JPH08186976A - Driver of power semiconductor element - Google Patents
Driver of power semiconductor elementInfo
- Publication number
- JPH08186976A JPH08186976A JP6339351A JP33935194A JPH08186976A JP H08186976 A JPH08186976 A JP H08186976A JP 6339351 A JP6339351 A JP 6339351A JP 33935194 A JP33935194 A JP 33935194A JP H08186976 A JPH08186976 A JP H08186976A
- Authority
- JP
- Japan
- Prior art keywords
- current
- voltage
- power semiconductor
- control
- semiconductor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
- Logic Circuits (AREA)
- Electronic Switches (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、パワー半導体素子の駆
動方法及び装置に係り、特に、主電流の入出力に係る第
1及び第2端子と制御ゲート端子を有するパワー半導体
素子の駆動装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for driving a power semiconductor element, and more particularly to a power semiconductor element driving apparatus having first and second terminals for inputting / outputting a main current and a control gate terminal. .
【0002】[0002]
【従来の技術】絶縁ゲート型バイポーラトランジスタ
(以後、IGBTと呼ぶ。)は、近年、高周波のインバ
ータ装置や電源に広く用いられている。また、将来的に
は、サイリスタに絶縁ゲート構造を付加し、ゲート電圧
を印加或は除去してサイリスタに流れる電流を通流、或
は遮断するMOSゲートサイリスタも実用化される見通
しにある。これらのパワー半導体素子は、スイッチング
速度が速くターンオン,ターンオフ時のスイッチング損
失を小さくできることが特徴である。しかしながら、高
速なスイッチングは、電流変化di/dt、電圧変化d
V/dtが大きいことを意味しており、これらに起因す
る問題がある。ターンオフ時では、電流がスナバ回路に
転流する際に発生するスパイク電圧が増加する他、複数
のパワー半導体素子を並列に接続して駆動する場合に過
渡的な電流分担の不均一を招くことが挙げられる。ま
た、ターンオン時にも、電流立上りの際に電流分担の不
均一が起きる他、ダイオードがリカバリする際のリカバ
リ電流が大きくなる問題がある。このようにdi/d
t,dV/dtが大きいために起きる問題を改善する方
法として、スイッチング時にゲート端子への電圧の印加
或は除去を緩和してdi/dt,dV/dtを抑制するこ
とが検討されている。一例として特開平5−33673
2号には、IGBTをターンオフさせる際にコレクタ電
圧を検出してゲート抵抗を変化させる方法が述べられて
いる。IGBTは、ゲート電圧に対して流せる電流の最
大値(これを飽和電流と呼ぶ。)が決まっており、ゲー
ト電圧をゆっくりと減少させることによって電流の減少
速度を遅くすることができる。また、ゲートの電圧を除
去する駆動回路は、IGBT内部のゲート静電容量に充
電された電荷をスイッチ素子と抵抗を含む直列回路によ
り放電させる構成であり、抵抗を大きくすると、ゲート
電圧の減少を遅らせることが可能である。上記公知例
は、コレクタ電圧が所定の値以上では駆動回路の抵抗を
増加して、以後のdi/dt、dV/dtを抑制するもの
である。また、同様な公知例として実開平6−2439
3号には、IGBTを用いたインバータ回路においてイ
ンバータの出力電流を検出してゲート駆動回路内の抵抗
を可変する方法が述べられている。2. Description of the Related Art Insulated gate bipolar transistors (hereinafter referred to as IGBTs) have been widely used in high frequency inverter devices and power supplies in recent years. Further, in the future, it is expected that a MOS gate thyristor will be put into practical use in which an insulated gate structure is added to the thyristor, and a gate voltage is applied or removed to allow or prevent the current flowing through the thyristor to flow. These power semiconductor elements are characterized by a high switching speed and a small switching loss at turn-on and turn-off. However, high-speed switching requires a current change di / dt and a voltage change d.
This means that V / dt is large, and there are problems caused by these. At turn-off, the spike voltage generated when the current commutates to the snubber circuit increases, and transient non-uniform current sharing may occur when multiple power semiconductor devices are connected in parallel and driven. Can be mentioned. Further, at the time of turn-on, there is a problem that the current sharing becomes nonuniform when the current rises, and the recovery current when the diode recovers becomes large. Like this di / d
As a method for improving the problem caused by the large t and dV / dt, it has been studied to suppress the di / dt and dV / dt by relaxing the application or removal of the voltage to the gate terminal during switching. As an example, JP-A-5-33673
No. 2 describes a method of changing the gate resistance by detecting the collector voltage when turning off the IGBT. In the IGBT, the maximum value of the current that can flow with respect to the gate voltage (this is called the saturation current) is determined, and the decrease rate of the current can be slowed by slowly decreasing the gate voltage. Further, the drive circuit for removing the voltage of the gate is configured to discharge the electric charge charged in the gate capacitance inside the IGBT by the series circuit including the switch element and the resistor. When the resistance is increased, the gate voltage is reduced. It is possible to delay. In the above-mentioned known example, when the collector voltage is a predetermined value or more, the resistance of the drive circuit is increased to suppress the subsequent di / dt and dV / dt. In addition, as a similar publicly known example, an actual Kaihei 6-2439
No. 3 describes a method of detecting an output current of an inverter in an inverter circuit using an IGBT and varying a resistance in a gate drive circuit.
【0003】[0003]
【発明が解決しようとする課題】負荷がモータ等の誘導
性の場合を例とすると、IGBTのターンオフ時には、
まず、コレクタ電圧が増加して主電源の電圧値に到達
し、その後にIGBTを流れるコレクタ電流が減少して
遮断状態に到る。前述の特開平5−336732号の方
法では、コレクタ電圧が所定の値以上で駆動回路の抵抗
を増加させ、コレクタ電圧の増加に関するdV/dt
と、その後の電流が減少する際のdi/dtを共に緩や
かにすることができるが、反面IGBTに印加されたコ
レクタ電圧と素子に流れる電流の積で決まる損失は大き
くなる。実開平6−24393号の方法では、インバー
タの出力電流に応じてゲート駆動回路内の抵抗を可変す
るため、出力電流が大きい場合にのみゲート抵抗を大き
くすることが可能である。しかしながら、この場合でも
IGBTに印加される電圧と素子に流れる電流の両方と
も、変化が遅くなるためスイッチング損失は増加する。
また、上記公知例はいずれも、主電源とパワー半導体素
子を接続する配線に存在するインダクタンスに蓄積され
た電磁エネルギーを素子の損失(熱エネルギー)として
消費することにより、電流遮断時のスパイク電圧や波形
振動等のエネルギーを軽減する。この電磁エネルギー
は、電流の2乗に比例しており、電流が大きくなるほ
ど、パワー半導体素子のスイッチング損失を大幅に増加
しなければ、di/dt,dV/dtを十分に抑制するこ
とはできない。しかしながら、スイッチング損失の大幅
な増加は、素子の冷却構造を大形化、高コスト化させる
とともに、装置の効率を低下させる問題がある。このよ
うにスイッチング時のdi/dt,dV/dtを抑制する
ことは、同時にスイッチング損失を増加させる結果を招
く。そこで、損失の増加を最低限に抑えつつ、問題とな
るスパイク電圧や電流分担の不均一を改善することが望
ましいが、上記公知例にはいずれもこうした駆動方法に
関して述べられていない。Taking the case where the load is inductive such as a motor as an example, when the IGBT is turned off,
First, the collector voltage increases and reaches the voltage value of the main power supply, and then the collector current flowing through the IGBT decreases and the cutoff state is reached. In the method of the above-mentioned JP-A-5-336732, the resistance of the drive circuit is increased when the collector voltage is equal to or higher than a predetermined value, and dV / dt related to the increase of the collector voltage is increased.
Then, both di / dt when the current decreases thereafter can be made gentle, but on the other hand, the loss determined by the product of the collector voltage applied to the IGBT and the current flowing through the element becomes large. In the method of Japanese Utility Model Laid-Open No. 6-24393, the resistance in the gate drive circuit is changed according to the output current of the inverter, so that the gate resistance can be increased only when the output current is large. However, even in this case, both the voltage applied to the IGBT and the current flowing through the element change slowly, so that the switching loss increases.
Further, in any of the above-mentioned known examples, the electromagnetic energy accumulated in the inductance existing in the wiring connecting the main power source and the power semiconductor element is consumed as the loss (heat energy) of the element, so that the spike voltage at the time of current interruption or Reduces energy such as waveform vibration. This electromagnetic energy is proportional to the square of the current, and di / dt and dV / dt cannot be sufficiently suppressed unless the switching loss of the power semiconductor element is significantly increased as the current increases. However, there is a problem that a large increase in switching loss causes the cooling structure of the element to become large in size and cost, and also reduces the efficiency of the device. In this way, suppressing di / dt and dV / dt at the time of switching causes a result of simultaneously increasing switching loss. Therefore, it is desirable to reduce the increase in loss to the minimum and improve the unevenness of the sharing of the spike voltage and the current, which are problems, but none of the above-mentioned known examples describes such a driving method.
【0004】本発明の目的は、パワー半導体素子がスイ
ッチングする際に、di/dtを抑制して、損失の増加
を最低限に抑え、di/dtに起因するスパイク電圧を
軽減すると共に過度的な電流分担の不均一を改善するこ
とにある。An object of the present invention is to suppress di / dt at the time of switching of a power semiconductor element to minimize increase in loss, reduce spike voltage caused by di / dt, and transiently increase. It is to improve non-uniformity of current sharing.
【0005】[0005]
【課題を解決するための手段】上記目的は、主電流の入
出力に係る第1及び第2端子と制御ゲート端子を具備す
るパワー半導体素子と、入力信号に応じて制御ゲート端
子に制御電圧または制御電流を供給或いは除去する駆動
回路手段を備え、主電流を通流或いは遮断するパワー半
導体素子の駆動装置であって、パワー半導体素子の第1
と第2端子間にスナバ回路手段を設け、制御ゲート端子
に制御電圧または制御電流を供給或いは除去する期間
に、スナバ回路手段に流れる電流に応じて制御ゲート端
子の制御電圧または制御電流を変化させることによっ
て、達成される。The above object is to provide a power semiconductor device having first and second terminals for inputting / outputting a main current and a control gate terminal, and a control voltage or a control voltage applied to the control gate terminal according to an input signal. A power semiconductor device driving apparatus, comprising a drive circuit means for supplying or removing a control current, for passing or shutting off a main current, which is the first power semiconductor device.
A snubber circuit means is provided between the control gate terminal and the second terminal, and the control voltage or control current of the control gate terminal is changed according to the current flowing through the snubber circuit means during a period of supplying or removing the control voltage or control current to the control gate terminal. It is achieved by
【0006】[0006]
【作用】パワー半導体素子の駆動装置において、第1と
第2端子間にスナバ回路手段を設けることにより、スイ
ッチング時にパワー半導体素子に印加される電圧とその
dV/dtを軽減するとともに、主電源とパワー半導体
素子の間の配線インダクタンスに蓄積された電磁エネル
ギーをスナバ回路に吸収する。しかし、スナバ回路手段
だけを設けた場合は、パワー半導体素子をターンオフ或
いはターンオンする際に、素子に流れる電流の変化(d
i/dt)は抑制されず、電流がスナバ回路に転流する
際に、スナバ回路配線のインダクタンスと上記di/d
tによってスパイク電圧が発生する他、複数のパワー半
導体素子を並列に接続した場合に、上記di/dtが招
く過度的な電流分担の不均一の問題は依然として残る。
そこで、本発明では、スナバ回路を流れる電流を検出す
ることにより、パワー半導体素子に流れる電流が減少或
は増加する時点からそれ以降、パワー半導体素子の制御
電圧或いは制御電流を変化させ、上記電流が減少或は増
加する期間のdi/dtを抑制する。この抑制によっ
て、スイッチング損失の増加を必要最小限に抑えるとと
もに、スパイク電圧を軽減し、パワー半導体素子の並列
接続時の過度的な電流分担の不均一を改善する。In the driving device for the power semiconductor element, by providing the snubber circuit means between the first and second terminals, the voltage applied to the power semiconductor element at the time of switching and its dV / dt are reduced, and at the same time as the main power source, The snubber circuit absorbs the electromagnetic energy accumulated in the wiring inductance between the power semiconductor elements. However, when only the snubber circuit means is provided, when the power semiconductor element is turned off or turned on, the change (d) in the current flowing through the element is changed.
i / dt) is not suppressed, and when the current is commutated to the snubber circuit, the inductance of the snubber circuit wiring and the above di / d
In addition to the spike voltage generated by t, when a plurality of power semiconductor elements are connected in parallel, there still remains a problem of excessive current sharing caused by di / dt.
Therefore, in the present invention, by detecting the current flowing through the snubber circuit, the control voltage or control current of the power semiconductor element is changed from the time when the current flowing through the power semiconductor element decreases or increases, and It suppresses di / dt during the decreasing or increasing period. This suppression suppresses an increase in switching loss to a necessary minimum, reduces spike voltage, and improves excessive non-uniformity of current sharing when power semiconductor elements are connected in parallel.
【0007】[0007]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、本発明の一実施例を示すパワー半導体素子
の駆動装置の構成図である。図1において、Q1,Q
2,Q3,Q4はIGBTであり、電流を入力するコレ
クタ端子、電流を出力するエミッタ端子及び制御電圧を
印加するゲート端子を備える。Q1,Q2は直列に接続
され、インバータのハーフブリッジを構成する。Q1,
Q2にはそれぞれ逆並列にダイオードD1,D2を接続
し、Q1或いはQ2がオフした際に負荷電流を還流させ
る。また、本実施例ではQ1,Q2にはそれぞれ並列に
Q3,Q4を接続しており、出力段素子が2個並列に接
続されたインバータを示している。同様にQ3,Q4に
はダイオードD3,D4を逆並列に接続している。Q1
とQ3,Q2とQ4は、それぞれゲート端子及びコレク
タ端子を共通に接続しているとともに、Q1とQ3,Q
2とQ4のエミッタ端子はインダクタンスLc1,Lc
2を有する配線で接続されている。次に、VEは主電源
であり、インバータの出力段素子はVEの正負電極とイ
ンダクタンスL1,L2を有する配線で接続している。
Q1とQ2の接続個所からは出力端子を取り出し、この
端子に負荷3を接続している。尚、図1には図示してい
ないが、出力端子から負荷3に電流を供給できるよう
に、主電源VEと負荷3は何らかの回路手段で接続され
ているものとする。また、Le1〜Le8はそれぞれI
GBTモジュールでパッケージ内部のインダクタンスを
表している。Q1,Q2には各々スナバ回路を備えてお
り、Q1を例とすると、Q1のコレクタ端子とエミッタ
端子間にはダイオードDS1とコンデンサCS1をイン
ダクタンスL3,L4を有する配線で直列に接続してい
る。ここで、Ls1はコンデンサCS1の寄生インダク
タンスである。また、DS1の両端子間には抵抗Rs1
を備え、CS1が放電する際の電流の経路となる。Q2
についても同様であり、Q2のコレクタ端子とエミッタ
端子間にはダイオードDS2とコンデンサCS2、その
寄生インダクタンスLs2がインダクタンスL4,L5
を有する配線で直列に接続しており、DS2の両端子間
には抵抗Rs2を備える。以上は、一般的なインバータ
とスナバの構成であり、本実施例ではスイッチング時の
スパイク電圧と電流分担の不均一を改善することを目的
としているため、回路図上では通常表示されない配線の
インダクタンスに関しても、特に上記目的と関係がある
個所については図中に示している。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a power semiconductor device driving apparatus according to an embodiment of the present invention. In FIG. 1, Q1, Q
Reference numerals 2, Q3 and Q4 are IGBTs, each of which has a collector terminal for inputting a current, an emitter terminal for outputting a current, and a gate terminal for applying a control voltage. Q1 and Q2 are connected in series to form a half bridge of an inverter. Q1,
Diodes D1 and D2 are respectively connected in antiparallel to Q2, and a load current is circulated when Q1 or Q2 is turned off. Further, in this embodiment, Q3 and Q4 are connected in parallel to Q1 and Q2, respectively, and an inverter in which two output stage elements are connected in parallel is shown. Similarly, diodes D3 and D4 are connected in antiparallel to Q3 and Q4. Q1
And Q3, Q2 and Q4 have their gate terminals and collector terminals connected in common, and Q1 and Q3, Q4.
The emitter terminals of 2 and Q4 are inductances Lc1 and Lc
2 are connected by a wiring. Next, VE is a main power source, and the output stage element of the inverter is connected to the positive and negative electrodes of VE by a wiring having inductances L1 and L2.
An output terminal is taken out from the connection point of Q1 and Q2, and the load 3 is connected to this terminal. Although not shown in FIG. 1, it is assumed that the main power supply VE and the load 3 are connected by some circuit means so that the current can be supplied from the output terminal to the load 3. Further, Le1 to Le8 are respectively I
The GBT module represents the inductance inside the package. Each of Q1 and Q2 is provided with a snubber circuit. When Q1 is taken as an example, a diode DS1 and a capacitor CS1 are connected in series between the collector terminal and the emitter terminal of Q1 by a wiring having inductances L3 and L4. Here, Ls1 is the parasitic inductance of the capacitor CS1. A resistor Rs1 is placed between both terminals of DS1.
And serves as a current path when CS1 is discharged. Q2
The same applies to the case where the diode DS2 and the capacitor CS2 between the collector terminal and the emitter terminal of Q2 and the parasitic inductance Ls2 are the inductances L4 and L5.
Are connected in series with a wiring having a resistance Rs2 between both terminals of DS2. The above is the configuration of a general inverter and snubber, and in this embodiment, since it is intended to improve the unevenness of the spike voltage and the current distribution at the time of switching, regarding the inductance of the wiring that is not normally displayed on the circuit diagram, Also, in particular, the parts that are related to the above purpose are shown in the figure.
【0008】次に、本発明の特徴であるゲート電圧を可
変化する駆動回路手段を述べる。Q1とQ2のゲート駆
動回路は、いずれも同じ構成であることから、ここでは
Q2の駆動回路について説明する。まず、制御電源とし
てVc1,Vc2を備えており、Q2とQ4のゲート端
子とVc1の正電極間にはスイッチ手段S4,S3と抵
抗手段Rg3を直列に接続し、S3には抵抗手段Rg4
を並列に接続している。また、Q2とQ4のゲート端子
とVc2の負電極間にはスイッチ手段S1,S2と抵抗
手段Rg1を直列に接続し、S1には抵抗手段Rg2を
並列に接続している。S4は、制御手段2の指令Sig
2により、Q2とQ4をオンさせる場合にオン状態とな
り、S2は、制御手段2の指令Sig2により、Q2と
Q4をオフさせる場合にオン状態となる。切替え手段1
は、制御手段2の指令Sig2とスナバ電流の検出手段
の出力に応じてS1とS3のオン,オフを制御する。こ
こで、スナバ電流の検出手段は、本実施例の場合、L5
のインダクタンスを有するスナバ配線の両端に抵抗Rd
1とRd2を直列に接続し、両者の接続個所から出力電
圧を取り出す。また、Q1に関してはL4のインダクタ
ンスを有するスナバ配線の両端に抵抗Rd3とRd4を
直列に接続し、両者の接続個所から出力電圧を取り出
す。この構成によれば、Q2がターンオフ時に電流を遮
断し、主回路配線L1,L2に蓄積された電磁エネルギ
ーによってスナバ回路のCS2を充電する電流が流れる
と、その立上り時にはQ2のエミッタ端子を基準電位と
する出力電圧(Rd2の電圧)は正の電圧を発生する。
また、Q2がターンオン時に電流を通電し、CS2に蓄
積した電荷を放電させる電流を流し始めると、その立上
り時には出力電圧は負の電圧となる。切替え手段1は、
制御手段2の指令Sig2でQ2,Q4をターンオフさ
せる場合には、オフの指令Sig2が入力された後、ス
ナバ電流検出手段の出力(Rd2の電圧)が正で所定値
以上である場合にはS1をオフさせ、逆に所定値以下か
負電圧である場合にはS1をオンさせる。また、Q2,
Q4をターンオンさせる場合には、オンの指令Sig2
が入力された後、スナバ電流検出手段の出力(Rd2の
電圧)が負でその絶対値が所定値以上である場合にはS
3をオフさせ、逆に所定値以下か正電圧である場合には
S3をオンさせる。Next, drive circuit means for varying the gate voltage, which is a feature of the present invention, will be described. Since the gate drive circuits of Q1 and Q2 have the same configuration, the drive circuit of Q2 will be described here. First, Vc1 and Vc2 are provided as control power supplies, and switch means S4 and S3 and resistance means Rg3 are connected in series between the gate terminals of Q2 and Q4 and the positive electrode of Vc1, and resistance means Rg4 is connected to S3.
Are connected in parallel. Further, switch means S1 and S2 and resistance means Rg1 are connected in series between the gate terminals of Q2 and Q4 and the negative electrode of Vc2, and resistance means Rg2 is connected in parallel to S1. S4 is a command Sig of the control means 2.
2 turns on when Q2 and Q4 are turned on, and S2 turns on when Q2 and Q4 are turned off by the command Sig2 of the control means 2. Switching means 1
Controls ON / OFF of S1 and S3 according to the command Sig2 of the control means 2 and the output of the snubber current detection means. Here, in the present embodiment, the snubber current detecting means is L5.
A resistance Rd is provided at both ends of the snubber wiring having the inductance of
1 and Rd2 are connected in series, and the output voltage is taken out from the connection point of both. Regarding Q1, resistors Rd3 and Rd4 are connected in series at both ends of a snubber wire having an inductance of L4, and an output voltage is taken out from the connection point of both. According to this configuration, when Q2 cuts off the current at the time of turn-off and the current for charging CS2 of the snubber circuit flows due to the electromagnetic energy accumulated in the main circuit wirings L1 and L2, the emitter terminal of Q2 is supplied with the reference potential when the current rises. The output voltage (voltage of Rd2) that is defined as a positive voltage is generated.
When Q2 is turned on, a current is passed therethrough, and when a current for discharging the charge stored in CS2 is started to flow, the output voltage becomes a negative voltage at the rising edge. The switching means 1 is
When Q2 and Q4 are turned off by the command Sig2 of the control means 2, after the off command Sig2 is input, if the output (voltage of Rd2) of the snubber current detection means is positive and equal to or more than a predetermined value, S1 Is turned off, and conversely, when it is a predetermined value or less or a negative voltage, S1 is turned on. Also, Q2
To turn on Q4, turn on command Sig2
If the output of the snubber current detecting means (voltage of Rd2) is negative and its absolute value is equal to or more than a predetermined value after
3 is turned off, and conversely, if it is less than a predetermined value or a positive voltage, S3 is turned on.
【0009】図2に、切替え手段1の詳細な構成を示
す。図2において、制御手段2が出力する指令Sig2
の指令信号はスイッチ手段S2,S4のゲート端子に入
力され、この信号はQ2をオンさせる場合にはローレベ
ルの電圧、Q2をオフさせる場合にはハイレベルの電圧
であるものとする。上記信号はロジック記号で表現され
たand回路4とor回路5にも入力している。and
回路のもう一方の入力信号は比較手段6ー1の出力であ
り、比較手段6ー1は前述のスナバ電流検出手段の出力
(Rd2の電圧)と正の所定値電圧7ー1の値を比較
し、スナバ電流検出手段の出力電圧が大きい場合にはロ
ーレベルの電圧を、逆に小さい場合にはハイレベルの電
圧を出力する。この構成によって、Q2のオフ時にスナ
バ電流検出手段の出力が正の所定値以下では、and回
路4の入力はいずれもハイレベルであり、and回路の
出力もハイレベルとなり、この出力でスイッチ手段S1
をオン状態とする。また、Q2のオン時あるいはスナバ
電流検出手段の出力が正の所定値以上ではand回路の
出力はローレベルであり、この出力でスイッチ手段S1
をオフ状態に保つ。同様にして、or回路にはのもう一
方の入力信号は比較手段6ー2の出力であり、比較手段
6ー2はスナバ電流検出手段の出力(Rd2の電圧)と
負の所定値電圧7ー2の値を比較し、Rd2の電圧が負
でその絶対値が所定値7ー2の絶対値に比べて大きい場
合にはハイレベルの電圧を、逆に小さい場合にはローレ
ベルの電圧を出力する。この結果、Q2のオン時にスナ
バ電流検出手段の出力が負の所定値以上ではor回路4
の入力はいずれもローレベルであり、or回路の出力も
ローレベルとなり、この出力でスイッチ手段S3をオン
状態とする。また、Q2のオフ時あるいはスナバ電流検
出手段の出力が負の所定値以下ではor回路の出力はハ
イレベルであり、この出力でスイッチ手段S3をオフ状
態に保つ。FIG. 2 shows a detailed structure of the switching means 1. In FIG. 2, the command Sig2 output by the control means 2
Is inputted to the gate terminals of the switch means S2, S4, and this signal is a low level voltage when turning on Q2 and a high level voltage when turning off Q2. The above signals are also input to the AND circuit 4 and the OR circuit 5 represented by logic symbols. and
The other input signal of the circuit is the output of the comparing means 6-1. The comparing means 6-1 compares the output of the above-mentioned snubber current detecting means (voltage of Rd2) with the value of the positive predetermined value voltage 7-1. If the output voltage of the snubber current detecting means is high, a low level voltage is output, and conversely, if the output voltage is low, a high level voltage is output. With this configuration, when the output of the snubber current detection means is equal to or less than a positive predetermined value when Q2 is off, all the inputs of the and circuit 4 are at the high level, and the outputs of the and circuit are also at the high level.
Is turned on. Further, when Q2 is on or when the output of the snubber current detecting means is a positive predetermined value or more, the output of the and circuit is at a low level, and this output causes the switching means S1.
Keep off. Similarly, the other input signal to the or circuit is the output of the comparing means 6-2, and the comparing means 6-2 outputs the output of the snubber current detecting means (the voltage of Rd2) and the negative predetermined value voltage 7-. When the voltage of Rd2 is negative and the absolute value thereof is larger than the absolute value of the predetermined value 7-2, a high level voltage is output, and when the absolute value is small, a low level voltage is output. To do. As a result, when the output of the snubber current detecting means is equal to or greater than a negative predetermined value when Q2 is on, the or circuit
Input is low level, the output of the or circuit also becomes low level, and the switch means S3 is turned on by this output. Further, when Q2 is off or when the output of the snubber current detecting means is less than a predetermined negative value, the output of the or circuit is at high level, and this output keeps the switch means S3 in the off state.
【0010】次に、図3に、図1に示した実施例の動作
波形を示す。この図3を用いてスナバ電流検出後のゲー
ト電圧可変によるdi/dtの抑制と、スパイク電圧の
抑制及び動的な電流分担の均一化に関する動作原理を述
べる。図3には、Q2のコレクタ,エミッタ間の電圧V
ce、Q2を流れる電流Ic、スナバコンデンサCS2
を流れる電流Is、スナバ電流検出手段の出力電圧(R
d2の電圧)、及びオフ時とオン時のゲート抵抗の関係
を示す。まず、ターンオフ時にS1が制御手段2の指令
Sig2に応じてオンし、Q2の電流Icが減少を始め
ると、主回路配線L1,L2に蓄積された電磁エネルギ
ーによって、電流はスナバ回路に転流し、スナバ電流が
流れ始める。この時スナバ回路に流れる電流の変化(d
i/dt)に応じてインダクタンスL5の両端に正の電
圧が発生し、これをRd1とRd2で分圧した値の電圧
がRd2の検出電圧となる。この検出電圧が所定値7ー
1以上であれば、切替え手段1の働きによりS1はオフ
状態となり、Q2のゲート,エミッタ端子間のキャパシ
タと制御電源Vc2をつなぐゲート抵抗はRg1とRg
2の和の値となる。Rg2の抵抗値がRg1に比べて十
分大きければ、ゲート,エミッタ端子間キャパシタに充
電された電圧が減少する時定数が大きくなり、Q2のゲ
ート電圧はゆっくりと減少する。この結果、Icは減少
を始めた時点から電流下降期間tfにわたって図示のよ
うに緩やかに下降し、Icの減少が抑制され、di/d
tが小さくなる。このdi/dtの抑制は、電流下降期
間tfにのみ行うので、スイッチング損失の増加を必要
最小限に抑えることになる。また、Icが減少してゆく
過程ではそのdi/dtとスナバ回路の全インダクタン
ス(L4+Ls2+L5)の積を絶対値とするスパイク
電圧Vcspが発生するが、上記di/dtの抑制によ
り、このスパイク電圧Vcspも図示のように低減され
る。di/dtの抑制はIcが完全に遮断されるまで継
続される。その後は、L1,L2の電磁エネルギーをC
S2に吸収するまでスナバ電流Isは流れ、CS2の電
圧即ちQ2のコレクタ,エミッタ間の電圧Vceは主電
源VEの電圧をΔVだけ超えた値に達する。スナバ電流
Isの消滅とともにQ2のVceは通常の主電源VEの
電圧に戻る。一方、スナバ電流Isのdi/dtは、I
cが遮断された以降は緩やかになるため、スナバ電流検
出手段の検出電圧(Rd2の電圧)は急激に減少し、や
がて負の値となる。この場合には切替え手段1の働きに
よりS1はオン状態となり、ゲート抵抗値はRg1のみ
の低抵抗に戻り、Q2が外来ノイズ等で誤点弧しないよ
う、そのゲート,エミッタ間を低インピーダンスでショ
ートする。Next, FIG. 3 shows operation waveforms of the embodiment shown in FIG. The operation principle regarding suppression of di / dt by changing the gate voltage after detection of the snubber current, suppression of spike voltage, and uniformization of dynamic current sharing will be described with reference to FIG. FIG. 3 shows the voltage V between the collector and emitter of Q2.
current Ic flowing through ce and Q2, snubber capacitor CS2
Current Is flowing through the output voltage of the snubber current detection means (R
(d2 voltage) and the relationship between the gate resistance at the time of off and the gate resistance at the time of on. First, at the time of turn-off, S1 is turned on according to the command Sig2 of the control means 2, and when the current Ic of Q2 starts to decrease, the current is commutated to the snubber circuit by the electromagnetic energy accumulated in the main circuit wirings L1 and L2, Snubber current begins to flow. At this time, the change in the current flowing through the snubber circuit (d
i / dt), a positive voltage is generated across the inductance L5, and the voltage divided by Rd1 and Rd2 becomes the detection voltage of Rd2. If the detected voltage is equal to or higher than the predetermined value 7-1, S1 is turned off by the function of the switching means 1, and the gate resistances connecting the capacitor between the gate and emitter terminals of Q2 and the control power supply Vc2 are Rg1 and Rg.
It becomes the value of the sum of 2. If the resistance value of Rg2 is sufficiently larger than that of Rg1, the time constant with which the voltage charged in the capacitor between the gate and emitter terminals decreases decreases, and the gate voltage of Q2 decreases slowly. As a result, Ic gradually decreases as shown in the drawing from the time when it starts to decrease, and the decrease in Ic is suppressed by di / d.
t becomes small. Since the suppression of di / dt is performed only during the current falling period tf, the increase in switching loss can be suppressed to the necessary minimum. Further, in the process of decreasing Ic, a spike voltage Vcsp having an absolute value of the product of the di / dt and the total inductance (L4 + Ls2 + L5) of the snubber circuit is generated, but by suppressing the di / dt, the spike voltage Vcsp is generated. Is also reduced as shown. Suppression of di / dt continues until Ic is completely blocked. After that, the electromagnetic energy of L1 and L2 is changed to C
The snubber current Is flows until it is absorbed by S2, and the voltage of CS2, that is, the voltage Vce between the collector and emitter of Q2 reaches a value exceeding the voltage of the main power source VE by ΔV. With the disappearance of the snubber current Is, Vce of Q2 returns to the normal voltage of the main power supply VE. On the other hand, di / dt of the snubber current Is is I
Since the voltage becomes gentle after c is cut off, the detection voltage (voltage of Rd2) of the snubber current detecting means sharply decreases and eventually becomes a negative value. In this case, S1 is turned on by the operation of the switching means 1, the gate resistance value returns to the low resistance of only Rg1, and the gate and emitter thereof are short-circuited with a low impedance so that Q2 is not erroneously ignited by external noise or the like. To do.
【0011】続いて、上記di/dtの抑制により、図
1で並列に接続されたQ2とQ4の電流分担がターンオ
フ時に均一化することについて述べる。並列時の電流分
担不均一が発生する原因は、1)Q2とQ4の特性の違
い、2)Q2とQ4を接続する配線の誘起電圧が両者の
ゲート電圧を不均一化する、の2つが考えられるが、本
発明は2)の過度的な要因を対策するものである。即
ち、図1においてQ2とQ4が同時にターンオフを開始
した際に、Q4を流れる電流はLe8を通る電流とLc
2とLe4を流れる電流に分流すると仮定すると、Lc
2とLe4を流れる電流はそのdi/dtによって、L
c2の両端に誘起電圧を発生させる。この誘起電圧は、
Q2とQ4のゲート,エミッタ間電圧の差となり、Q2
とQ4を流れる電流が不均一になる。このような場合に
おいて、本実施例では、Q2とQ4を流れる電流が減少
し始め、スナバ回路に電流が転流した直後から上述のよ
うにゲート抵抗を大きくしてQ2とQ4の電流変化di
/dtを抑制する。この抑制によりLc2の誘起電圧は
軽減される。このため、Q2とQ4のゲート,エミッタ
間電圧はほぼ等しくなり、Q2とQ4の電流分担の不均
一化が防止される。Next, it will be described that the current sharing of Q2 and Q4 connected in parallel in FIG. 1 is made uniform at the time of turn-off by suppressing the above di / dt. There are two possible causes of uneven current sharing in parallel: 1) the difference in the characteristics of Q2 and Q4, and 2) the induced voltage of the wiring connecting Q2 and Q4 makes the gate voltages of both non-uniform. However, the present invention addresses the excessive factor 2). That is, in FIG. 1, when Q2 and Q4 start to turn off at the same time, the current flowing through Q4 is equal to the current passing through Le8 and Lc.
2 and Le4, assuming that the current is shunted, Lc
The current flowing through 2 and Le4 depends on its di / dt
An induced voltage is generated across c2. This induced voltage is
The difference between the gate and emitter voltages of Q2 and Q4 is Q2.
And the current flowing through Q4 becomes non-uniform. In such a case, in the present embodiment, the current flowing through Q2 and Q4 begins to decrease, and immediately after the current commutates to the snubber circuit, the gate resistance is increased as described above to increase the current change di between Q2 and Q4.
/ dt is suppressed. This suppression reduces the induced voltage of Lc2. For this reason, the gate-emitter voltages of Q2 and Q4 become substantially equal, and the non-uniform current sharing of Q2 and Q4 is prevented.
【0012】次に、ターンオン時について述べる。ター
ンオン時にS4が制御手段2の指令Sig2に応じてオ
ンし、Q2のゲート,エミッタ間に電圧を充電し始め、
その値がしきい値以上になると、電流Icが流れ始め
る。この時、CS2に蓄積された電荷はRs2とQ2,
Q4を介して放出され、その放電電流がIcとともにQ
2に流れ、両者の和が最大値Icpとなる。このときの
電流変化(di/dt)に応じてインダクタンスL5の
両端に負の電圧が発生し、Rd2の検出電圧も上記負電
圧に比例した値となる。この電圧の絶対値が所定値7ー
2以上であれば、切替え手段1の働きによりS3はオフ
状態となり、Q2のゲート,エミッタ端子間のキャパシ
タと制御電源Vc1をつなぐゲート抵抗はRg3とRg
4の和の値となる。Rg4の抵抗値がRg3に比べて十
分大きければ、ゲート,エミッタ端子間キャパシタを充
電する電圧の時定数が大きくなり、Q2のゲート電圧は
ゆっくりと増加する。この結果、Icは増加を始めた時
点から電流上昇期間trにわたって図示のように緩やか
に上昇し、Icの増加に関するdi/dtが小さくな
る。このdi/dtの抑制は、電流上昇期間trにのみ
行うので、スイッチング損失の増加を必要最小限に抑え
ることになる。ターンオン時にも、上述したように、Q
2とQ4を接続する配線の誘起電圧の影響で両者の電流
分担が不均一化するが、本実施例では、di/dtが抑
制され、Lc2の誘起電圧は軽減されるため、Q2とQ
4の電流分担の不均一化が防止される。di/dtの抑
制は、Rd2の電圧(絶対値)が所定値7ー2以下にな
るまで継続される。その後は、切替え手段1の働きによ
りS3はオン状態となり、ゲート抵抗値はRg3のみの
低抵抗に戻り、Q2のゲート,エミッタ間とVc1を低
インピーダンスでショートする。Next, the turn-on time will be described. At the time of turn-on, S4 is turned on according to the command Sig2 of the control means 2, and starts charging the voltage between the gate and emitter of Q2,
When the value exceeds the threshold value, the current Ic starts to flow. At this time, the charges accumulated in CS2 are Rs2 and Q2.
It is discharged through Q4, and its discharge current is Q together with Ic.
2, the sum of the two becomes the maximum value Icp. A negative voltage is generated across the inductance L5 according to the current change (di / dt) at this time, and the detection voltage of Rd2 also becomes a value proportional to the negative voltage. If the absolute value of this voltage is equal to or greater than the predetermined value 7-2, S3 is turned off by the action of the switching means 1, and the gate resistances connecting the capacitor between the gate and emitter terminals of Q2 and the control power supply Vc1 are Rg3 and Rg.
It becomes the value of the sum of 4. If the resistance value of Rg4 is sufficiently larger than that of Rg3, the time constant of the voltage for charging the gate-emitter terminal capacitor increases, and the gate voltage of Q2 slowly increases. As a result, Ic gradually increases as shown in the figure from the time when it starts to increase, and di / dt related to the increase of Ic becomes smaller. Since the suppression of di / dt is performed only during the current rising period tr, the increase in switching loss can be suppressed to the necessary minimum. Even at turn-on, as described above, Q
Although the current sharing between the two and Q4 becomes non-uniform due to the influence of the induced voltage of the wiring connecting them, in the present embodiment, di / dt is suppressed and the induced voltage of Lc2 is reduced, so that Q2 and Q2 are reduced.
It is possible to prevent nonuniformity of the current sharing of No. 4. The suppression of di / dt is continued until the voltage (absolute value) of Rd2 becomes equal to or lower than the predetermined value 7-2. After that, S3 is turned on by the operation of the switching means 1, the gate resistance value returns to the low resistance of only Rg3, and the gate and emitter of Q2 and Vc1 are short-circuited with low impedance.
【0013】以上説明したように、本実施例では、スナ
バ回路を流れる電流を検出することにより、パワー半導
体素子に流れる電流が減少或は増加する時点からそれ以
降、パワー半導体素子の制御電圧或いは制御電流を変化
させ、上記電流が減少或は増加する期間のdi/dtを
抑制する。この抑制によって、スイッチング損失の増加
を必要最小限に抑えるとともに、スパイク電圧を軽減
し、パワー半導体素子の並列時の電流分担の不均一を改
善することができる。また、ターンオン時のdi/dt
の抑制は、電流分担の不均一化を改善するとともに、主
回路配線L1,L2の電磁エネルギーを小さくしてスナ
バ損失を軽減する効果もある。オフ期間中に負荷3の電
流は上アームのダイオードD1,D3を通って還流して
おり、D1,D3は内部にキャリアが蓄積する。そし
て、Q2とQ4がターンオンした際にD1,D3の蓄積
キャリアが放出され、リカバリ電流が流れる。リカバリ
電流成分をIrで表すと、L1,L2を流れる電流はI
rの値だけ減少する事になる。この結果、L1,L2に
蓄積された電磁エネルギー1/2(L1+L2)Ir2が
放出され、スナバ回路に吸収される。但し、リカバリ電
流Irは、di/dtが小さいほどIrも小さくなる特
性があり、本実施例のdi/dt抑制を用いると、Ir
を低減し、上記電磁エネルギーを小さくすることができ
る。このエネルギーは、スナバ回路のコンデンサCS1
で吸収された後、抵抗Rs1で熱になることから、本実
施例によればスナバ損失を低減することができる。As described above, in this embodiment, by detecting the current flowing through the snubber circuit, the control voltage or control of the power semiconductor element is started from the time when the current flowing through the power semiconductor element decreases or increases. The current is changed to suppress di / dt during the period when the current decreases or increases. By this suppression, it is possible to suppress an increase in switching loss to a necessary minimum, reduce spike voltage, and improve non-uniformity of current sharing when power semiconductor elements are connected in parallel. Also, di / dt at turn-on
The suppression of (1) has the effect of improving the non-uniformity of current sharing and reducing snubber loss by reducing the electromagnetic energy of the main circuit wirings L1, L2. During the off period, the current of the load 3 flows back through the diodes D1 and D3 of the upper arm, and carriers are accumulated inside D1 and D3. Then, when Q2 and Q4 are turned on, accumulated carriers of D1 and D3 are released, and a recovery current flows. When the recovery current component is represented by Ir, the current flowing through L1 and L2 is I
It will be reduced by the value of r. As a result, the electromagnetic energy 1/2 (L1 + L2) Ir 2 accumulated in L1 and L2 is released and absorbed in the snubber circuit. However, the recovery current Ir has a characteristic that the smaller the di / dt is, the smaller the Ir becomes. Therefore, when the di / dt suppression of the present embodiment is used, Ir is reduced.
Can be reduced, and the electromagnetic energy can be reduced. This energy is the snubber circuit capacitor CS1.
After being absorbed by, the resistance Rs1 becomes heat, so that according to the present embodiment, snubber loss can be reduced.
【0014】図4は、本発明の他の実施例を示す構成図
である。図4において、図1の実施例と同様にIGBT
Q1,Q2はインバータのハーフブリッジを構成する。
Q1,Q2、及びダイオードD1,D2を主電源VEの
正負電極とインダクタンスL1,L2を有する配線で接
続している構成についても図1と同様であり、Le1〜
Le4もIGBTモジュールでパッケージ内部のインダ
クタンスを表している。Q1,Q2に接続したスナバ回
路の構成は図1と異なっており、Q1のコレクタ端子と
エミッタ端子間にはダイオードDS1とコンデンサCS
1をインダクタンスL3,L4を有する配線で直列に接
続している。尚、Ls1はコンデンサCS1の寄生イン
ダクタンスである。抵抗Rs1はCS1とDS1の接続
個所とQ2のエミッタ間に設けており、L7は抵抗Rs
1を接続する配線のインダクタンスである。この構成の
スナバ回路は、クランプ型と呼ばれる構成であり、常
時、スナバコンデンサCS1に主電源VEの電圧が充電
されており、Q1のターンオフ時にコレクタ,エミッタ
間電圧Vceが主電源VEの電圧以上に増加しようとす
ると、電流をスナバ回路に転流させ、配線の電磁エネル
ギーをCS1で吸収する方式であり、CS1に蓄積され
たエネルギーを抵抗Rs1を介して主電源VEに回生す
る特徴がある。しかしながら、この方式では、Q1に印
加される電圧はVEの電圧まで充電されたCS1の電圧
と、スナバ回路に流れ込む電流の変化di/dtとスナ
バ回路の配線インダクタンスの積で決まるスパイク電圧
の和になるため、電流遮断時におけるQ1の電圧は非常
に高くなり、従来、その電流と電圧は素子の逆バイアス
安全動作領域の限界を超えてしまう恐れがあった。本実
施例では、di/dtを抑制して電流遮断時の最大電圧
が上記安全動作領域で保証された値以下になるよう、ス
パイク電圧を低減するものである。同様に、Q2のコレ
クタ端子とエミッタ端子間にはダイオードDS2とコン
デンサCS2をインダクタンスL4,L5を有する配線
で直列に接続している。Ls2はコンデンサCS2の寄
生インダクタンスである。抵抗Rs2はDS1とCS1
の接続個所とQ1のコレクタ間に設けており、L8は抵
抗Rs2を接続する配線のインダクタンスである。尚、
スナバ電流の検出手段としては、L4とQ1のエミッタ
端子、及びL5とQ2のエミッタ端子間に抵抗Rd4,
Rd2をそれぞれ接続し、抵抗の電圧によってスナバ電
流を検出する。Q1とQ2のゲート駆動回路は、同じ構
成であることから、ここではQ2の駆動回路についての
み説明する。Vc1,Vc2は図1と同様に制御電源で
あり、Q2のゲート端子とVc1の正電極間にはスイッ
チ手段S3と抵抗手段Rg3を直列に接続しており、S
3は制御手段2の指令Sin2により、Q2をオンさせ
る場合にオン状態となる。また、Q2のゲート端子とV
c2の負電極間にはスイッチ手段S1,S2と抵抗手段
Rg1を直列に接続し、S1には抵抗手段Rg2を並列
に接続している。S2は制御手段2の指令により、Q2
をオフさせる場合にオン状態となり、S1は制御手段2
の指令Sin2とスナバ電流の検出手段の出力(検出電
圧)に応じて変化する切替え手段1の出力でオン,オフ
を制御する。本実施例では、ターンオフ時のスパイク電
圧の低減に関してのみdi/dtを行うものである。切
替え手段1の構成は、図2でS1をオン,オフさせるた
めに設けられたand回路4、比較手段6ー1、所定電
圧7ー1と同じ構成とする。前述のようにL5とQ2の
エミッタ端子間に設けた抵抗Rd2の電圧を検出し、Q
2のターンオフ時にCS2を充電する電流が流れると、
その立上り時にはQ2のエミッタ端子を基準電位として
Rd2の電圧は正の電圧を発生する。切替え手段1は図
2と同様に、制御手段2からオフ指令Sin2の信号が
印加されたことと、Rd2の電圧が正で所定値以上であ
る条件が整えば、S1をオフさせる。逆に、所定値以下
か負電圧である場合にはS1をオンさせる。FIG. 4 is a block diagram showing another embodiment of the present invention. In FIG. 4, the same as in the embodiment of FIG.
Q1 and Q2 form a half bridge of the inverter.
The configuration in which Q1 and Q2, and the diodes D1 and D2 are connected to the positive and negative electrodes of the main power source VE by the wiring having the inductances L1 and L2 is the same as that in FIG.
Le4 is also an IGBT module and represents the inductance inside the package. The configuration of the snubber circuit connected to Q1 and Q2 is different from that of FIG. 1, and a diode DS1 and a capacitor CS are provided between the collector terminal and the emitter terminal of Q1.
1 is connected in series by a wiring having inductances L3 and L4. Incidentally, Ls1 is a parasitic inductance of the capacitor CS1. The resistor Rs1 is provided between the connection point of CS1 and DS1 and the emitter of Q2, and L7 is the resistor Rs.
This is the inductance of the wiring that connects 1 to each other. The snubber circuit of this configuration is of a clamp type, in which the snubber capacitor CS1 is always charged with the voltage of the main power supply VE, and the collector-emitter voltage Vce becomes equal to or higher than the voltage of the main power supply VE when Q1 is turned off. When increasing the current, the current is diverted to the snubber circuit, and the electromagnetic energy of the wiring is absorbed by CS1. The energy stored in CS1 is regenerated to the main power supply VE through the resistor Rs1. However, in this method, the voltage applied to Q1 is the sum of the voltage of CS1 charged to the voltage of VE, the spike voltage determined by the product of the change di / dt of the current flowing into the snubber circuit and the wiring inductance of the snubber circuit. Therefore, the voltage of Q1 becomes very high when the current is cut off, and conventionally, the current and the voltage might exceed the limit of the reverse bias safe operation area of the device. In this embodiment, the spike voltage is reduced so that di / dt is suppressed so that the maximum voltage when the current is cut off becomes equal to or lower than the value guaranteed in the safe operation area. Similarly, a diode DS2 and a capacitor CS2 are connected in series between the collector terminal and the emitter terminal of Q2 by wiring having inductances L4 and L5. Ls2 is a parasitic inductance of the capacitor CS2. Resistor Rs2 is DS1 and CS1
Is provided between the connection point of Q1 and the collector of Q1, and L8 is the inductance of the wiring connecting the resistor Rs2. still,
As a snubber current detecting means, a resistor Rd4 is provided between the emitter terminals of L4 and Q1 and between the emitter terminals of L5 and Q2.
Rd2 is connected to each other and the snubber current is detected by the resistance voltage. Since the gate drive circuits for Q1 and Q2 have the same configuration, only the drive circuit for Q2 will be described here. Vc1 and Vc2 are control power sources as in FIG. 1, and a switch means S3 and a resistance means Rg3 are connected in series between the gate terminal of Q2 and the positive electrode of Vc1.
3 is turned on when Q2 is turned on by the command Sin2 of the control means 2. Also, the gate terminal of Q2 and V
Switch means S1 and S2 and resistance means Rg1 are connected in series between the negative electrodes of c2, and resistance means Rg2 is connected in parallel to S1. S2 is Q2 in response to a command from the control means 2.
Is turned on when turning off, and S1 is the control means 2
ON / OFF is controlled by the output of the switching means 1 which changes according to the command Sin2 and the output (detection voltage) of the snubber current detection means. In this embodiment, di / dt is performed only for reducing the spike voltage at turn-off. The configuration of the switching means 1 is the same as that of the and circuit 4, the comparison means 6-1, and the predetermined voltage 7-1 provided for turning on and off S1 in FIG. As described above, the voltage of the resistor Rd2 provided between the emitter terminals of L5 and Q2 is detected, and Q
When the current that charges CS2 flows when turning off 2,
At the rising time, the voltage of Rd2 generates a positive voltage with the emitter terminal of Q2 as a reference potential. As in the case of FIG. 2, the switching means 1 turns off S1 when the signal of the off command Sin2 is applied from the control means 2 and the condition that the voltage of Rd2 is positive and equal to or more than a predetermined value is satisfied. On the contrary, when it is less than the predetermined value or is a negative voltage, S1 is turned on.
【0015】図5に、図4に示した実施例の動作波形を
示す。図5において、Q2のコレクタ,エミッタ間の電
圧Vce、Q2を流れる電流Ic、スナバコンデンサC
S2を流れる電流Is、スナバ電流検出手段の検出電圧
(Rd2の電圧)、及びオフ時のゲート抵抗の関係を示
す。ターンオフ時にS1が制御手段2の指令Sin2に
応じてオンするが、電流Icが減少を始める前にQ2の
電圧Vceは上昇し、CS2の充電電圧VEに達する
と、その時点からIcの減少が開始される。この時、主
回路配線L1,L2に蓄積された電磁エネルギーによっ
て、電流はスナバ回路に転流し、スナバ電流が流れ始
め、Q2にはスパイク電圧Vcspが印加され、その後
CS2への充電とともにQ2の電圧Vceは、主電源V
Eの電圧をΔVだけ超えた最大値Vcmに達し、スナバ
電流Isの消滅とともに通常の主電源VEの電圧に戻
る。一方、Rd2の電圧も図5に示すようにスナバ電流
Isに比例した検出電圧値まで上昇する。この電圧が所
定値以上であれば、切替え手段1の働きによりS1はオ
フ状態となり、Q2のゲート,エミッタ端子間のキャパ
シタと電源Vc2をつなぐゲート抵抗はRg1とRg2
の和の値となる。Rg2の抵抗値がRg1に比べて十分
大きければ、ゲート,エミッタ端子間キャパシタに充電
された電圧が減少する時定数が大きくなり、Q2のゲー
ト電圧はゆっくりと減少する。この結果、Icの減少が
抑制され、di/dtが小さくなる。このdi/dtの抑
制は、電流下降期間tfにのみ行うので、スイッチング
損失の増加を必要最小限に抑えることになる。また、I
cが減少してゆく過程ではそのdi/dtとスナバ回路
の全インダクタンス(L4+Ls2+L5)の積を絶対
値とするスパイク電圧Vcspが発生するが、上記di
/dtの抑制により、このスパイク電圧Vcspも図示
のように低減され、CS2に蓄積されたエネルギーを主
電源VEに戻す回生による低損失化も保つことができ
る。スナバ電流IsはL1,L2の電磁エネルギーをC
S2に吸収するまでの期間に流れるが、図5の波形では
この期間中はゲート抵抗がRg1とRg2の和になって
いることを示している。しかしながら、di/dtの抑
制が必要な期間は、電流下降期間tfのみであるから、
tfの期間を過ぎると、切替え手段1でS1をオン状態
に復帰させてもよい。切替え手段1によりS1をオン状
態に復帰させると、ゲート抵抗値はRg1のみの低抵抗
に戻り、Q2が外来ノイズ等で誤点弧しないよう、その
ゲート,エミッタ間を低インピーダンスでショートす
る。FIG. 5 shows operation waveforms of the embodiment shown in FIG. In FIG. 5, a collector-emitter voltage Vce of Q2, a current Ic flowing through Q2, and a snubber capacitor C
The relationship between the current Is flowing through S2, the detection voltage of the snubber current detection means (voltage of Rd2), and the gate resistance when off is shown. At the time of turn-off, S1 turns on according to the command Sin2 of the control means 2, but the voltage Vce of Q2 rises before the current Ic starts to decrease, and when it reaches the charging voltage VE of CS2, the decrease of Ic starts from that point. To be done. At this time, due to the electromagnetic energy accumulated in the main circuit wirings L1 and L2, the current is commutated to the snubber circuit, the snubber current starts to flow, the spike voltage Vcsp is applied to Q2, and then the voltage of Q2 is charged as CS2 is charged. Vce is the main power supply V
The voltage reaches a maximum value Vcm that exceeds the voltage of E by ΔV, and returns to the normal voltage of the main power supply VE with the disappearance of the snubber current Is. On the other hand, the voltage of Rd2 also rises to the detection voltage value proportional to the snubber current Is, as shown in FIG. If this voltage is equal to or higher than a predetermined value, S1 is turned off by the action of the switching means 1, and the gate resistances connecting the capacitor between the gate and emitter terminals of Q2 and the power supply Vc2 are Rg1 and Rg2.
It becomes the value of the sum of. If the resistance value of Rg2 is sufficiently larger than that of Rg1, the time constant with which the voltage charged in the capacitor between the gate and emitter terminals decreases decreases, and the gate voltage of Q2 decreases slowly. As a result, the decrease of Ic is suppressed and di / dt becomes small. Since the suppression of di / dt is performed only during the current falling period tf, the increase in switching loss can be suppressed to the necessary minimum. Also, I
In the process of decreasing c, a spike voltage Vcsp whose absolute value is the product of di / dt and the total inductance (L4 + Ls2 + L5) of the snubber circuit is generated.
By suppressing / dt, the spike voltage Vcsp is also reduced as shown in the figure, and it is possible to maintain low loss due to regeneration by returning the energy stored in CS2 to the main power supply VE. The snubber current Is is the electromagnetic energy of L1 and L2, which is C
The current flows during the period until it is absorbed by S2, but the waveform in FIG. 5 shows that the gate resistance is the sum of Rg1 and Rg2 during this period. However, the period in which di / dt needs to be suppressed is only the current falling period tf,
After the period of tf has passed, S1 may be returned to the ON state by the switching means 1. When S1 is returned to the ON state by the switching means 1, the gate resistance value returns to the low resistance of only Rg1, and the gate and emitter thereof are short-circuited with a low impedance so that Q2 is not erroneously ignited by external noise or the like.
【0016】なお、本発明の実施例として、パワー半導
体素子をIGBTとした場合について説明した。IGB
Tのような電圧駆動型の素子では、制御端子に静電容量
が存在するため、抵抗の切り替えによりゲート静電容量
の放電或いは充電時の電圧(即ち、ゲート電圧)を変化
させることができる。本発明では、このIGBTのよう
な電圧駆動型の素子に代えて、バイポーラトランジスタ
のような電流駆動型の素子を用いてもよい。バイポーラ
トランジスタのような電流駆動型の素子では、制御端子
が設けられたベース層にキャリアと呼ばれる電荷が存在
し、その蓄積量に応じてスイッチング時の電流変化(d
i/dt)が変化する。ターンオフ時を例とすると、抵
抗の切り替えにより抵抗値が小さいほど制御電流は増加
するため、電荷蓄積量は急激に減少し、主電流の遮断も
速くなり、di/dtが大きくなる。逆に抵抗値が大き
いと、制御電流が減少するため、電荷蓄積量の減少は遅
く、主電流の遮断も遅くなり、di/dtが小さくな
る。これにより、IGBTを用いたときと同等の効果が
得られる。As an embodiment of the present invention, the case where the power semiconductor element is an IGBT has been described. IGB
In a voltage-driven element such as T, since the control terminal has an electrostatic capacitance, the voltage at the time of discharging or charging the gate electrostatic capacitance (that is, the gate voltage) can be changed by switching the resistance. In the present invention, a current drive type element such as a bipolar transistor may be used instead of the voltage drive type element such as the IGBT. In a current drive type element such as a bipolar transistor, electric charges called carriers are present in a base layer provided with a control terminal, and a current change at switching (d
i / dt) changes. Taking the case of turn-off as an example, since the control current increases as the resistance value decreases due to the switching of the resistance, the charge accumulation amount decreases sharply, the main current is cut off faster, and di / dt increases. On the contrary, when the resistance value is large, the control current decreases, so that the charge accumulation amount decreases slowly, the main current is interrupted slowly, and di / dt decreases. Thereby, the same effect as when the IGBT is used can be obtained.
【0017】[0017]
【発明の効果】以上詳述したように、本発明によれば、
パワー半導体素子のターンオン,ターンオフ時にスナバ
回路を流れる電流を検出することにより、パワー半導体
素子に流れる電流が減少或は増加する時点からそれ以
降、パワー半導体素子の制御電圧或いは制御電流を変化
させ、上記電流が減少或は増加する期間のdi/dtを
抑制することによって、スイッチング損失の増加を必要
最小限に抑えるとともに、スパイク電圧を軽減して素子
を安全に動作させ、パワー半導体素子が並列に接続され
た場合にはその電流分担の均一化して素子の許容電流一
杯までの動作を保証することができる。また、di/d
tの抑制により、ターンオン時にはダイオードのリカバ
リ電流を低減して配線の電磁エネルギーを低減し、この
エネルギーを吸収するために発生するスナバ回路の損失
を軽減することができる。As described in detail above, according to the present invention,
By detecting the current flowing through the snubber circuit when the power semiconductor element is turned on and off, the control voltage or control current of the power semiconductor element is changed from the time when the current flowing through the power semiconductor element decreases or increases, By suppressing di / dt during the period when the current decreases or increases, the increase in switching loss is suppressed to the necessary minimum, and the spike voltage is reduced to operate the device safely and the power semiconductor devices are connected in parallel. In this case, the current sharing can be made uniform to guarantee the operation of the device up to the full allowable current. Also, di / d
By suppressing t, it is possible to reduce the recovery current of the diode at the time of turn-on, reduce the electromagnetic energy of the wiring, and reduce the loss of the snubber circuit generated for absorbing this energy.
【図1】本発明の一実施例を示すパワー半導体素子の駆
動装置の構成図FIG. 1 is a configuration diagram of a drive device for a power semiconductor element showing an embodiment of the present invention.
【図2】切替え手段の詳細構成図FIG. 2 is a detailed configuration diagram of a switching unit.
【図3】図1の実施例の動作を説明するための動作波形
図3 is an operation waveform chart for explaining the operation of the embodiment of FIG.
【図4】本発明の他の実施例を示す構成図FIG. 4 is a configuration diagram showing another embodiment of the present invention.
【図5】図4の実施例の動作を説明するための動作波形
図5 is an operation waveform diagram for explaining the operation of the embodiment of FIG.
1 切替え手段 2 制御手段 3 負荷 4 and回路 5 or回路 6 比較手段 7 所定電圧 Q1〜Q4 IGBT D1〜D4,Ds1,Ds2 ダイオード S1〜S4 スイッチ手段 VE 主電源 Vc1,Vc2 制御電源 Rg1〜Rg4,Rs1,Rs2,Rd1〜Rd4 抵
抗 CS1,CS2 コンデンサ Le1〜Le8,L1〜L8,Lc1,Lc2 配線の
インダクタンス Ls1,Ls2 コンデンサの寄生インダクタンス1 switching means 2 control means 3 load 4 and circuit 5 or circuit 6 comparison means 7 predetermined voltage Q1 to Q4 IGBT D1 to D4, Ds1, Ds2 diodes S1 to S4 switch means VE main power supply Vc1, Vc2 control power supply Rg1 to Rg4, Rs1 , Rs2, Rd1 to Rd4 Resistances CS1 and CS2 Capacitors Le1 to Le8, L1 to L8, Lc1 and Lc2 Wiring inductance Ls1 and Ls2 Capacitor parasitic inductance
Claims (7)
と制御ゲート端子を具備するパワー半導体素子と、入力
信号に応じて前記制御ゲート端子に制御電圧または制御
電流を供給或いは除去する駆動回路手段を備え、前記主
電流を通流或いは遮断するパワー半導体素子の駆動装置
であって、前記第1と第2端子間にスナバ回路手段を設
け、前記制御電圧または制御電流を供給或いは除去する
期間に、前記スナバ回路手段に流れる電流に応じて前記
制御電圧または制御電流を変化させることを特徴とする
パワー半導体素子の駆動装置。1. A power semiconductor device having first and second terminals for inputting and outputting a main current and a control gate terminal, and supplying or removing a control voltage or a control current to the control gate terminal according to an input signal. A drive device for a power semiconductor element, comprising drive circuit means for passing or shutting off the main current, wherein snubber circuit means is provided between the first and second terminals to supply or remove the control voltage or control current. A drive device for a power semiconductor element, characterized in that the control voltage or the control current is changed in accordance with a current flowing in the snubber circuit means during the period.
と制御ゲート端子を具備するパワー半導体素子と、入力
信号に応じて前記制御ゲート端子に制御電圧または制御
電流を供給或いは除去する駆動回路手段を備え、前記主
電流を通流或いは遮断するパワー半導体素子の駆動装置
であって、前記第1と第2端子間に接続するスナバ回路
手段と、前記スナバ回路手段に流れる電流を検出するス
ナバ電流検出手段を設け、前記制御電圧または制御電流
の供給或は除去時に、前記スナバ電流検出手段の出力を
検出して、前記パワー半導体素子を流れる前記主電流が
変化する期間にのみ前記制御電圧または制御電流を変化
させることを特徴とするパワー半導体素子の駆動装置。2. A power semiconductor device having first and second terminals for inputting and outputting a main current and a control gate terminal, and supplying or removing a control voltage or a control current to the control gate terminal according to an input signal. A drive device for a power semiconductor element, comprising drive circuit means, for flowing or interrupting the main current, wherein the snubber circuit means is connected between the first and second terminals, and the current flowing through the snubber circuit means is detected. Snubber current detection means is provided, and when the control voltage or control current is supplied or removed, the output of the snubber current detection means is detected, and the control is performed only during a period when the main current flowing through the power semiconductor element changes. A drive device for a power semiconductor element, which is characterized by changing a voltage or a control current.
素子が直列に接続されたブリッジ及び前記各パワー半導
体素子の入出力端子間または前記ブリッジの両端に接続
されたスナバ回路手段からなるインバータと、前記各パ
ワー半導体素子の制御ゲート端子に入力信号に応じた制
御電圧または制御電流を供給或いは除去する駆動回路手
段を有するパワー半導体素子の駆動装置において、前記
制御電圧或いは制御電流を供給或は除去する期間に、前
記スナバ回路手段に流れる電流に応じて前記制御電圧或
いは制御電流を変化させることを特徴とするパワー半導
体素子の駆動装置。3. An inverter comprising a bridge in which at least two power semiconductor elements are connected in series to a main power source, and a snubber circuit means connected between input / output terminals of each of the power semiconductor elements or at both ends of the bridge, In a drive device for a power semiconductor element having a drive circuit means for supplying or removing a control voltage or control current according to an input signal to a control gate terminal of each power semiconductor element, a period for supplying or removing the control voltage or control current In addition, the drive device of the power semiconductor element, characterized in that the control voltage or the control current is changed according to the current flowing through the snubber circuit means.
素子が直列に接続されたブリッジ及び前記各パワー半導
体素子の入出力端子間または前記ブリッジの両端に接続
されたスナバ回路手段からなるインバータと、前記各パ
ワー半導体素子の制御ゲート端子に入力信号に応じた制
御電圧または制御電流を供給或いは除去する駆動回路手
段を有するパワー半導体素子の駆動装置において、前記
スナバ回路手段に流れる電流を検出するスナバ電流検出
手段を設け、前記スナバ電流検出手段の出力を検出し
て、前記パワー半導体素子を流れる前記主電流が変化す
る期間にのみ前記制御電圧または制御電流を変化させる
ことを特徴とするパワー半導体素子の駆動装置。4. An inverter comprising a bridge in which at least two power semiconductor elements are connected in series to a main power source and a snubber circuit means connected between input / output terminals of each of the power semiconductor elements or both ends of the bridge, In a drive device for a power semiconductor element having a drive circuit means for supplying or removing a control voltage or a control current according to an input signal to a control gate terminal of each power semiconductor element, a snubber current detection for detecting a current flowing through the snubber circuit means. Means for detecting the output of the snubber current detecting means and changing the control voltage or the control current only during a period in which the main current flowing through the power semiconductor element changes. apparatus.
源に少なくとも2つのパワー半導体素子が直列に接続さ
れたブリッジは、前記各パワー半導体素子にそれぞれ少
なくとも1つのパワー半導体素子を並列接続することを
特徴とするパワー半導体素子の駆動装置。5. The bridge according to claim 3, wherein at least two power semiconductor elements are connected in series to the main power source, and at least one power semiconductor element is connected in parallel to each of the power semiconductor elements. A drive device for a power semiconductor element, which is characterized by:
て、前記駆動回路手段は、抵抗手段を具備すると共に、
前記スナバ回路手段に流れる電流に応じて前記抵抗手段
の抵抗値を変化させることを特徴とするパワー半導体素
子の駆動装置。6. The driving circuit means according to claim 1, further comprising a resistance means,
A driving device for a power semiconductor element, wherein a resistance value of the resistance means is changed according to a current flowing through the snubber circuit means.
て、前記スナバ回路手段は、前記第1と第2端子(入出
力端子)間に少なくとも直列に接続されたダイオードと
コンデンサを具備するとともに、該コンデンサを抵抗手
段を介して主電源の電極間に接続することを特徴とする
パワー半導体素子の駆動装置。7. The snubber circuit means according to claim 1, further comprising a diode and a capacitor connected in series between the first and second terminals (input / output terminals). A driving device for a power semiconductor element, wherein the capacitor is connected between electrodes of a main power source via a resistance means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6339351A JPH08186976A (en) | 1994-12-29 | 1994-12-29 | Driver of power semiconductor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6339351A JPH08186976A (en) | 1994-12-29 | 1994-12-29 | Driver of power semiconductor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08186976A true JPH08186976A (en) | 1996-07-16 |
Family
ID=18326640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6339351A Pending JPH08186976A (en) | 1994-12-29 | 1994-12-29 | Driver of power semiconductor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08186976A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11252896A (en) * | 1998-02-25 | 1999-09-17 | Toshiba Corp | Iegt gate controller |
JP2000270539A (en) * | 1999-03-15 | 2000-09-29 | Toyo Electric Mfg Co Ltd | Power converter |
US6271709B1 (en) | 1998-12-03 | 2001-08-07 | Hitachi, Ltd | Gate drive circuit of voltage drive switching element |
CN100414821C (en) * | 2006-05-29 | 2008-08-27 | 无锡市晶源微电子有限公司 | Energy-saving environment protection type power IC with overshoot output prevention |
JP2010124627A (en) * | 2008-11-20 | 2010-06-03 | Toshiba Mitsubishi-Electric Industrial System Corp | Gate circuit |
JP2012222932A (en) * | 2011-04-07 | 2012-11-12 | Mitsubishi Electric Corp | Switching device, and switching module |
WO2015001883A1 (en) * | 2013-07-03 | 2015-01-08 | 富士電機株式会社 | Drive device for insulated-gate semiconductor element, and power conversion device |
CN107863912A (en) * | 2017-11-27 | 2018-03-30 | 深圳市优必选科技有限公司 | Steering engine and motor drive circuit thereof |
JP2020025449A (en) * | 2018-07-30 | 2020-02-13 | 株式会社デンソー | Power conversion device |
CN111064352A (en) * | 2019-12-21 | 2020-04-24 | 苏州浪潮智能科技有限公司 | Circuit structure for realizing active current sharing of parallel field effect transistors |
CN114884333A (en) * | 2022-07-08 | 2022-08-09 | 深圳芯能半导体技术有限公司 | Drive circuit, intelligent power module and electronic equipment |
-
1994
- 1994-12-29 JP JP6339351A patent/JPH08186976A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11252896A (en) * | 1998-02-25 | 1999-09-17 | Toshiba Corp | Iegt gate controller |
US6271709B1 (en) | 1998-12-03 | 2001-08-07 | Hitachi, Ltd | Gate drive circuit of voltage drive switching element |
JP2000270539A (en) * | 1999-03-15 | 2000-09-29 | Toyo Electric Mfg Co Ltd | Power converter |
CN100414821C (en) * | 2006-05-29 | 2008-08-27 | 无锡市晶源微电子有限公司 | Energy-saving environment protection type power IC with overshoot output prevention |
JP2010124627A (en) * | 2008-11-20 | 2010-06-03 | Toshiba Mitsubishi-Electric Industrial System Corp | Gate circuit |
JP2012222932A (en) * | 2011-04-07 | 2012-11-12 | Mitsubishi Electric Corp | Switching device, and switching module |
WO2015001883A1 (en) * | 2013-07-03 | 2015-01-08 | 富士電機株式会社 | Drive device for insulated-gate semiconductor element, and power conversion device |
US9608622B2 (en) | 2013-07-03 | 2017-03-28 | Fuji Electric Co., Ltd. | Drive device for insulated-gate semiconductor element, and power converter |
CN107863912A (en) * | 2017-11-27 | 2018-03-30 | 深圳市优必选科技有限公司 | Steering engine and motor drive circuit thereof |
CN107863912B (en) * | 2017-11-27 | 2023-06-09 | 深圳市优必选科技有限公司 | Steering engine and motor driving circuit thereof |
JP2020025449A (en) * | 2018-07-30 | 2020-02-13 | 株式会社デンソー | Power conversion device |
CN111064352A (en) * | 2019-12-21 | 2020-04-24 | 苏州浪潮智能科技有限公司 | Circuit structure for realizing active current sharing of parallel field effect transistors |
CN114884333A (en) * | 2022-07-08 | 2022-08-09 | 深圳芯能半导体技术有限公司 | Drive circuit, intelligent power module and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3141613B2 (en) | Method and circuit for driving voltage-driven element | |
JP4432215B2 (en) | Semiconductor switching element gate drive circuit | |
JP3339311B2 (en) | Driver circuit for self-extinguishing semiconductor device | |
JP3770008B2 (en) | Semiconductor power converter | |
US9954521B2 (en) | Gate drive circuit for semiconductor switching devices | |
JPH10248237A (en) | Power conversion apparatus | |
JPH0946201A (en) | Driving method/device for insulating gate type semiconductor device | |
JP2002281761A (en) | Semiconductor power converter | |
JP4120329B2 (en) | Voltage-driven semiconductor device gate drive device | |
JPH08186976A (en) | Driver of power semiconductor element | |
JPH0947015A (en) | Drive circuit for self-extinguishing semiconductor element | |
JP3767450B2 (en) | Insulated gate transistor drive circuit, power conversion device, and power semiconductor module | |
JP5298557B2 (en) | Voltage-driven semiconductor device gate drive device | |
JP4506276B2 (en) | Drive circuit for self-extinguishing semiconductor device | |
JP6298735B2 (en) | Semiconductor drive device and power conversion device using the same | |
JP2014079086A (en) | Circuit for driving voltage-driven semiconductor element | |
JP2004236371A (en) | Motor controller using inverter | |
JP3273461B2 (en) | Power converter | |
JP4321491B2 (en) | Voltage-driven semiconductor device driving apparatus | |
JP2000324801A (en) | Drive circuit for voltage-controlled semiconductor device | |
JP2002135097A (en) | Semiconductor device and module thereof | |
JP6288220B2 (en) | Driving circuit for voltage-driven semiconductor element | |
JP3661813B2 (en) | Drive circuit for voltage-driven semiconductor element | |
JP4449190B2 (en) | Voltage-driven semiconductor device gate drive device | |
JPH10209832A (en) | Semiconductor switch circuit |