uniformly and at high speed, and the film quality deteriorates when the processing speed is increased,
Alternatively, there is a problem that the uniformity is deteriorated and the processing speed is reduced when a high quality and uniform film is obtained.

本発明の目的は、プラズマダメージ等のない高品質の
膜を被処理物に対して均一に、かつ高速に生成すること
ができるようにしたプラズマ処理装置を提供することに
ある。
An object of the present invention is to provide a plasma processing apparatus capable of uniformly producing a high-quality film without plasma damage or the like on an object to be processed at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、第1の原料ガスを導入する活性化室手段
と、この活性化室手段に第1の原料ガスを供給する第1
のガス供給手段と、第1の原料ガスが供給された活性化
室手段中に第1の高周波電力を供給して第1の原料ガス
のプラズマを発生させて1の原料ガスを活性化させる第
1の高周波電力供給手段と、内部に基板を載置する載置
台を備えた処理室手段と、この処理室手段の内部に第2
の原料ガスを供給する第2のガス供給手段と、活性化室
手段と処理室手段との間にあって活性化室手段の内部で
活性化された第1の原料ガスを処理室手段の内部で載置
台に載置された基板上に均一に供給するための多数の小
孔と第2の原料ガスを基板上に均一に供給するための多
数のガス供給孔とを有する隔壁手段と、載置台に第2の
高周波電力を供給して基板の近傍に第2の原料ガスのプ
ラズマを発生させることにより基板上に薄膜を形成する
第2の高周波電力供給手段とを備えたことを特徴とする
プラズマ処理装置により達成される。
The above-mentioned object is to provide an activation chamber means for introducing a first source gas and a first source gas for supplying the first source gas to the activation chamber means.
Of the gas supply means and the activation chamber means to which the first source gas is supplied to supply the first high-frequency power to generate plasma of the first source gas and activate the first source gas. A high-frequency power supply means, a processing chamber means having a mounting table for mounting a substrate therein, and a second processing chamber inside the processing chamber means.
Second gas supply means for supplying the raw material gas, and the first raw material gas, which is activated inside the activation chamber means, between the activation chamber means and the processing chamber means, is loaded inside the processing chamber means. A partition means having a large number of small holes for uniformly supplying the substrate placed on the mounting table and a large number of gas supply holes for uniformly supplying the second source gas on the substrate, and the mounting table. Plasma processing comprising: a second high-frequency power supply means for forming a thin film on the substrate by supplying a second high-frequency power to generate plasma of a second source gas in the vicinity of the substrate. Achieved by the device.

〔作用〕[Action]

プラズマ処理装置は、活性化室と被処理物を有する反
応室との2室から成る。活性化室は、マイクロ波の放電
により7.4×1010/cm3の高密度のプラズマ発生が可能と
なるが、無磁場のため前記プラズマ密度になるとマイク
ロ波はプラズマ中を伝播できず表面で反射されてしまい
プラズマ密度を上げることは不可能となるが、マイクロ
波の導入部材を凸形とすることによりマイクロ波とプラ
ズマの接触面積が増加し、プラズマ体積が増加する。ま
た、活性化室の寸法を共振条件とすることによりプラズ
マの点火,安定プラズマの生成が容易となり、活性化室
に導入する活性化しにくいガスの活性化濃度を任意に高
めることができる。
The plasma processing apparatus is composed of two chambers, an activation chamber and a reaction chamber having an object to be treated. In the activation chamber, a high-density plasma of 7.4 × 10 10 / cm 3 can be generated by microwave discharge, but because of the absence of a magnetic field, microwaves cannot propagate in the plasma and are reflected by the surface. However, it is impossible to increase the plasma density, but by making the microwave introduction member convex, the contact area between the microwave and plasma increases, and the plasma volume increases. Further, by making the dimensions of the activation chamber a resonance condition, it is easy to ignite plasma and generate stable plasma, and it is possible to arbitrarily increase the activation concentration of the gas that is difficult to activate and is introduced into the activation chamber.

活性化室と反応室の境界に設けた平板は、活性化室で
発生させた活性化しにくいガスの活性種と活性化しやす
い反応ガスを被処理物に均等に供給することを可能とし
ている。この時、活性化室と被処理物の距離を短くする
ことを可能にし、活性種の濃度をほとんど低下させるこ
となく、被処理物上に均等に導入するため、被処理物に
対向してガス吹出板,ガス吹出板の被処理物と反対側に
活性化室を設けてある。
The flat plate provided at the boundary between the activation chamber and the reaction chamber makes it possible to evenly supply the active species of the gas that is difficult to activate generated in the activation chamber and the reaction gas that is easily activated to the object to be processed. At this time, it is possible to shorten the distance between the activation chamber and the object to be treated, and to introduce the active species evenly on the object to be treated without substantially reducing the concentration of the active species, the gas is opposed to the object to be treated. An activation chamber is provided on the opposite side of the blower plate and the gas blower plate from the object to be processed.

上記活性化室で活性化するガスは活性化しにくいガス
であり、活性化しやすいガスは、反応室に活性化室に回
り込まないようにして直接導入し被処理物上で低電力の
高周波によつて発生させたプラズマにより、活性化す
る。ここで活性化しやすいガスも被処理物に対して均等
に導入するためガス吹出板の活性化室に通じる小孔と交
互に開けた孔から導入する。
The gas that is activated in the activation chamber is a gas that is difficult to activate, and the gas that is easily activated is introduced directly into the reaction chamber so as not to go around to the activation chamber, and is supplied by a high-frequency radio wave with low power on the object to be processed. It is activated by the generated plasma. Here, the gas that is easily activated is also introduced into the object to be treated evenly, so that it is introduced through the holes alternately formed with the small holes leading to the activation chamber of the gas blowing plate.

以上により活性化しにくいガスの活性化ガス濃度を単
独で高めることができ、かつ濃度を低下させることなく
均一に被処理物に供給でき、また活性化しやすいガス
は、マイクロ波による高密度プラズマにさらされること
なく、被処理物上の低電力のプラズマのみによつて活性
化できるため、複数の活性化ガス濃度の割合を制御し適
正化可能であり、膜質を低下させることなく高速成膜で
きる。また、ガスの供給を被処理物と対向したガス吹出
板より均一に被処理物上に供給することができる。
As a result, the activated gas concentration of the gas that is difficult to activate can be increased independently, and it can be uniformly supplied to the object to be processed without lowering the concentration, and the easily activated gas is exposed to high-density plasma by microwave. Since it can be activated only by the low-power plasma on the object to be processed, it is possible to control and optimize the ratio of the concentrations of a plurality of activated gases, and it is possible to perform high-speed film formation without deteriorating the film quality. Further, the gas can be uniformly supplied onto the object to be processed from the gas blowout plate facing the object to be processed.

反応室では、上記平板より導入された活性化しやすい
ガスを被処理物上に発生させた低密度のプラズマによつ
て活性化し、被処理物表面で活性化室からの活性種と反
応させ膜を堆積させる。
In the reaction chamber, the easily activated gas introduced from the flat plate is activated by the low-density plasma generated on the object to be treated, and the surface of the object is reacted with the active species from the activation chamber to form a film. Deposit.

以上のように、反応ガスは複数のプラズマによつて独
立に活性化することができ、該活性化ガスを被処理物に
均等に高効率で供給することが可能になるので、高品質
の膜を均一、かつ高速に形成することができる。
As described above, the reactive gas can be independently activated by a plurality of plasmas, and the activated gas can be uniformly and efficiently supplied to the object to be processed, so that a high-quality film can be obtained. Can be formed uniformly and at high speed.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図,第2図により説明
する。第1図は第1の実施例で、活性化室1は一方にマ
イクロ波導入用の窓2を具備し、ここにはマイクロ波を
透過し真空は保持する材質(石英又はアルミナ磁器等)
から成るマイクロ波の導入部材3が設けられ、該導入部
材3は活性化室1内へ突出している。前記活性化室1は
入力マイクロ波の空洞共振器を形成しており、プランジ
ヤー4により共振器の寸法を可変できるようになつてい
る。該活性室の他端には複数の吹出孔5が設けられてお
り、また、該活性化室1内の窓2の近傍には反応ガスの
第一供給口6が設けられている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows the first embodiment, in which the activation chamber 1 is provided with a microwave introduction window 2 on one side, in which a material that transmits microwaves and holds a vacuum (quartz or alumina porcelain, etc.)
The microwave introducing member 3 is provided, and the introducing member 3 projects into the activation chamber 1. The activation chamber 1 forms an input microwave cavity resonator, and the size of the resonator can be varied by the plunger 4. A plurality of blow-out holes 5 are provided at the other end of the activation chamber, and a first supply port 6 for the reaction gas is provided near the window 2 in the activation chamber 1.

前記吹出孔5の出口には反応室7が取付けられ該反応
室7の下部には真空排気口8が設けられ、また、中央部
には被処理物9が置台10上に載置されている。該置台10
はヒータ11が内蔵されており温度を任意に設定すること
ができ、また反応室7と絶縁されており高周波電源12と
接続されている前記被処理物9に対向した吹出孔5が開
けられた面には、該吹出孔と交互してガスの第2供給口
13とつながつているガス供給孔14が設けられている(図
2参照)。また、活性化室1のマイクロ波導入用の窓2
側には、該活性化室と入射マイクロ波とのマツチングを
取るためのチユーナや入射マイクロ波と反射マイクロ波
の電力を測定するモニタを具備するマイクロ波発生源15
が設置されている。
A reaction chamber 7 is attached to the outlet of the blow-out hole 5, a vacuum exhaust port 8 is provided in the lower part of the reaction chamber 7, and an object 9 to be treated is placed on a table 10 in the central portion. . The table 10
Has a heater 11 built therein to allow the temperature to be set arbitrarily, and is provided with a blow-out hole 5 facing the object to be treated 9 which is insulated from the reaction chamber 7 and is connected to the high-frequency power source 12. On the surface, the second supply port for gas is alternated with the outlet hole.
A gas supply hole 14 connected to 13 is provided (see FIG. 2). In addition, the microwave introduction window 2 of the activation chamber 1
On the side, a microwave source 15 having a tuner for matching the activation chamber and the incident microwave and a monitor for measuring the power of the incident microwave and the reflected microwave are provided.
Is installed.

以上の構成において、活性化しにくいガス(例えば、
SiO2成膜の場合、N2OまたはO2,Si3N4の場合N2O)を供給
口6から、容易に活性化するガス(例えば、SiO2,Si3N4
成膜の場合、SiH4ガス)をガス供給口14から各々供給
し、真空排気口8から所定の圧力に真空排気する。ここ
でマイクロ波発振源15よりマイクロ波を発振し、プラン
ジヤー4により印加マイクロ波と活性化室1とのマツチ
ングを取ることにより、マイクロ波は導入部材3を通し
て活性化室1内へ入りここで定在波を形成し、この電界
により供給口6から供給された反応ガスを電離し、プラ
ズマ状態とする。ここでマイクロ波は導入部材3の突出
部の全面から活性化室内へ入り込み反応性ガスのプラズ
マにエネルギーを供給するため、導入部材3の突出部全
面は高密度プラズマ(プラズマ密度,7.4×1010/cm3)と
なる。このプラズマにより活性化された反応ガスは真空
排気の流れに乗つて吹出孔5を通つて均等に反応室7に
送られる。該反応室7では、上記の活性化された反応性
ガスと供に、ガス供給口14から活性化室に回り込まない
で活性化率の高いガスを被処理物9上で高周波によつて
発生させたプラズマを通して、ヒータ11によつて所定の
温度に加熱された被処理物9の表面で反応し膜が堆積さ
れる。
In the above configuration, a gas that is difficult to activate (for example,
If the SiO 2 film formation, the N 2 O or O 2, Si 3 when the N 4 N 2 O) a supply port 6, readily gas to activate (e.g., SiO 2, Si 3 N 4
In the case of film formation, SiH 4 gas) is supplied from each gas supply port 14 and vacuum exhaust is performed to a predetermined pressure from the vacuum exhaust port 8. Here, the microwave is oscillated from the microwave oscillating source 15, and the microwave is introduced into the activation chamber 1 through the introduction member 3 by matching the applied microwave with the activation chamber 1 by the plunger 4, and the microwave is determined here. A standing wave is formed, and the reaction gas supplied from the supply port 6 is ionized by this electric field to be in a plasma state. Here, since the microwave enters the activation chamber from the entire surface of the projecting portion of the introducing member 3 and supplies energy to the plasma of the reactive gas, the entire surface of the projecting portion of the introducing member 3 is a high density plasma (plasma density, 7.4 × 10 10 / cm 3 ). The reaction gas activated by this plasma is sent to the reaction chamber 7 uniformly through the blowout holes 5 along with the flow of vacuum exhaust. In the reaction chamber 7, together with the activated reactive gas, a gas having a high activation rate is generated by a high frequency on the object to be treated 9 without flowing into the activation chamber from the gas supply port 14. Through the plasma, the heater 11 reacts on the surface of the object 9 to be heated to a predetermined temperature to deposit a film.

以上のように本実施例によれば、活性化室内でプラズ
マ発生面積を大きくでき、かつプラズマへのマイクロ波
吸収面積を拡大して効率良くマイクロ波エネルギをプラ
ズマに吸収させられるので活性化室内を大容量の高密度
プラズマにでき、これにより高濃度の活性化反応ガスが
作られ、これを短かい距離で高濃度のまま、被処理物上
に均一に輸送でき、被処理物上で発生させたプラズマに
より活性化した反応性ガスとの反応が大巾に増加するた
め、膜質を劣化することなく高速で成膜できる。
As described above, according to this embodiment, the plasma generation area can be increased in the activation chamber, and the microwave absorption area to the plasma can be expanded to efficiently absorb the microwave energy into the plasma. Large-capacity, high-density plasma can be generated, which produces a high-concentration activated reaction gas, which can be uniformly transported over the object to be processed in a short distance while maintaining a high concentration. Since the reaction with the reactive gas activated by the plasma greatly increases, the film can be formed at high speed without deteriorating the film quality.

第3図は第2の一実施例で、活性化室1に接続するマ
イクロ波の導入口を上端面に設けたものである。本構造
では、プランジヤー4がないため十分な共振状態が得に
くく反射電力が大きくなり易いという欠点があるが、マ
イクロ波の導入部分が簡単となり、電極全体が小さくな
るという利点を有しており、特性については第一の実施
例と同様の効果が得られる。また、活性化しやすいガス
は前記のマイクロ波プラズマにさらすことなく、低電力
の高周波によつて発生させたプラズマによつて活性化し
被処理物上に均等に供給し、前記のマイクロ波プラズマ
によつて活性化したガスと反応する。そこで、被処理物
上のプラズマの密度を高める高電力の印加が必要なく、
また活性化しやすいガスの活性ガス濃度だけ高くなるこ
とがないため、正規の化学量比に近い割合の反応が増加
し、膜質を劣化することなく、成膜の高速化を計ること
ができ、また、μ波プラズマ,高周波プラズマで励起す
る各々のガスを被処理物に向つて均等に供給するため均
一性も確保できるので、高品質の膜を均一かつ高速に形
成できるという効果がある。
FIG. 3 shows a second embodiment, in which a microwave introduction port connected to the activation chamber 1 is provided on the upper end surface. This structure has a drawback that it is difficult to obtain a sufficient resonance state because the plunger 4 is not provided, and the reflected power is apt to increase, but it has an advantage that the microwave introduction part becomes simple and the entire electrode becomes small. Regarding the characteristics, the same effects as those of the first embodiment can be obtained. In addition, the gas that is easily activated is not exposed to the microwave plasma, is activated by the plasma generated by the high frequency of low power, and is uniformly supplied onto the object to be processed. Then reacts with the activated gas. Therefore, it is not necessary to apply high power to increase the density of plasma on the object to be processed,
In addition, since the active gas concentration of the gas that is easily activated does not increase, the reaction in the ratio close to the regular stoichiometric ratio increases, and the film formation speed can be increased without deteriorating the film quality. Since the respective gases excited by the .mu.-wave plasma and the high-frequency plasma are evenly supplied toward the object to be processed, the uniformity can be ensured, so that a high quality film can be formed uniformly and at high speed.

以上説明したようにプラズマ処理装置は、活性化室1
と被処理物9を有する反応室7との2室から成る。活性
化室1は、マイクロ波の放電により7.4×1010/cm3の高
密度のプラズマ発生が可能となるが、無磁場のため前記
プラズマ密度になるとマイクロ波はプラズマ中を伝播で
きず表面で反射されてしまいプラズマ密度を上げること
は不可能となるが、マイクロ波の導入部材を凸形とする
ことによりマイクロ波とプラズマの接触面積が増加し、
プラズマ体積が増加する。また、活性化室1の寸法を共
振条件とすることによりプラズマの点火,安定プラズマ
の生成が容易となり、活性化室1に導入する活性化しに
くいガスの活性化濃度を任意に高めることができる。
As described above, the plasma processing apparatus includes the activation chamber 1
And a reaction chamber 7 having an object 9 to be treated. In the activation chamber 1, a high-density plasma of 7.4 × 10 10 / cm 3 can be generated by the discharge of microwaves, but because of the absence of a magnetic field, the microwaves cannot propagate in the plasma at the above-mentioned plasma density. It is impossible to increase the plasma density because it is reflected, but by making the microwave introduction member convex, the contact area between the microwave and plasma increases,
Plasma volume increases. Further, by making the dimensions of the activation chamber 1 a resonance condition, plasma ignition and stable plasma generation are facilitated, and the activation concentration of the gas that is difficult to activate and is introduced into the activation chamber 1 can be arbitrarily increased.

活性化室1と反応室2の境界に設けた平板は、活性化
室で発生させた活性化しにくいガスの活性積と活性化し
やすい反応ガスを被処理物9に均等に供給することを可
能としている。この時、活性化室1と被処理物9の距離
を短くすることが可能で、活性種の濃度をほとんど低下
させることなく、被処理物9に低下せず、かつ均等に導
入するため被処理物9に対向してガス吹出板14,ガス吹
出板の被処理物と反対側に活性化室1を設けてある。
The flat plate provided at the boundary between the activation chamber 1 and the reaction chamber 2 makes it possible to evenly supply the active product of the gas that is difficult to activate generated in the activation chamber and the reaction gas that is easily activated to the object 9 to be processed. There is. At this time, the distance between the activation chamber 1 and the object to be treated 9 can be shortened, the concentration of the active species is hardly reduced, does not decrease into the object 9 to be treated, and is uniformly introduced, so that the object to be treated is A gas blowing plate 14 is provided facing the object 9, and an activation chamber 1 is provided on the side of the gas blowing plate opposite to the object to be treated.

上記活性化室1で活性化するガスは活性化しにくいガ
スであり、活性化しやすいガスは、反応室7に活性化室
に回り込まないようにして直接導入し被処理物9上で低
電力の高周波によつて発生させたプラズマにより活性化
する。ここで活性化しやすいガスも被処理物9に対して
均等に導入するためガス吹出板の活性化室に通じる小孔
5と交互に開けた孔14から導入する。
The gas that is activated in the activation chamber 1 is a gas that is difficult to activate, and the gas that is easily activated is introduced directly into the reaction chamber 7 so as not to go around to the activation chamber, and is supplied on the object to be processed 9 with high power and high frequency. Activated by the plasma generated by. Here, in order to evenly introduce the gas that is easily activated into the object 9 to be treated, it is introduced through the holes 14 alternately formed with the small holes 5 communicating with the activation chamber of the gas blowing plate.

以上により活性化しにくいガスの活性化ガス濃度を単
独で高めることができ、かつ濃度を低下させることなく
均一に被処理物9に供給でき、また活性化しやすいガス
は、マイクロ波による高密度にさらされることなく、被
処理物上の低電力のプラズマのみによつて活性化できる
ため、複数の活性化ガス濃度の割合を制御し適正化可能
であり、膜質を低下させることなく高速成膜できる。ま
た、ガスの供給を被処理物9と対向したガス吹出板より
均一に上に供給することができる。
As described above, it is possible to independently increase the activation gas concentration of the gas that is difficult to be activated, and to uniformly supply the object 9 to be treated without lowering the concentration, and the gas that is easily activated is exposed to a high density by microwaves. Since it can be activated only by the low-power plasma on the object to be processed, it is possible to control and optimize the ratio of the concentrations of a plurality of activated gases, and it is possible to perform high-speed film formation without deteriorating the film quality. Further, the gas can be supplied uniformly above the gas blowing plate facing the object to be processed 9.

反応室7では、上記平板より導入された活性化しやす
いガスを被処理物9上に発生させた低密度のプラズマに
よつて活性化し、被処理物表面で活性化室からの活性種
と反応させ膜を堆積させる。
In the reaction chamber 7, the easily activated gas introduced from the flat plate is activated by the low-density plasma generated on the object 9 to be reacted with the active species from the activation chamber on the surface of the object. Deposit the film.

以上のように、反応ガスは複数のプラズマによつて独
立に活性化することができ、該活性化ガスを被処理物に
均等に高効率で供給することが可能になるので、高品質
の膜を均一、かつ高速に形成することができる。
As described above, the reactive gas can be independently activated by a plurality of plasmas, and the activated gas can be uniformly and efficiently supplied to the object to be processed, so that a high-quality film can be obtained. Can be formed uniformly and at high speed.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、複数の反応ガ
スを複数のプラズマによってそれぞれ独立に活性化する
ことができるので、正規の化学量比に近い割合の反応が
増加し、高品質の膜を、高速にかつ均一に形成すること
ができる。
As described above, according to the present invention, a plurality of reaction gases can be independently activated by a plurality of plasmas, so that the reaction in a ratio close to the regular stoichiometric ratio increases and a high quality film is obtained. Can be formed at high speed and uniformly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第一の一実施例の断面図、第2図は本
発明の第一の一実施例の内の吹出孔およびガス供給孔を
軸方向から見た部分図、第3図は本発明の第二の一実施
例の断面図である。 1……活性化室、2……窓 3……導入部材、4……プランジヤー 5……吹出孔、6……第1供給口 7……反応室、8……真空排気口 9……被処理物、10……置台 11……ヒータ、12……高周波電源 13……第2供給口、14……ガス供給孔 15……マイクロ波発生源
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a partial view of an outlet hole and a gas supply hole in the first embodiment of the present invention as seen from an axial direction. The drawing is a sectional view of a second embodiment of the present invention. 1 ... Activation chamber, 2 ... Window 3 ... Introduction member, 4 ... Plunger 5 ... Blowout hole, 6 ... First supply port 7 ... Reaction chamber, 8 ... Vacuum exhaust port 9 ... Covered Processing object, 10 ... Stand 11 ... Heater, 12 ... High frequency power supply 13 ... Second supply port, 14 ... Gas supply hole 15 ... Microwave source

フロントページの続き (72)発明者 中島 和博 東京都青梅市今井2326番地 株式会社日立 製作所デバイス開発センター内 (56)参考文献 特開 昭59−41464(JP,A) 特開 昭60−117737(JP,A)Front page continued (72) Inventor Kazuhiro Nakajima 2326 Imai, Ome City, Tokyo Inside Device Development Center, Hitachi, Ltd. (56) Reference JP 59-41464 (JP, A) JP 60-117737 (JP) , A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】第1の原料ガスを導入する活性化室手段
と、 該活性化室手段に前記第1の原料ガスを供給する第1の
ガス供給手段と、 前記第1の原料ガスが供給された前記活性化室手段中に
第1の高周波電力を供給して前記第1の原料ガスのプラ
ズマを発生させて前記1の原料ガスを活性化させる第1
の高周波電力供給手段と、 内部に基板を載置する載置台を備えた処理室手段と、 該処理室手段の内部に第2の原料ガスを供給する第2の
ガス供給手段と、 前記活性化室手段と前記処理室手段との間にあって前記
活性化室手段の内部で活性化された前記第1の原料ガス
を前記処理室手段の内部で前記載置台に載置された基板
上に均一に供給するための多数の小孔と前記第2の原料
ガスを前記基板上に均一に供給するための多数のガス供
給孔とを有する隔壁手段と、 前記載置台に第2の高周波電力を供給して前記基板の近
傍に前記第2の原料ガスのプラズマを発生させることに
より前記基板上に薄膜を形成する第2の高周波電力供給
手段と を備えたことを特徴とするプラズマ処理装置。
1. An activation chamber means for introducing a first raw material gas, a first gas supply means for supplying the first raw material gas to the activation chamber means, and a supply of the first raw material gas. A first high-frequency power is supplied into the activated chamber means to generate plasma of the first raw material gas to activate the first raw material gas.
High frequency power supply means, processing chamber means having a mounting table for mounting a substrate therein, second gas supply means for supplying a second source gas into the processing chamber means, and the activation. Between the chamber means and the processing chamber means, the first source gas activated inside the activation chamber means is evenly distributed inside the processing chamber means on the substrate placed on the mounting table. A partition means having a large number of small holes for supplying and a large number of gas supplying holes for uniformly supplying the second source gas on the substrate, and supplying a second high frequency power to the mounting table. And a second high-frequency power supply means for forming a thin film on the substrate by generating plasma of the second source gas in the vicinity of the substrate.
【請求項2】前記第1の高周波電力供給手段がマイクロ
波電力を供給し、前記第1の高周波放電がマイクロ波放
電であることを特徴とする特許請求の範囲第1項記載の
プラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the first high-frequency power supply means supplies microwave power, and the first high-frequency discharge is microwave discharge. .
【請求項3】前記活性化室手段は、マイクロ波電力が透
過可能な壁面で仕切られたマイクロ波導入室を内部に有
し、前記マイクロ波電力供給手段からマイクロ波電力を
前記マイクロ波導入室に導入して前記壁面を透過させ前
記マイクロ波導入室の内部へ供給することによりプラズ
マを発生させることを特徴とする特許請求の範囲第2項
記載のプラズマ処理装置。
3. The activation chamber means has therein a microwave introduction chamber partitioned by a wall surface through which microwave power can pass, and microwave power is supplied from the microwave power supply means to the microwave introduction chamber. The plasma processing apparatus according to claim 2, wherein the plasma is generated by being introduced into the microwave introduction chamber, transmitted through the wall surface, and supplied to the inside of the microwave introduction chamber.
【請求項4】前記載置台は前記隔壁部を介して前記活性
化室手段と対向して設置されていることを特徴とする特
許請求の範囲第1項記載のプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein the mounting table is installed to face the activation chamber means via the partition wall.
JP62279239A 1987-07-20 1987-11-06 Plasma processing device Expired - Lifetime JPH0819529B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62279239A JPH0819529B2 (en) 1987-11-06 1987-11-06 Plasma processing device
KR1019880008942A KR920002864B1 (en) 1987-07-20 1988-07-18 Apparatus for treating matrial by using plasma
US07/221,272 US5021114A (en) 1987-07-20 1988-07-19 Apparatus for treating material by using plasma
DE3854541T DE3854541T2 (en) 1987-07-20 1988-07-20 Method and device for treating a material by plasma.
EP88111684A EP0300447B1 (en) 1987-07-20 1988-07-20 Method and apparatus for treating material by using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279239A JPH0819529B2 (en) 1987-11-06 1987-11-06 Plasma processing device

Publications (2)

Publication Number Publication Date
JPH01123077A JPH01123077A (en) 1989-05-16
JPH0819529B2 true JPH0819529B2 (en) 1996-02-28

Family

ID=17608380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279239A Expired - Lifetime JPH0819529B2 (en) 1987-07-20 1987-11-06 Plasma processing device

Country Status (1)

Country Link
JP (1) JPH0819529B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941464A (en) * 1982-08-30 1984-03-07 Toshiba Corp Apparatus for forming film

Also Published As

Publication number Publication date
JPH01123077A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
JP4290234B2 (en) Remote plasma CVD method for coating or processing large surface substrates and apparatus for implementing the same
KR920002864B1 (en) Apparatus for treating matrial by using plasma
JPH05275345A (en) Plasma cvd method and its device
JP4504511B2 (en) Plasma processing equipment
JPH10223607A (en) Plasma treating apparatus
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JPH11293469A (en) Surface treating device and surface treating method
JP2821138B2 (en) Thin film forming method and apparatus
JPH0394422A (en) Method and apparatus for plasma cvd
JPH0819529B2 (en) Plasma processing device
JP2662219B2 (en) Plasma processing equipment
JP2763291B2 (en) Plasma processing method and processing apparatus
JPH07135094A (en) Material supply method and device for microwave induction plasma
JPS6267822A (en) Plasma processor
JP3246788B2 (en) Microwave plasma etching equipment
JPH02207528A (en) Plasma chemical reaction film forming equipment and its method
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JP2675000B2 (en) Plasma processing equipment
JP2765788B2 (en) Plasma CVD equipment
JP2697464B2 (en) Microwave plasma processing equipment
JPH07335633A (en) Plasma treating device
JPH08246146A (en) Method for plasma treating and device therefor
JPH06248461A (en) Plasma cvd apparatus
JPH0864535A (en) Plasma generator, and method and device for film deposition
JPS62229841A (en) Vacuum treatment apparatus