[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08173816A - Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production - Google Patents

Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production

Info

Publication number
JPH08173816A
JPH08173816A JP6337985A JP33798594A JPH08173816A JP H08173816 A JPH08173816 A JP H08173816A JP 6337985 A JP6337985 A JP 6337985A JP 33798594 A JP33798594 A JP 33798594A JP H08173816 A JPH08173816 A JP H08173816A
Authority
JP
Japan
Prior art keywords
alumina
catalytic cracking
catalyst
catalyst composition
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6337985A
Other languages
Japanese (ja)
Inventor
Seiji Arakawa
誠治 荒川
Takahisa Horie
隆久 堀江
Tatsuo Masuda
立男 増田
Morio Fukuda
盛男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP6337985A priority Critical patent/JPH08173816A/en
Publication of JPH08173816A publication Critical patent/JPH08173816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE: To produce a catalyst compsn. excellent in bottom oil cracking ability, producing small amts. of hydrogen and coke and giving gasoline, kerosene and light oil fractions in large quantities when the catalyst compsn. is used for catalytic cracking of hydrocarbon, especially heavy hydrocarbon. CONSTITUTION: This catalyst compsn. contains alumina, crystalline aluminosilicate zeolite and an inorg. oxide matrix other than alumina and each of the components contains phosphorus atoms.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素の流動接触分
解用触媒組成物およびその製造方法に関し、さらに詳し
くは炭化水素、特にニッケルやバナジウムなどの金属汚
染物を含有する重質炭化水素の流動接触分解に使用し
て、水素、コークの生成量が低く、ガソリンや灯軽油留
分の収率を高めることのできる炭化水素の流動接触分解
用触媒組成物およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst composition for fluid catalytic cracking of hydrocarbons and a method for producing the same, and more particularly to hydrocarbons, especially heavy hydrocarbons containing metal contaminants such as nickel and vanadium. TECHNICAL FIELD The present invention relates to a catalyst composition for fluid catalytic cracking of hydrocarbons, which can be used for fluid catalytic cracking and has a low production amount of hydrogen and coke, and can enhance the yield of gasoline and kerosene gas oil fraction, and a method for producing the same.

【0002】[0002]

【従来技術およびその問題点】炭化水素の接触分解は本
来ガソリンの製造を目的としており、これに使用される
触媒は当然高い分解活性と高いガソリン選択性を備えて
いなければならない。さらに、灯軽油留分(LCO)の
収率も高いことが要望されている。近年の石油事情の悪
化は低品位の原油を常圧蒸留装置(トッパー)にかけな
ければならない事態を生じさせ、トッパーから生じた通
常650゜F以上の残渣油の割合を増大させる結果とな
っている。近年ではこのような残渣油を接触分解の原料
に用いざるを得ないため、接触分解用触媒は重質留分を
分解する性能が増々要求されている。重質留分を効率良
く分解するために、触媒のマトリックス部位に活性を持
たせたり、ゼオライトの格子外アルミニウムを有効に利
用して分解活性に寄与させたりしている。これらの方法
は重質留分を分解させるのには優れているが、一方では
水素、コークの生成を増大させる原因にもなっている。
そこで、重質炭化水素の接触分解用触媒として、本出願
人はY型フォージャサイトゼオライトに予めリン修飾を
行ない、これを用いた流動接触分解触媒(特開昭63−
197549)、あるいはアルミナ粒子に予めリン修飾
を行ない、これをゼオライトと共にマトリックス中に分
散させた流動接触分解触媒(特公平5−33102)を
提案し、水素、コークの生成を低減させ選択性を改善し
た。しかしながら、これらの触媒は予めフォージャサイ
ト型ゼオライトあるいはアルミナ粒子にリンを修飾し
て、それを触媒に組み込む方法であるので触媒を構成す
る各成分の全てにリン成分が担持されておらず、そのた
め、リン成分の効果が十分に発揮されず、また、触媒調
製時の際に修飾したリン成分が水性スラリー中に再び溶
け出し、後工程での触媒の洗浄時に系外にリンが逃げる
などの問題があり、さらに改善の余地があった。
BACKGROUND OF THE INVENTION Catalytic cracking of hydrocarbons is intended primarily for the production of gasoline, and the catalysts used therein must naturally have high cracking activity and high gasoline selectivity. Furthermore, it is required that the yield of kerosene gas oil fraction (LCO) is also high. The deterioration of petroleum conditions in recent years has caused a situation in which low-grade crude oil must be applied to an atmospheric distillation unit (topper), resulting in an increase in the proportion of residual oil generated from the topper, which is usually 650 ° F or higher. . In recent years, such residual oil has been unavoidably used as a raw material for catalytic cracking, and therefore catalytic cracking catalysts are increasingly required to have the ability to crack heavy fractions. In order to efficiently decompose heavy fractions, the matrix part of the catalyst is made active and the extralattice aluminum of zeolite is effectively used to contribute to the decomposition activity. While these methods are excellent for cracking heavy fractions, they are also responsible for increasing the production of hydrogen and coke.
Therefore, as a catalyst for catalytic cracking of heavy hydrocarbons, the present applicant previously modified Y-type faujasite zeolite with phosphorus, and a fluid catalytic cracking catalyst using this catalyst (Japanese Patent Laid-Open No. 63-
197549), or a fluidized catalytic cracking catalyst (JP-B5-33102) in which alumina particles have been modified with phosphorus in advance and dispersed in a matrix together with zeolite to improve the selectivity by reducing the generation of hydrogen and coke. did. However, since these catalysts are methods of previously modifying the faujasite-type zeolite or alumina particles with phosphorus and incorporating it into the catalyst, the phosphorus component is not supported on all of the components constituting the catalyst. However, the effect of the phosphorus component is not sufficiently exerted, and the phosphorus component modified at the time of catalyst preparation is redissolved in the aqueous slurry again, and phosphorus escapes to the outside of the system when the catalyst is washed in the subsequent step. There was room for further improvement.

【0003】[0003]

【目的】本発明の目的は、炭化水素、特に重質炭化水素
の接触分解に使用して、ボトム(塔底油)分解能に優
れ、水素、コークの生成量が低く、しかもガソリンや灯
軽油留分が多い、炭化水素の流動接触分解用触媒組成物
およびその製造方法を提供する点にある。
[Objective] The object of the present invention is to use for catalytic cracking of hydrocarbons, especially heavy hydrocarbons, with excellent bottom (bottom oil) resolution, low hydrogen and coke production, and gasoline and kerosene oil distillate. It is another object of the present invention to provide a catalyst composition for fluid catalytic cracking of hydrocarbons, which has a large content, and a method for producing the same.

【0004】[0004]

【構成】本発明は、アルミナ、結晶性アルミノシリケー
トゼオライトおよびアルミナ以外の無機酸化物マトリッ
クスの前駆物質の混合スラリーを噴霧乾燥し、得られた
微小球状粒子をリン酸イオン含有水溶液と接触、特にp
H2〜6の範囲でリン酸イオン含有水溶液と接触させる
ことを特徴とする炭化水素の流動接触分解用触媒組成物
の製造方法、および該製造方法で得られた炭化水素の流
動接触分解用触媒組成物に関する。以下に本発明につい
て具体的に説明する。本発明の炭化水素の流動接触分解
用触媒組成物は、アルミナを1〜30重量%、好ましく
は3〜20重量%、結晶性アルミノシリケートゼオライ
トを5〜50重量%、好ましくは5〜40重量%、アル
ミナ以外の無機酸化物マトリックスを20〜94重量
%、好ましくは35〜92重量%を含有して構成され、
かつ、前記各成分のいずれもが、リン原子を含有するも
のであることを特徴とする。
According to the present invention, a mixed slurry of alumina, a crystalline aluminosilicate zeolite and a precursor of an inorganic oxide matrix other than alumina is spray-dried, and the obtained fine spherical particles are brought into contact with a phosphate ion-containing aqueous solution, particularly p
A method for producing a catalyst composition for fluid catalytic cracking of hydrocarbons, which comprises contacting with a phosphate ion-containing aqueous solution within a range of H2 to 6, and a catalyst composition for fluid catalytic cracking of hydrocarbons obtained by the production method. Regarding things. The present invention will be specifically described below. The catalyst composition for fluid catalytic cracking of hydrocarbons of the present invention comprises 1 to 30% by weight of alumina, preferably 3 to 20% by weight, 5 to 50% by weight of crystalline aluminosilicate zeolite, preferably 5 to 40% by weight. , Containing 20 to 94% by weight, preferably 35 to 92% by weight, of an inorganic oxide matrix other than alumina,
Moreover, each of the above-mentioned respective components is characterized by containing a phosphorus atom.

【0005】本発明で、使用する結晶性アルミノシリケ
ートゼオライト(ゼオライト)には、通常、炭化水素の
接触分解触媒組成物に使用されるゼオライトが使用可能
で、X型ゼオライト、Y型ゼオライト、モルデナイト、
ZSM型ゼオライトなどの合成ゼオライトまたは天然ゼ
オライトなどを使用することができ、ゼオライトは通常
の接触分解用触媒組成物の場合と同様水素、アンモニウ
ムおよび多価金属よりなる群から選ばれ少なくとも1種
のカチオンでイオン交換された形で使用される。Y型ゼ
オライト、特に超安定性Y型ゼオライトは耐水熱性に優
れているので好適である。本発明でのアルミナにはアル
ミナおよび/またはアルミナ水和物を含み、アルミナ/
またはアルミナ水和物としては、活性アルミナ、α−ア
ルミナ、ベーマイト、擬ベーマイト、バイヤライト、ジ
プサイト、無定形のアルミナ水和物などが挙げられる。
特に水酸化アルミニウムを気流焼成して得られる3〜7
0μmのρおよび/またはχ−アルミナは重質留分中に
含まれている金属の捕捉能に優れているので好適であ
る。また、本発明での無機酸化物マトリックスは、シリ
カ、シリカアルミナ、シリカマグネシア、アルミナマグ
ネシア、シリカジルコニア、シリカマグネシアアルミナ
など結合剤として作用する通常の接触分解用触媒に使用
される慣用のマトリックス成分である。このようなマト
リックス成分には、カオリン、ハロイサイト、モンモリ
ロナイトなどをも含有される。また、本発明で得られる
炭化水素の流動接触分解用触媒組成物は、従来のメタル
捕捉剤も併用して含有せしめることが可能である。本発
明の方法では、前述のゼオライト、アルミナおよび/ま
たはアルミナ水和物とアルミナ以外の無機酸化物マトリ
ックスの前駆物質を所定の割合で均一に混合し、得られ
た混合スラリーを噴霧乾燥して微小球状粒子を製造する
のが好ましい。
In the present invention, the crystalline aluminosilicate zeolite (zeolite) used in the present invention may be the zeolite used in the catalytic cracking catalyst composition of hydrocarbons, such as X-type zeolite, Y-type zeolite, mordenite,
Synthetic zeolite such as ZSM type zeolite or natural zeolite can be used, and the zeolite is at least one cation selected from the group consisting of hydrogen, ammonium and polyvalent metal as in the case of the conventional catalytic catalyst for catalytic cracking. Used in the ion-exchanged form. Y-type zeolite, particularly ultra-stable Y-type zeolite, is preferable because it has excellent hydrothermal resistance. The alumina in the present invention includes alumina and / or alumina hydrate, and
Alternatively, examples of the alumina hydrate include activated alumina, α-alumina, boehmite, pseudo-boehmite, bayerite, gypsite, and amorphous alumina hydrate.
In particular, 3 to 7 obtained by airflow firing of aluminum hydroxide
0 μm of ρ and / or χ-alumina is preferable because it has an excellent ability to capture the metal contained in the heavy fraction. Further, the inorganic oxide matrix in the present invention is a conventional matrix component used in a catalyst for ordinary catalytic cracking which acts as a binder such as silica, silica alumina, silica magnesia, alumina magnesia, silica zirconia, and silica magnesia alumina. is there. Such matrix components also include kaolin, halloysite, montmorillonite and the like. Further, the catalyst composition for fluid catalytic cracking of hydrocarbons obtained in the present invention may contain a conventional metal scavenger together. In the method of the present invention, the above-mentioned zeolite, alumina and / or alumina hydrate and the precursor of the inorganic oxide matrix other than alumina are uniformly mixed at a predetermined ratio, and the resulting mixed slurry is spray-dried to form a fine powder. It is preferred to produce spherical particles.

【0006】本発明において、該微小球状粒子にリン原
子を導入させるのに使用されるリン酸イオン含有水溶液
は、リン酸、リン酸水素二アンモニウム、リン酸二水素
アンモニウム及びその他の水溶性リン酸塩などを任意の
濃度で水に溶解させて調製することができる。リン酸イ
オン含有水溶液は、噴霧乾燥後必要に応じて洗浄し、脱
塩、脱アルカリして得られた微小球状粒子とをpH2〜
6の条件下に常温から約100℃の温度で接触させる。
該微小球状粒子とリン酸イオン含有水溶液と接触させる
際のpHが2より低い場合には、該微小球状粒子中の結
晶性アルミノシリケートゼオライトの結晶が壊れるので
好ましくない。またpHが6よりも高い場合には、該微
小球状粒子へのリンの導入性が悪くなるので好ましくな
い。接触させる際の好ましいpHは3〜4の範囲であ
る。前述の接触操作により、リンが導入された微小球状
粒子は、乾燥され、所望により焼成されて触媒組成物と
なる。得られる触媒組成物のリン含有量はP25として
0.1〜3重量%、好ましくは0.1〜1.5重量%の
範囲に調節することが望ましい。リン原子の量が0.1
重量%未満では反応時の水素、コーク生成を満足できる
ほど抑制できず、一方、3重量%を上回ると触媒の分解
活性が低下するので望ましくない。
In the present invention, the phosphate ion-containing aqueous solution used for introducing a phosphorus atom into the fine spherical particles includes phosphoric acid, diammonium hydrogen phosphate, ammonium dihydrogen phosphate and other water-soluble phosphoric acid. It can be prepared by dissolving a salt or the like in water at an arbitrary concentration. The phosphate ion-containing aqueous solution is spray-dried, washed if necessary, desalted and dealkalized to obtain fine spherical particles, and the resulting fine spherical particles have a pH of 2 to
The contact is carried out under the conditions of No. 6 at room temperature to about 100 ° C.
When the pH of the fine spherical particles in contact with the phosphate ion-containing aqueous solution is lower than 2, the crystalline aluminosilicate zeolite crystals in the fine spherical particles are broken, which is not preferable. Further, if the pH is higher than 6, the introduction property of phosphorus into the fine spherical particles is deteriorated, which is not preferable. The preferred pH for contact is in the range of 3-4. By the above-mentioned contact operation, the fine spherical particles into which phosphorus has been introduced are dried and, if desired, calcined to form a catalyst composition. It is desirable that the phosphorus content of the obtained catalyst composition is adjusted to a range of 0.1 to 3% by weight, preferably 0.1 to 1.5% by weight as P 2 O 5 . The amount of phosphorus atoms is 0.1
If it is less than 5% by weight, hydrogen and coke formation during the reaction cannot be sufficiently suppressed, while if it exceeds 3% by weight, the decomposition activity of the catalyst is lowered, which is not desirable.

【0007】本発明の方法では、リン原子は結晶性アル
ミノシリケートゼオライト、アルミナおよび無機酸化物
マトリックスのいずれにも導入されるため、得られる触
媒組成物は、バナジウムやニッケルなどの金属汚染物を
含有する重質炭化水素の接触分解に優れた効果を示す。
特にボトムの分解率が高いという特徴を有する。本発明
の方法で得られる触媒組成物は、アンモニア吸着法によ
る固体酸強度分布の測定からリン処理をしない触媒組成
物に比較して強酸点が減少し、弱酸点が増加しているこ
とが分った。リン処理により触媒の強酸点を減少させる
ことで水素、コークの発生を少なくでき、また、リン処
理により強酸点は減少するものの逆に弱酸点量が増加す
るためトータルの酸量はほとんど変化しないので、重質
油留分は依然効率良く分解でき、液収率の低下が生じる
ようなこともない。また、本発明の方法では、触媒系外
へのリンの流出を防止できるだけでなく、無機酸化物マ
トリックスにもリンが含有されているため、前述のよう
にボトムの分解にも優れた効果を示す。
In the method of the present invention, since the phosphorus atom is introduced into any of the crystalline aluminosilicate zeolite, alumina and the inorganic oxide matrix, the resulting catalyst composition contains a metal contaminant such as vanadium or nickel. It exhibits an excellent effect on catalytic cracking of heavy hydrocarbons.
In particular, it has a characteristic that the decomposition rate of the bottom is high. The catalyst composition obtained by the method of the present invention shows that the strong acid point is decreased and the weak acid point is increased as compared with the catalyst composition which is not subjected to phosphorus treatment from the measurement of the solid acid strength distribution by the ammonia adsorption method. It was. By reducing the strong acid point of the catalyst by phosphorus treatment, it is possible to reduce the generation of hydrogen and coke.Also, although the strong acid point is reduced by phosphorus treatment, the weak acid point amount increases, but the total acid amount hardly changes. However, the heavy oil fraction can still be efficiently decomposed, and the liquid yield does not decrease. Further, in the method of the present invention, not only can phosphorus be prevented from flowing out of the catalyst system, but since the inorganic oxide matrix also contains phosphorus, it exhibits an excellent effect on the decomposition of the bottom as described above. .

【0008】実施例1 水硝子に硫酸を加えて調製した5wt%のSiO2を含
むシリカヒドロゾル20kgにイオン交換率95%でア
ンモニウム交換されたY型結晶性アルミノシリケートゼ
オライト(NH4Yゼオライト)1650g(乾燥基
準)、カオリンクレー2100g(乾燥基準)および平
均粒子径30μmのギブサイトを気流焼成して得られた
アルミナ粒子250g(乾燥基準)を加えて混合スラリ
ーを調製した。この混合スラリーを噴霧乾燥し微小球状
粒子を得た。次いで微小球状粒子を洗浄した。洗浄時に
は希土類金属(RE)として0.5wt%(酸化物基
準)に相当するRECl3の水溶液を添加してREを担
持した後、次いでリンをP25として0.5wt%に相
当するH3PO4水溶液を添加し、さらに塩酸水溶液を添
加して懸濁液pHを3.5に保持しながら20分間60
℃で撹拌することでリンを担持した。これを乾燥して本
発明の流動接触分解用触媒組成物を調製した。この流動
接触分解用触媒組成物はNH4Yゼオライトを33wt
%、アルミナ粒子を5wt%、RE23を0.5wt
%、P25を0.5wt%含有しその平均粒子径は63
μmであった。この触媒組成物を触媒Bとする。前述の
調製法と同様にしてリンの添加量を変えた触媒の調製を
行なった。すなわち、添加量をそれぞれ0、1、1.5
wt%(酸化物基準)となるようにH3PO4水溶液を加
えた。触媒はいずれもNH4Yゼオライトを33wt%
およびアルミナ粒子を5wt%含有する。これらの触媒
をそれぞれ触媒A、C、Dとする。
Example 1 Y-type crystalline aluminosilicate zeolite (NH 4 Y zeolite) ammonium-exchanged with 20 kg of silica hydrosol containing 5 wt% of SiO 2 prepared by adding sulfuric acid to water glass at an ion exchange rate of 95%. A mixed slurry was prepared by adding 1650 g (dry basis), 2100 g of kaolin clay (dry basis) and 250 g of alumina particles (dry basis) obtained by air-flow firing of gibbsite having an average particle diameter of 30 μm. This mixed slurry was spray-dried to obtain fine spherical particles. The microspheres were then washed. At the time of cleaning, an aqueous solution of RECl 3 corresponding to 0.5 wt% (based on oxide) as rare earth metal (RE) was added to support RE, and then phosphorus was added as P 2 O 5 to H corresponding to 0.5 wt%. 3 PO 4 aqueous solution was added, and further hydrochloric acid aqueous solution was added to maintain the suspension pH at 3.5 for 60 minutes for 20 minutes.
Phosphorus was supported by stirring at ℃. This was dried to prepare a catalyst composition for fluid catalytic cracking of the present invention. This fluid catalytic cracking catalyst composition contains 33 wt% of NH 4 Y zeolite.
%, Alumina particles 5 wt%, RE 2 O 3 0.5 wt%
%, P 2 O 5 0.5 wt% and the average particle size is 63
μm. This catalyst composition is referred to as catalyst B. In the same manner as the above-mentioned preparation method, catalysts were prepared with different amounts of phosphorus added. That is, the addition amount is 0, 1, 1.5, respectively.
The H 3 PO 4 aqueous solution was added so as to be wt% (based on oxide). 33 wt% of NH 4 Y zeolite was used as the catalyst.
And 5% by weight of alumina particles. Let these catalysts be catalysts A, C, and D, respectively.

【0009】比較例1 平均粒子径30μmのギブサイトを気流焼成して得られ
たアルミナ粒子250g(乾燥基準)にH3PO4水溶液
をリン含有量がP25として12wt%となるように加
え、1時間放置した。このリン酸添加アルミナ粒子を1
10℃で17時間乾燥した後600℃で2時間焼成しリ
ン含有アルミナ粒子を調製した。このリン含有アルミナ
粒子を、実施例1と同様の方法で調製したシリカヒドロ
ゾル、Y型結晶性アルミノシリケートゼオライト、カオ
リンクレーを含む混合スラリーに混合し、これを噴霧乾
燥して微小球状粒子を得た。次いで該粒子の洗浄を行な
い、洗浄時にREを0.5wt%(酸化物基準)となる
ようにRECl3を加え、次いで乾燥し流動接触分解触
媒Eを得た。触媒EのP25含有量を分析したところ触
媒基準で0.5wt%であった。
Comparative Example 1 To 250 g (dry basis) of alumina particles obtained by air-flow firing of gibbsite having an average particle diameter of 30 μm, an aqueous H 3 PO 4 solution was added so that the phosphorus content was 12 wt% as P 2 O 5. It was left for 1 hour. 1 of these phosphoric acid-added alumina particles
It was dried at 10 ° C. for 17 hours and then baked at 600 ° C. for 2 hours to prepare phosphorus-containing alumina particles. The phosphorus-containing alumina particles were mixed with a mixed slurry containing silica hydrosol, Y-type crystalline aluminosilicate zeolite, and kaolin clay prepared by the same method as in Example 1, and spray-dried to obtain fine spherical particles. It was Next, the particles were washed, and RECl 3 was added so that RE was 0.5 wt% (based on oxide) at the time of washing, and then dried to obtain a fluid catalytic cracking catalyst E. When the P 2 O 5 content of the catalyst E was analyzed, it was 0.5 wt% based on the catalyst.

【0010】比較例2 実施例1に用いたY型結晶性アルミノシリケートゼオラ
イトを硫酸アンモニウム水溶液にリン酸を加えた水溶液
に懸濁させ90℃で0.5時間撹拌した後、ろ過洗浄し
てリン含有NH4Yフォージャサイトを調製した。リン
の含有量を分析したところ1.9wt%であった。得ら
れたリン含有NH4Yフォージャサイトを実施例1と同
様の方法で調製したシリカヒドロゾル、アルミナ粒子、
カオリンクレーを含む混合スラリーに混合し、これを噴
霧乾燥して微小球状粒子を得た。次いで、該粒子の洗浄
を行ない、洗浄時にREを0.5wt%(酸化物基準)
となるようにRECl3を加え、次いで乾燥して流動接
触分解触媒Fを得た。触媒FのP25の含有量を分析し
たところ0.5wt%であった。
Comparative Example 2 The Y-type crystalline aluminosilicate zeolite used in Example 1 was suspended in an aqueous solution of ammonium sulfate with phosphoric acid added, stirred at 90 ° C. for 0.5 hours, washed by filtration, and containing phosphorus. NH 4 Y faujasite was prepared. When the phosphorus content was analyzed, it was 1.9 wt%. The obtained phosphorus-containing NH 4 Y faujasite was prepared by the same method as in Example 1, silica hydrosol, alumina particles,
This was mixed with a mixed slurry containing kaolin clay and spray-dried to obtain fine spherical particles. Next, the particles are washed, and RE is 0.5 wt% (based on oxide) during washing.
So that RECl 3 was added, and then dried to obtain a fluid catalytic cracking catalyst F. When the content of P 2 O 5 in the catalyst F was analyzed, it was 0.5% by weight.

【0011】比較例3 比較例1および比較例2で調製した方法と同じようにし
てリン含有アルミナ粒子およびリン含有Y型結晶性アル
ミノシリケートゼオライトを調製した。但し、ここでは
リン含有アルミナ粒子中のP25含有量は6wt%、リ
ン含有Y型結晶性アルミノシリケートゼオライト中のP
25含有量は1.0wt%となるように調製した。これ
らを用いて、実施例1と同様の方法で調製したシリカヒ
ドロゾル、カオリンクレーと混合し、これを噴霧乾燥し
た後、洗浄時にREを0.5wt%(酸化物基準)とな
るようにRECl3を加え、次いで乾燥して流動接触分
解触媒Gを得た。触媒GのP25の含有量は0.5wt
%であった。
Comparative Example 3 Phosphorus-containing alumina particles and phosphorus-containing Y-type crystalline aluminosilicate zeolite were prepared in the same manner as in the methods of Comparative Example 1 and Comparative Example 2. However, here, the P 2 O 5 content in the phosphorus-containing alumina particles is 6 wt%, and the P 2 O 5 content in the phosphorus-containing Y-type crystalline aluminosilicate zeolite is 6% by weight.
The 2 O 5 content was adjusted to 1.0 wt%. These were mixed with silica hydrosol and kaolin clay prepared by the same method as in Example 1, spray-dried, and then RECl was adjusted to 0.5 wt% (oxide based) during washing. 3 was added and then dried to obtain a fluid catalytic cracking catalyst G. The content of P 2 O 5 in the catalyst G is 0.5 wt.
%Met.

【0012】〈性能試験〉実施例および比較例で得られ
た触媒粒子A〜Gについて触媒循環再生方式のMidg
et−2パイロットプラントを用いて性能評価した。運
転条件は次のとおりである。 原料油:脱硫常圧残渣油(40%)と脱硫減圧軽油(6
0%)との混合油 重量空間速度: 25hr-1 触媒/油 7重量比 反応温度 520℃ 再生塔温度 670℃ ストリッピング温度 500℃ 再生触媒上のコーク 0.05wt% 性能評価するにあたり触媒は以下の擬平衡化処理を行な
った。各触媒にニッケル、バナジウムをそれぞれ200
0、4000ppm沈着させた。すなわち、各触媒を予
め600℃で1時間焼成した後所定量のナフテン酸ニッ
ケル、ナフテン酸バナジウム溶液を各触媒に吸収させ、
次いで110℃で乾燥後600℃で1.5時間焼成し
た。これらの触媒を擬平衡化するため各触媒を810℃
で6時間流動スチーム処理して測定に供した。測定結果
を表1および2に示す。
<Performance test> The catalyst particles A to G obtained in the examples and comparative examples were subjected to the catalyst circulation regeneration method Midg.
Performance was evaluated using the et-2 pilot plant. The operating conditions are as follows. Feedstock: Desulfurized atmospheric residual oil (40%) and desulfurized vacuum gas oil (6
Oil mixed with 0%) Weight hourly space velocity: 25 hr -1 catalyst / oil 7 weight ratio Reaction temperature 520 ℃ Regeneration tower temperature 670 ℃ Stripping temperature 500 ℃ Coke on regenerated catalyst 0.05 wt% Catalyst for performance evaluation Pseudo-equilibrium treatment was performed. Nickel and vanadium are added to each catalyst by 200
0, 4000 ppm was deposited. That is, after each catalyst was previously calcined at 600 ° C. for 1 hour, a predetermined amount of nickel naphthenate and vanadium naphthenate solution was absorbed in each catalyst,
Then, it was dried at 110 ° C. and baked at 600 ° C. for 1.5 hours. In order to pseudo-equilibrium these catalysts, each catalyst was heated to 810 ° C.
The sample was subjected to fluidized steam treatment for 6 hours and subjected to measurement. The measurement results are shown in Tables 1 and 2.

【0013】表1に示される通り本発明の触媒B、C、
Dはリン無添加触媒Aあるいは比較例で示された触媒
E、F、Gと比較してボトム分解能を示すLCO/HC
O比は、ほぼ同じ値を示している一方で、水素およびコ
ーク生成量を示すH2/kおよびCoke/kはいずれ
も低い値を示しており、ボトム分解能を有しながら、水
素、コーク生成量を低く抑える触媒であることがわか
る。
As shown in Table 1, the catalysts B, C of the present invention,
D is LCO / HC showing a bottom resolution as compared with the phosphorus-free catalyst A or the catalysts E, F and G shown in the comparative examples.
The O ratios show almost the same value, while H 2 / k and Coke / k, which show the amount of hydrogen and coke produced, both show low values. It can be seen that the catalyst keeps the amount low.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 2 BP、204〜343℃留分 *3 BP、343℃+留分[Table 2] * 2 BP, 204-343 ° C fraction * 3 BP, 343 ° C + fraction

【0016】以下、本発明の具体的実施態様を示す。 1.アルミナ、結晶性アルミノシリケートゼオライトお
よびアルミナ以外の無機酸化物マトリックスを含有して
構成され、かつ前記成分のいずれもが、リン原子を含有
するものである炭化水素の流動接触分解用触媒組成物。 2.アルミナ1〜30重量%、好ましくは3〜20重量
%、結晶性アルミノシリケートゼオライト5〜50重量
%、好ましくは5〜40重量%、アルミナ以外の無機酸
化物マトリックス20〜94重量%、好ましくは35〜
92重量%を含有して構成され、かつ、前記各成分のい
ずれもが、リン原子を含有するものである炭化水素の流
動接触分解用触媒組成物。 3.リン原子がリンをP25として0.1〜3重量%、
好ましくは0.1〜1.5重量%の範囲で含有するもの
である前記1または2記載の流動接触分解用触媒組成
物。 4.リン原子がP25の形で含有されている前記1、2
または3記載の流動接触分解用触媒組成物。 5.結晶性アルミノシリケートゼオライトが、水素、ア
ンモニウムおよび多価金属よりなる群から選ばれた少な
くとも1種のカチオンでイオン交換されたものである前
記1、2、3または4記載の流動接触分解用触媒組成
物。
Specific embodiments of the present invention will be described below. 1. A catalyst composition for fluid catalytic cracking of hydrocarbons, which is constituted by containing an alumina, a crystalline aluminosilicate zeolite and an inorganic oxide matrix other than alumina, and in which all of the above components contain a phosphorus atom. 2. Alumina 1 to 30% by weight, preferably 3 to 20% by weight, crystalline aluminosilicate zeolite 5 to 50% by weight, preferably 5 to 40% by weight, inorganic oxide matrix other than alumina 20 to 94% by weight, preferably 35 ~
A catalyst composition for fluid catalytic cracking of hydrocarbons, which is constituted by containing 92% by weight and in which each of the above components contains a phosphorus atom. 3. 0.1 to 3% by weight of phosphorus atom as phosphorus as P 2 O 5 ,
The catalyst composition for fluid catalytic cracking according to 1 or 2 above, which is preferably contained in the range of 0.1 to 1.5% by weight. 4. The above 1, 2 in which the phosphorus atom is contained in the form of P 2 O 5.
Alternatively, the catalyst composition for fluid catalytic cracking according to 3 above. 5. 5. The catalytic composition for fluid catalytic cracking according to 1, 2, 3 or 4, wherein the crystalline aluminosilicate zeolite is ion-exchanged with at least one cation selected from the group consisting of hydrogen, ammonium and polyvalent metals. Stuff.

【0017】6.結晶性アルミノシリケートゼオライト
が、Y型ゼオライト、好ましくは超安定性Y型ゼオライ
トである前記5記載の流動接触分解用触媒組成物。 7.アルミナがアルミナおよび/またはアルミナ水和物
である前記1、2、3、4、5または6記載の流動接触
分解用触媒組成物。 8.アルミナが水酸化アルミニウムを気流焼成して得ら
れる3〜70μmのρおよび/またはχ−アルミナであ
る前記7記載の流動接触分解用触媒組成物。 9.結晶性アルミノシリケートゼオライト、アルミナお
よびアルミナ以外の無機酸化物マトリックスの前駆物質
の混合スラリーを噴霧乾燥して得られた前記各成分を含
有して構成される微小球状粒子を作製し、該微小球状粒
子をリン酸イオン含有水溶液と接触させて前記各成分の
いずれにもリン成分を導入させることを特徴とする前記
1、2、3、4、5、6、7または8記載の炭化水素の
流動接触分解用触媒組成物の製造方法。 10.微小球状粒子とリン酸イオン含有水溶液の接触
を、pH2〜6、好ましくはpH3〜4の範囲で行う前
記1、2、3、4、5、6、7、8または9記載の流動
接触分解用触媒組成物の製造方法。 11.微小球状粒子とリン酸イオン含有水溶液の接触
を、常温から約100℃の温度で接触させる前記10記
載の流動接触分解用触媒組成物の製造方法。
6. The catalyst composition for fluid catalytic cracking according to the above 5, wherein the crystalline aluminosilicate zeolite is a Y-type zeolite, preferably a super-stable Y-type zeolite. 7. 7. The catalyst composition for fluid catalytic cracking according to the above 1, 2, 3, 4, 5 or 6, wherein the alumina is alumina and / or alumina hydrate. 8. 8. The catalyst composition for fluid catalytic cracking according to 7, wherein the alumina is ρ- and / or χ-alumina having a particle size of 3 to 70 μm, which is obtained by air-flow firing of aluminum hydroxide. 9. Crystalline aluminosilicate zeolite, alumina and fine spherical particles composed of the above components obtained by spray-drying a mixed slurry of a precursor of an inorganic oxide matrix other than alumina are prepared. Fluid contact of hydrocarbons according to the above 1, 2, 3, 4, 5, 6, 7 or 8, characterized in that the phosphorus component is introduced into any of the above components by contacting with a phosphate ion-containing aqueous solution. A method for producing a decomposition catalyst composition. 10. For fluid catalytic decomposition according to the above 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the contact between the fine spherical particles and the phosphate ion-containing aqueous solution is carried out within the range of pH 2 to 6, preferably pH 3 to 4. A method for producing a catalyst composition. 11. 11. The method for producing a catalyst composition for fluid catalytic cracking according to 10 above, wherein the contact between the fine spherical particles and the phosphate ion-containing aqueous solution is performed at room temperature to about 100 ° C.

【0018】[0018]

【効果】本発明の方法では、リン原子は結晶性アルミノ
シリケートゼオライト、アルミナおよび無機酸化物マト
リックスのいずれにも導入されるため、得られる触媒組
成物は、バナジウムやニッケルなどの金属汚染物を含有
する重質炭化水素の接触分解に優れた効果を示す。特に
ボトムの分解率が高いという特徴を有する。
[Effect] In the method of the present invention, the phosphorus atom is introduced into any of the crystalline aluminosilicate zeolite, alumina and the inorganic oxide matrix, so that the obtained catalyst composition contains a metal contaminant such as vanadium or nickel. It exhibits an excellent effect on catalytic cracking of heavy hydrocarbons. In particular, it has a characteristic that the decomposition rate of the bottom is high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 盛男 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Morio Fukuda 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Prefecture Catalyst Catalyst Wakamatsu Plant Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ、結晶性アルミノシリケートゼ
オライトおよびアルミナ以外の無機酸化物マトリックス
を含有して構成され、かつ前記成分のいずれもが、リン
原子を含有するものである炭化水素の流動接触分解用触
媒組成物。
1. A fluid catalytic cracking of a hydrocarbon comprising an alumina, a crystalline aluminosilicate zeolite and an inorganic oxide matrix other than alumina, wherein all of the components contain a phosphorus atom. Catalyst composition.
【請求項2】 アルミナ1〜30重量%、結晶性アルミ
ノシリケートゼオライト5〜50重量%、およびアルミ
ナ以外の無機酸化物マトリックス20〜94重量%を含
有して構成され、かつ、前記各成分のいずれもが、リン
原子を含有するものである炭化水素の流動接触分解用触
媒組成物。
2. 1 to 30% by weight of alumina, 5 to 50% by weight of crystalline aluminosilicate zeolite, and 20 to 94% by weight of an inorganic oxide matrix other than alumina, and any one of the above components. A catalyst composition for fluid catalytic cracking of hydrocarbons, which contains phosphorus atoms.
【請求項3】 アルミナ、結晶性アルミノシリケートゼ
オライトおよびアルミナ以外の無機酸化物マトリックス
の前駆物質を所定の割合で混合した混合スラリーを噴霧
乾燥して得られた微小球状粒子を作製し、該微小球状粒
子をリン酸イオン含有水溶液と接触させることを特徴と
する請求項1または2記載の炭化水素の流動接触分解用
触媒組成物の製造法。
3. A fine spherical particle is prepared by spray-drying a mixed slurry prepared by mixing alumina, crystalline aluminosilicate zeolite and precursors of an inorganic oxide matrix other than alumina in a predetermined ratio. The method for producing a catalyst composition for fluid catalytic cracking of hydrocarbons according to claim 1 or 2, wherein the particles are contacted with an aqueous solution containing phosphate ions.
JP6337985A 1994-12-27 1994-12-27 Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production Pending JPH08173816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337985A JPH08173816A (en) 1994-12-27 1994-12-27 Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337985A JPH08173816A (en) 1994-12-27 1994-12-27 Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production

Publications (1)

Publication Number Publication Date
JPH08173816A true JPH08173816A (en) 1996-07-09

Family

ID=18313867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337985A Pending JPH08173816A (en) 1994-12-27 1994-12-27 Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production

Country Status (1)

Country Link
JP (1) JPH08173816A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523976A (en) * 2004-12-21 2008-07-10 アルベマール・ネーザーランズ・ベー・ブイ FCC catalyst, its preparation and use
JP4828532B2 (en) * 2004-07-29 2011-11-30 中國石油化工股▲分▼有限公司 Cracking catalyst and method for producing the same
JP2013031845A (en) * 2012-09-18 2013-02-14 Jgc Catalysts & Chemicals Ltd Method for producing fluid catalytic cracking catalyst of hydrocarbon
JP2013111528A (en) * 2011-11-29 2013-06-10 Jgc Catalysts & Chemicals Ltd Hydrocarbon catalytic cracking catalyst and method for manufacturing the same
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
JP2014213312A (en) * 2013-04-30 2014-11-17 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst and fluid catalytic cracking catalyst
KR20160003200A (en) 2013-05-28 2016-01-08 닛키 쇼쿠바이카세이 가부시키가이샤 Catalyst for catalytic cracking of hydrocarbon, and process for producing same
KR20160135727A (en) 2014-03-17 2016-11-28 니끼 쇼꾸바이 카세이 가부시키가이샤 Device for testing catalyst for use fluid catalytic cracking
JP2017501870A (en) * 2013-12-19 2017-01-19 ビーエーエスエフ コーポレーション Phosphorus-containing FCC catalyst
JP2021037444A (en) * 2019-09-02 2021-03-11 コスモ石油株式会社 Fluid catalytic cracking catalyst, fluid catalytic cracking method, fluid catalytic cracking apparatus, and method for evaluating stripping performance of fluid catalytic cracking catalyst

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828532B2 (en) * 2004-07-29 2011-11-30 中國石油化工股▲分▼有限公司 Cracking catalyst and method for producing the same
US9175230B2 (en) 2004-07-29 2015-11-03 China Petroleum & Chemical Corporation Cracking catalyst and a process for preparing the same
JP2008523976A (en) * 2004-12-21 2008-07-10 アルベマール・ネーザーランズ・ベー・ブイ FCC catalyst, its preparation and use
JP2013111528A (en) * 2011-11-29 2013-06-10 Jgc Catalysts & Chemicals Ltd Hydrocarbon catalytic cracking catalyst and method for manufacturing the same
AU2013303687B2 (en) * 2012-08-17 2016-10-20 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
WO2014027537A1 (en) * 2012-08-17 2014-02-20 日揮触媒化成株式会社 Catalyst for hydrocarbon catalytic cracking
JP2014036934A (en) * 2012-08-17 2014-02-27 Jgc Catalysts & Chemicals Ltd Catalyst for catalytic cracking of hydrocarbon
KR20150044910A (en) 2012-08-17 2015-04-27 닛키 쇼쿠바이카세이 가부시키가이샤 Catalyst for hydrocarbon catalytic cracking
US9731281B2 (en) 2012-08-17 2017-08-15 Jgc Catalysts And Chemicals Ltd. Catalyst for hydrocarbon catalytic cracking
JP2013031845A (en) * 2012-09-18 2013-02-14 Jgc Catalysts & Chemicals Ltd Method for producing fluid catalytic cracking catalyst of hydrocarbon
JP2014213312A (en) * 2013-04-30 2014-11-17 日揮触媒化成株式会社 Method for producing fluid catalytic cracking catalyst and fluid catalytic cracking catalyst
KR20160003200A (en) 2013-05-28 2016-01-08 닛키 쇼쿠바이카세이 가부시키가이샤 Catalyst for catalytic cracking of hydrocarbon, and process for producing same
JP2017501870A (en) * 2013-12-19 2017-01-19 ビーエーエスエフ コーポレーション Phosphorus-containing FCC catalyst
KR20160135727A (en) 2014-03-17 2016-11-28 니끼 쇼꾸바이 카세이 가부시키가이샤 Device for testing catalyst for use fluid catalytic cracking
JP2021037444A (en) * 2019-09-02 2021-03-11 コスモ石油株式会社 Fluid catalytic cracking catalyst, fluid catalytic cracking method, fluid catalytic cracking apparatus, and method for evaluating stripping performance of fluid catalytic cracking catalyst

Similar Documents

Publication Publication Date Title
US4458023A (en) Catalyst manufacture
US5286693A (en) Method of producing catalyst for converting hydrocarbons
US4515902A (en) Hydrocarbon conversion catalyst and process for preparing same
JP2554706B2 (en) Method for catalytic cracking of feedstock containing high levels of nitrogen
JPH11300208A (en) Catalytically cracking catalyst
EP0176150B1 (en) Catalytic cracking, process for heavy oil
US4919787A (en) Metal passivating agents
JP2014036934A (en) Catalyst for catalytic cracking of hydrocarbon
CA1171054A (en) Hydrocarbon conversion catalysts and processes utilizing the same
KR100856599B1 (en) Bayerite alumina coated zeolite and cracking catalysts containing same
JPH0685875B2 (en) Catalyst for catalytic cracking of hydrocarbon oil and catalytic cracking method
JP2006142273A (en) Process for producing catalyst composition for hydrocarbon fluid catalytic cracking
JPH08173816A (en) Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production
JP2821815B2 (en) Method for producing hydrocarbon conversion catalyst
GB2138314A (en) Catalytic cracking catalyst and process
JP2013111528A (en) Hydrocarbon catalytic cracking catalyst and method for manufacturing the same
JP5426308B2 (en) Fluid catalytic cracking method
JP3949336B2 (en) Process for producing catalyst composition for catalytic cracking of hydrocarbons
JP3782137B2 (en) Hydrocarbon catalytic cracking catalyst composition and catalytic cracking method using the same
JP4167123B2 (en) Hydrocarbon fluid catalytic cracking catalyst composition and fluid catalytic cracking method of heavy hydrocarbons using the same
JP2933708B2 (en) Modified Y-type zeolite, process for producing the same, and catalyst composition for catalytic cracking of hydrocarbons using the same
JP6059944B2 (en) Method for producing modified zeolite and method for producing catalyst for catalytic cracking of hydrocarbon
JP3363010B2 (en) Method for producing catalyst composition for catalytic cracking of hydrocarbons
JP2004130193A (en) Catalyst composition for cracking hydrocarbon catalytically and catalytic cracking method using the same
RU2800606C2 (en) Molecular sieve having mfi structure and high mesopore content, method for its production, catalyst containing it and its application