[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08171934A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08171934A
JPH08171934A JP6334248A JP33424894A JPH08171934A JP H08171934 A JPH08171934 A JP H08171934A JP 6334248 A JP6334248 A JP 6334248A JP 33424894 A JP33424894 A JP 33424894A JP H08171934 A JPH08171934 A JP H08171934A
Authority
JP
Japan
Prior art keywords
carbonate
solvent
lithium
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334248A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shoji
良浩 小路
Mayumi Uehara
真弓 上原
Yoshinori Kida
佳典 喜田
Mikiya Yamazaki
幹也 山崎
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6334248A priority Critical patent/JPH08171934A/en
Publication of JPH08171934A publication Critical patent/JPH08171934A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To obtain a battery having a superior shelf life under a charged state by using a low-viscosity solvent consisting of specific carbonate for a solvent for use in the nonaqueous electrolyte of a battery having positive electrodes and negative electrodes consisting of a carbon material. CONSTITUTION: A battery is provided with positive electrodes 1, negative electrodes 4 using a carbon material having a d value at the lattice plane (002) plane of 3.35-3.39Å and a crystallite size in the c axial direction of at least 50Å as an electrode material, a nonaqueous electrolyte, and separators 3. A solvent for the nonaqueous electrolyte uses a mixed solvent consisting of a low-viscosity solvent 70-30vol.% selected from a group consisting of ethylene carbonate 30-70vol.%, methyl propyl carbonate, methyl isopropyl carbonate, and ethyl propyl carbonate. Thus, less self-discharge is evolved even if the battery is stored under a charged state to depress a decrease in discharge capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭素材料を電極材料とす
る負極を備えるリチウム二次電池に係わり、詳しくは充
電状態に於ける保存特性に優れたリチウム二次電池を提
供することを目的とした電解液(非水電解液)の溶媒の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery provided with a negative electrode using a carbon material as an electrode material, and more specifically, to provide a lithium secondary battery having excellent storage characteristics in a charged state. The present invention relates to improvement of the solvent of the electrolytic solution (non-aqueous electrolytic solution).

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
黒鉛、コークス、無定形炭素、難黒鉛化性炭素等のリチ
ウムイオンを吸蔵及び放出することが可能な炭素材料
が、従前使用されていた金属リチウムと異なり、樹枝状
の電析リチウムの成長に因る内部短絡の虞れが無いこと
から、リチウム二次電池の新しい負極材料として注目さ
れている。
2. Description of the Related Art In recent years,
Carbon materials capable of inserting and extracting lithium ions, such as graphite, coke, amorphous carbon, and non-graphitizable carbon, are different from the metallic lithium that has been used in the past and are responsible for the growth of dendritic electrodeposited lithium. Since it has no fear of internal short circuit, it is attracting attention as a new negative electrode material for lithium secondary batteries.

【0003】黒鉛等の炭素材料を負極材料とするリチウ
ム二次電池(リチウムイオン電池)においては、非水電
解液の導電率を高めるべく、高誘電率溶媒たるエチレン
カーボネートと、低粘度溶媒たるジメチルカーボネート
又はジエチルカーボネートとの混合溶媒が使用されてい
る。
In a lithium secondary battery (lithium ion battery) using a carbon material such as graphite as a negative electrode material, ethylene carbonate, which is a high dielectric constant solvent, and dimethyl, which is a low viscosity solvent, are used to increase the conductivity of the non-aqueous electrolyte. A mixed solvent with carbonate or diethyl carbonate is used.

【0004】しかしながら、この種の溶媒を使用したリ
チウム二次電池は、充電状態で保存すると負極の表面で
ジメチルカーボネート又はジエチルカーボネートの分解
(自己放電)が起こることに起因して、放電容量が保存
後著しく低下するという問題を有していた。
However, when a lithium secondary battery using this type of solvent is stored in a charged state, the dimethyl carbonate or diethyl carbonate is decomposed (self-discharge) on the surface of the negative electrode, and therefore the discharge capacity is preserved. After that, it had a problem of being significantly reduced.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、エチレンカ
ーボネートと併用する低粘度溶媒としてジメチルカーボ
ネート又はジエチルカーボネートに代えて特定の非環状
炭酸エステルを使用することにより、充電状態での保存
特性に優れたリチウム二次電池を提供するにある。
The present invention has been made to solve this problem, and its object is to replace a specific acyclic carbonate ester with dimethyl carbonate or diethyl carbonate as a low-viscosity solvent used in combination with ethylene carbonate. Is to provide a lithium secondary battery having excellent storage characteristics in a charged state.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(本発明電池)は、正
極と、格子面(002)面に於けるd値(d002 )が
3.35〜3.39Å、且つc軸方向の結晶子の大きさ
(Lc)が50Å以上の炭素材料を電極材料とする負極
と、溶媒及び溶質からなる非水電解液と、セパレータと
を備えるリチウム二次電池であって、前記溶媒が、エチ
レンカーボネート30〜70体積%と、メチルプロピル
カーボネート、メチルイソプロピルカーボネート及びエ
チルプロピルカーボネートよりなる群から選ばれた少な
くとも一種の低粘度溶媒70〜30体積%とからなる混
合溶媒であるものである。
The lithium secondary battery (the battery of the present invention) according to the present invention for achieving the above object has a positive electrode and a d value (d 002 ) on the lattice plane (002) plane. 3.35 to 3.39Å and a negative electrode using a carbon material having a crystallite size (Lc) in the c-axis direction of 50 Å or more as an electrode material, a non-aqueous electrolytic solution containing a solvent and a solute, and a separator A lithium secondary battery, wherein the solvent is 30 to 70% by volume of ethylene carbonate, and 70 to 30% by volume of a low-viscosity solvent selected from the group consisting of methylpropyl carbonate, methylisopropyl carbonate and ethylpropyl carbonate. It is a mixed solvent consisting of and.

【0007】本発明に於ける非水電解液の溶媒は、エチ
レンカーボネート30〜70体積%と、メチルプロピル
カーボネート、メチルイソプロピルカーボネート及びエ
チルプロピルカーボネートよりなる群から選ばれた少な
くとも一種の低粘度溶媒70〜30体積%とからなる混
合溶媒である。エチレンカーボネートと低粘度溶媒との
体積比が上記範囲を外れると、充電状態で保存した際の
放電容量の低下が著しくなる。これは、低粘度溶媒の割
合が70体積%を越えると非水電解液の誘電率が低下
し、一方同割合が30体積%未満になると非水電解液の
粘度が上昇し、いずれの場合も非水電解液の導電率が低
下するためと考えられる。
The solvent of the non-aqueous electrolyte in the present invention is 30 to 70% by volume of ethylene carbonate and at least one low-viscosity solvent 70 selected from the group consisting of methylpropyl carbonate, methylisopropyl carbonate and ethylpropyl carbonate. It is a mixed solvent consisting of ˜30% by volume. When the volume ratio of ethylene carbonate to the low-viscosity solvent is out of the above range, the discharge capacity when stored in a charged state significantly decreases. This is because when the proportion of the low-viscosity solvent exceeds 70% by volume, the dielectric constant of the non-aqueous electrolytic solution decreases, while when the proportion is less than 30% by volume, the viscosity of the non-aqueous electrolytic solution increases. It is considered that this is because the conductivity of the non-aqueous electrolytic solution is lowered.

【0008】本発明に於ける非水電解液の溶質として
は、LiPF6 、LiBF4 、LiClO4 、LiAs
6 、LiCF3 SO3 、LiN(CF3 SO2 2
例示される。これらの溶質の溶媒に対する好適な添加割
合は、0.5〜3モル/リットルである。
As the solute of the non-aqueous electrolyte in the present invention, LiPF 6 , LiBF 4 , LiClO 4 , LiAs are used.
Examples are F 6 , LiCF 3 SO 3 and LiN (CF 3 SO 2 ) 2 . A suitable addition ratio of these solutes to the solvent is 0.5 to 3 mol / liter.

【0009】正極の活物質としては、リチウム含有マン
ガン酸化物(LiMnO2 、LiMn2 4 など)、リ
チウム含有コバルト酸化物(LiCoO2 など)、リチ
ウム含有ニッケル酸化物(LiNiO2 など)の他、リ
チウム含有ニッケル・コバルト複合酸化物(Li2 Ni
CoO4 など)、リチウム含有マンガン・コバルト複合
酸化物、リチウム含有マンガン・ニッケル複合酸化物が
例示される。
Examples of the positive electrode active material include lithium-containing manganese oxides (LiMnO 2 , LiMn 2 O 4, etc.), lithium-containing cobalt oxides (LiCoO 2, etc.), lithium-containing nickel oxides (LiNiO 2, etc.), Lithium-containing nickel-cobalt composite oxide (Li 2 Ni
CoO 4, etc.), lithium-containing manganese / cobalt composite oxide, and lithium-containing manganese / nickel composite oxide.

【0010】本発明に於ける負極材料たる炭素材料は、
格子面(002)面に於けるd値(d002 )が3.35
〜3.39Å、且つc軸方向の結晶子の大きさ(Lc)
が50Å以上のものである。この範囲のd値及びLcを
有する炭素材料は、高容量を有するとともに、平坦な放
電電位を与えるという利点を有する反面、ジメチルカー
ボネート及びジエチルカーボネートの分解をもたらすと
いう欠点を有していたのである。
The carbon material as the negative electrode material in the present invention is
The d value (d 002 ) on the lattice plane (002) plane is 3.35.
~ 3.39Å, and the crystallite size in the c-axis direction (Lc)
Is over 50Å. A carbon material having a d value and Lc in this range has a high capacity and an advantage of providing a flat discharge potential, but has a drawback of causing decomposition of dimethyl carbonate and diethyl carbonate.

【0011】[0011]

【作用】エチレンカーボネートと併用する低粘度溶媒と
して、充電状態で電池を保存しても、負極(炭素材料)
の表面で分解しにくい特定の非環状炭酸エステルが使用
されているので、自己放電が起こりにくくなる。このた
め、充電状態で保存した際の放電容量の低下が抑制され
る。
[Function] As a low-viscosity solvent used together with ethylene carbonate, even if the battery is stored in a charged state, the negative electrode (carbon material)
Since a specific acyclic carbonic acid ester that is difficult to decompose on the surface of is used, self-discharge is less likely to occur. Therefore, the decrease in discharge capacity when stored in the charged state is suppressed.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0013】(実施例1〜6)下記の正極、負極及び非
水電解液を用いてAAサイズのリチウム二次電池(本発
明電池)A1(電池寸法:外径13.8mm、高さ4
8.9mm)を組み立てた。セパレータとしては、ポリ
エチレン製の微多孔膜を使用した。
(Examples 1 to 6) AA size lithium secondary battery (cell of the present invention) A1 (battery size: outer diameter 13.8 mm, height 4) using the following positive electrode, negative electrode and non-aqueous electrolyte.
8.9 mm) was assembled. A polyethylene microporous membrane was used as the separator.

【0014】〔正極〕LiCoO2 粉末85重量部に、
導電剤としての炭素粉末(人造黒鉛)10重量部を混合
し、得られた混合物を、結着剤としてのポリフッ化ビニ
リデン(PVdF)5重量部の5重量%N−メチルピロ
リドン(NMP)溶液に分散させてスラリーとし、この
スラリーをドクターブレード法により、正極集電体とし
ての厚さ20μmのアルミニウム箔に塗布し、100°
Cで乾燥して、正極を作製した。
[Positive electrode] To 85 parts by weight of LiCoO 2 powder,
10 parts by weight of carbon powder (artificial graphite) as a conductive agent was mixed, and the resulting mixture was added to a 5% by weight N-methylpyrrolidone (NMP) solution containing 5 parts by weight of polyvinylidene fluoride (PVdF) as a binder. It is dispersed into a slurry, and this slurry is applied by a doctor blade method to an aluminum foil having a thickness of 20 μm as a positive electrode current collector, and the temperature is 100 °
It was dried at C to prepare a positive electrode.

【0015】〔負極〕黒鉛粉末(d002 =3.35Å、
Lc=1000Å以上の天然黒鉛)95重量部を結着剤
としてのポリフッ化ビニリデン5重量部の5重量%N−
メチルピロリドン溶液に分散させてスラリーとし、この
スラリーをドクターブレード法により、負極集電体とし
ての厚さ18μmの銅箔に塗布し、100°Cで乾燥し
て、負極を作製した。
[Negative electrode] Graphite powder (d 002 = 3.35Å,
Lc = 1000 Å or more of natural graphite) 95 parts by weight of polyvinylidene fluoride as a binder 5 parts by weight of 5% by weight N-
A methylpyrrolidone solution was dispersed to form a slurry, and this slurry was applied to a copper foil having a thickness of 18 μm as a negative electrode current collector by a doctor blade method and dried at 100 ° C. to prepare a negative electrode.

【0016】〔非水電解液〕エチレンカーボネート(E
C)とメチルプロピルカーボネート(MPC)との体積
比1:1の混合溶媒に、溶質としてのヘキサフルオロリ
ン酸リチウム(LiPF6 )を1モル/リットル溶かし
て非水電解液を調製した。
[Non-aqueous electrolyte] ethylene carbonate (E
Lithium hexafluorophosphate (LiPF 6 ) as a solute was dissolved at 1 mol / liter in a mixed solvent of C) and methylpropyl carbonate (MPC) at a volume ratio of 1: 1 to prepare a non-aqueous electrolytic solution.

【0017】図1は、組み立てた本発明電池A1の断面
図であり、図示の電池A1は、正極1、負極2、これら
両電極1、2を互いに離間するセパレータ3、正極リー
ド4、負極リード5、正極外部端子6、負極缶7などか
らなる。
FIG. 1 is a cross-sectional view of the assembled battery A1 of the present invention. The battery A1 shown in the drawing is a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes 1, 2 from each other, a positive electrode lead 4, and a negative electrode lead. 5, a positive electrode external terminal 6, a negative electrode can 7 and the like.

【0018】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して渦巻き状に巻き取られた状態で
負極缶7内に収容されており、正極1は正極リード4を
介して正極外部端子6に、また負極2は負極リード5を
介して負極缶7に、それぞれ接続され、電池内部に生じ
た化学エネルギーを正極外部端子6及び負極缶7から電
気エネルギーとして外部へ取り出し得るようになってい
る。
The positive electrode 1 and the negative electrode 2 are housed in the negative electrode can 7 in a state of being spirally wound via the separator 3 impregnated with the non-aqueous electrolyte, and the positive electrode 1 is connected via the positive electrode lead 4. The positive electrode external terminal 6 and the negative electrode 2 are connected to the negative electrode can 7 via the negative electrode lead 5, respectively, so that the chemical energy generated in the battery can be extracted to the outside from the positive electrode external terminal 6 and the negative electrode can 7 as electric energy. It has become.

【0019】(実施例2)エチレンカーボネート(E
C)とメチルイソプロピルカーボネート(MiPC)と
の体積比1:1の混合溶媒に、溶質としてのヘキサフル
オロリン酸リチウムを1モル/リットル溶かして非水電
解液を調製した。電解液としてこの非水電解液を使用し
たこと以外は実施例1と同様にして、本発明電池A2を
組み立てた。
Example 2 Ethylene carbonate (E
A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of lithium hexafluorophosphate as a solute in a mixed solvent of C: and methyl isopropyl carbonate (MiPC) at a volume ratio of 1: 1. A battery A2 of the invention was assembled in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used as the electrolytic solution.

【0020】(実施例3)エチレンカーボネート(E
C)とエチルプロピルカーボネート(EPC)との体積
比1:1の混合溶媒に、溶質としてのヘキサフルオロリ
ン酸リチウムを1モル/リットル溶かして非水電解液を
調製した。電解液としてこの非水電解液を使用したこと
以外は実施例1と同様にして、本発明電池A3を組み立
てた。
(Example 3) Ethylene carbonate (E
A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of lithium hexafluorophosphate as a solute in a mixed solvent of C) and ethylpropyl carbonate (EPC) at a volume ratio of 1: 1. A battery A3 of the invention was assembled in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used as the electrolytic solution.

【0021】(比較例1)エチレンカーボネート(E
C)とジメチルカーボネート(DMC)との体積比1:
1の混合溶媒に、溶質としてのヘキサフルオロリン酸リ
チウムを1モル/リットル溶かして非水電解液を調製し
た。電解液としてこの非水電解液を使用したこと以外は
実施例1と同様にして、比較電池B1を組み立てた。
Comparative Example 1 Ethylene carbonate (E
Volume ratio of C) to dimethyl carbonate (DMC) 1:
Lithium hexafluorophosphate as a solute was dissolved in the mixed solvent of 1 at 1 mol / liter to prepare a non-aqueous electrolytic solution. Comparative battery B1 was assembled in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used as the electrolytic solution.

【0022】(比較例2)エチレンカーボネート(E
C)とジエチルカーボネート(DEC)との体積比1:
1の混合溶媒に、溶質としてのヘキサフルオロリン酸リ
チウムを1モル/リットル溶かして非水電解液を調製し
た。電解液としてこの非水電解液を使用したこと以外は
実施例1と同様にして、比較電池B2を組み立てた。
(Comparative Example 2) Ethylene carbonate (E
Volume ratio of C) to diethyl carbonate (DEC) 1:
Lithium hexafluorophosphate as a solute was dissolved in the mixed solvent of 1 at 1 mol / liter to prepare a non-aqueous electrolytic solution. Comparative battery B2 was assembled in the same manner as in Example 1 except that this nonaqueous electrolytic solution was used as the electrolytic solution.

【0023】〔充電状態で保存した場合の保存特性〕本
発明電池A1〜A3及び比較電池B1,B2を、25°
Cにおいて、60mAで4.1Vまで充電した後、20
0mAで2.75Vまで放電して、各電池の保存しない
場合の放電容量を求めた。
[Storage characteristics when stored in a charged state] The batteries A1 to A3 of the present invention and the comparative batteries B1 and B2 were stored at 25 °
In C, after charging to 4.1V at 60mA, 20
The battery was discharged at 0 mA to 2.75 V, and the discharge capacity of each battery without storage was determined.

【0024】次いで、各電池を、60mAで4.1Vま
で充電し、60°Cの恒温槽に1ヶ月間保存した後、2
00mAで2.75Vまで放電して、各電池の充電状態
で保存した後の放電容量を求めた。結果を表1に示す。
Then, each battery was charged to 4.1 V at 60 mA and stored in a constant temperature bath at 60 ° C. for 1 month, and then 2
The discharge capacity after storage at the state of charge of each battery was obtained by discharging to 2.75 V at 00 mA. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、本発明電池A1〜A3
では、充電状態で保存した後の放電容量が殆ど低下して
いないのに対して、比較電池B1,B2では、充電状態
で保存した後の放電容量が大きく低下している。このこ
とから、エチレンカーボネートと併用する低粘度溶媒と
して、従来のジメチルカーボネートに代えて、メチルプ
ロピルカーボネート、メチルイソプロピルカーボネート
又はエチルプロピルカーボネートを使用することによ
り、負極材料として電解液を分解し易い黒鉛等の炭素材
料を使用した場合でも、充電状態での保存特性に優れた
リチウム二次電池が得られることが分かる。
As shown in Table 1, the batteries A1 to A3 of the present invention.
In contrast, the discharge capacity after storage in the charged state hardly decreased, whereas in the comparative batteries B1 and B2, the discharge capacity after stored in the charged state significantly decreased. From this, as a low-viscosity solvent used in combination with ethylene carbonate, instead of conventional dimethyl carbonate, by using methyl propyl carbonate, methyl isopropyl carbonate or ethyl propyl carbonate, graphite which easily decomposes the electrolytic solution as a negative electrode material, etc. It can be seen that even when the above carbon material is used, a lithium secondary battery having excellent storage characteristics in a charged state can be obtained.

【0027】〔混合溶媒の溶媒比率と充電状態での保存
特性の関係〕 (1)2成分系の混合溶媒 エチレンカーボネートと、メチルプロピルカーボネー
ト、メチルイソプロピルカーボネート又はエチルプロピ
ルカーボネートとの体積比を、100:0、90:1
0、80:20、70:30、60:40、40:6
0、30:70、20:80、10:90又は0:10
0としたこと以外は実施例1と同様にして、溶媒2成分
系の非水電解液を調製した。
[Relationship Between Solvent Ratio of Mixed Solvent and Storage Characteristics in Charge State] (1) Binary Mixed Solvent The volume ratio of ethylene carbonate to methyl propyl carbonate, methyl isopropyl carbonate or ethyl propyl carbonate is 100. : 0, 90: 1
0, 80:20, 70:30, 60:40, 40: 6
0, 30:70, 20:80, 10:90 or 0:10
A solvent two-component non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that the value was 0.

【0028】また、別途、エチレンカーボネートと、ジ
メチルカーボネート又はジエチルカーボネートとの体積
比を、100:0、90:10、80:20、70:3
0、60:40、40:60、30:70、20:8
0、10:90又は0:100としたこと以外は比較例
1と同様にして、溶媒2成分系の非水電解液を調製し
た。
Separately, the volume ratio of ethylene carbonate to dimethyl carbonate or diethyl carbonate is 100: 0, 90:10, 80:20, 70: 3.
0, 60:40, 40:60, 30:70, 20: 8
A solvent two-component nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 1 except that the ratio was 0, 10:90, or 0: 100.

【0029】次いで、電解液としてこれらの各非水電解
液を使用したこと以外は実施例1と同様にして、リチウ
ム二次電池を組み立てた。
Then, a lithium secondary battery was assembled in the same manner as in Example 1 except that each of these nonaqueous electrolytic solutions was used as the electrolytic solution.

【0030】これらの各リチウム二次電池について、先
と同じ条件で保存特性試験を行い、充電状態で60°C
にて1ヶ月間保存した後の放電容量を求めた。結果を図
2に示す。
A storage characteristic test was conducted on each of these lithium secondary batteries under the same conditions as above, and the lithium secondary battery was charged at 60 ° C.
The discharge capacity after storage for 1 month was calculated. The results are shown in Figure 2.

【0031】図2は、混合溶媒の溶媒比率と充電状態で
の保存特性の関係を、縦軸に保存後の放電容量(mA
h)を、また横軸に混合溶媒中のエチレンカーボネート
の比率(体積%)をとって示したグラフである。なお、
図2には、本発明電池A1〜A3及び比較電池B1,B
2の結果も表1より転記して示してある。
FIG. 2 shows the relationship between the solvent ratio of the mixed solvent and the storage characteristics in the charged state, and the vertical axis shows the discharge capacity (mA) after storage.
3 is a graph showing h) and the ratio (volume%) of ethylene carbonate in the mixed solvent on the horizontal axis. In addition,
FIG. 2 shows batteries A1 to A3 of the present invention and comparative batteries B1 and B.
The results of No. 2 are also shown in Table 1 after transcription.

【0032】図2より、エチレンカーボネート30〜7
0体積%と、メチルプロピルカーボネート、メチルイソ
プロピルカーボネート又はエチルプロピルカーボネート
70〜30体積%とからなる混合溶媒を使用した場合
に、充電状態での保存特性に優れたリチウム二次電池が
得られることが分かる。
From FIG. 2, ethylene carbonate 30 to 7
When a mixed solvent of 0% by volume and 70 to 30% by volume of methylpropyl carbonate, methylisopropyl carbonate or ethylpropyl carbonate is used, a lithium secondary battery having excellent storage characteristics in a charged state can be obtained. I understand.

【0033】(2)3成分系の混合溶媒 エチレンカーボネートと、メチルプロピルカーボネート
及びメチルイソプロピルカーボネートとの体積比を、1
00:0、90:10、80:20、70:30、6
0:40、50:50、40:60、30:70、2
0:80、10:90又は0:100としたこと以外は
実施例1と同様にして、溶媒3成分系の非水電解液を調
製した。なお、メチルプロピルカーボネートとメチルイ
ソプロピルカーボネートとの体積比は、全て1:1とし
た。
(2) Three component mixed solvent The volume ratio of ethylene carbonate to methyl propyl carbonate and methyl isopropyl carbonate is 1
00:00, 90:10, 80:20, 70:30, 6
0:40, 50:50, 40:60, 30:70, 2
A solvent three-component nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the ratio was 0:80, 10:90, or 0: 100. The volume ratios of methyl propyl carbonate and methyl isopropyl carbonate were all 1: 1.

【0034】次いで、電解液としてこれらの各非水電解
液を使用したこと以外は実施例1と同様にして、リチウ
ム二次電池を組み立てた。
Then, a lithium secondary battery was assembled in the same manner as in Example 1 except that each of these nonaqueous electrolytic solutions was used as the electrolytic solution.

【0035】これらの各リチウム二次電池について、先
と同じ条件で保存特性試験を行い、充電状態で60°C
にて1ヶ月間保存した後の放電容量を求めた。結果を図
3に示す。
A storage characteristic test was carried out on each of these lithium secondary batteries under the same conditions as above, and at 60 ° C. in a charged state.
The discharge capacity after storage for 1 month was calculated. The results are shown in Fig. 3.

【0036】図3より、エチレンカーボネート30〜7
0体積%と、メチルプロピルカーボネート及びメチルイ
ソプロピルカーボネート70〜30体積%とからなる混
合溶媒を使用した場合に、充電状態での保存特性に優れ
たリチウム二次電池が得られることが分かる。なお、エ
チレンカーボネートとメチルプロピルカーボネート及び
エチルプロピルカーボネートとの3成分系の混合溶媒及
びエチレンカーボネートとメチルイソプロピルカーボネ
ート及びエチルプロピルカーボネートとの3成分系の混
合溶媒についても、エチレンカーボネートの体積比率を
30〜70体積%とした場合に充電状態での保存特性に
優れたリチウム二次電池が得られることを確認した。
From FIG. 3, ethylene carbonate 30 to 7
It can be seen that when a mixed solvent of 0% by volume and 70 to 30% by volume of methyl propyl carbonate and methyl isopropyl carbonate is used, a lithium secondary battery having excellent storage characteristics in a charged state can be obtained. The volume ratio of ethylene carbonate to the mixed solvent of the three-component system of ethylene carbonate, methylpropyl carbonate and ethylpropyl carbonate and the mixed solvent of the three-component system of ethylene carbonate, methylisopropyl carbonate and ethylpropyl carbonate is 30 to 30%. It was confirmed that a lithium secondary battery having excellent storage characteristics in a charged state was obtained when the content was 70% by volume.

【0037】(3)4成分系の混合溶媒 エチレンカーボネートと、メチルプロピルカーボネー
ト、メチルイソプロピルカーボネート及びエチルプロピ
ルカーボネートとの体積比を、100:0、90:1
0、80:20、70:30、60:40、50:5
0、40:60、30:70、20:80、10:90
又は0:100としたこと以外は実施例1と同様にし
て、溶媒3成分系の非水電解液を調製した。なお、メチ
ルプロピルカーボネートとメチルイソプロピルカーボネ
ートとエチルプロピルカーボネートとの体積比は、全て
1:1:1とした。
(3) 4-component mixed solvent The volume ratio of ethylene carbonate to methyl propyl carbonate, methyl isopropyl carbonate and ethyl propyl carbonate is 100: 0 and 90: 1.
0, 80:20, 70:30, 60:40, 50: 5
0, 40:60, 30:70, 20:80, 10:90
Alternatively, a three-component solvent type non-aqueous electrolytic solution was prepared in the same manner as in Example 1 except that the ratio was 0: 100. The volume ratios of methyl propyl carbonate, methyl isopropyl carbonate and ethyl propyl carbonate were all 1: 1: 1.

【0038】次いで、電解液としてこれらの各非水電解
液を使用したこと以外は実施例1と同様にして、リチウ
ム二次電池を組み立てた。
Then, a lithium secondary battery was assembled in the same manner as in Example 1 except that each of these nonaqueous electrolytic solutions was used as the electrolytic solution.

【0039】これらの各リチウム二次電池について、先
と同じ条件で保存特性試験を行い、充電状態で60°C
にて1ヶ月間保存した後の放電容量を求めた。結果を図
4に示す。
A storage characteristic test was carried out on each of these lithium secondary batteries under the same conditions as above, and at 60 ° C. in a charged state.
The discharge capacity after storage for 1 month was calculated. FIG. 4 shows the results.

【0040】図4より、エチレンカーボネート30〜7
0体積%と、メチルプロピルカーボネート、メチルイソ
プロピルカーボネート及びエチルプロピルカーボネート
70〜30体積%とからなる混合溶媒を使用した場合
に、充電状態での保存特性に優れたリチウム二次電池が
得られることが分かる。
From FIG. 4, ethylene carbonate 30 to 7
When a mixed solvent of 0% by volume and 70 to 30% by volume of methyl propyl carbonate, methyl isopropyl carbonate and ethyl propyl carbonate is used, a lithium secondary battery having excellent storage characteristics in a charged state can be obtained. I understand.

【0041】上記実施例では、本発明を円筒型電池に適
用する場合を例に挙げて説明したが、本発明は電池の形
状に特に制限はなく、扁平型、角型など、種々の形状の
リチウム二次電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to a cylindrical battery has been described as an example, but the present invention is not particularly limited in the shape of the battery, and various shapes such as a flat shape and a square shape can be used. It is applicable to a lithium secondary battery.

【0042】[0042]

【発明の効果】エチレンカーボネートと併用する低粘度
溶媒として、負極の炭素材料の表面で分解しにくい特定
の非環状炭酸エステルが所定量使用されているので、本
発明電池は充電状態での保存特性に優れる。
EFFECT OF THE INVENTION As the low-viscosity solvent used in combination with ethylene carbonate, a specific amount of a specific acyclic carbonic acid ester which is hard to decompose on the surface of the carbon material of the negative electrode is used. Excellent in.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てたリチウム二次電池の断面図
である。
FIG. 1 is a cross-sectional view of a lithium secondary battery assembled in an example.

【図2】2成分系混合溶媒中のエチレンカーボネートの
比率と充電状態での保存特性の関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between the ratio of ethylene carbonate in a binary solvent mixture and the storage characteristics in a charged state.

【図3】3成分系混合溶媒中のエチレンカーボネートの
比率と充電状態での保存特性の関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the ratio of ethylene carbonate in a ternary mixed solvent and the storage characteristics in a charged state.

【図4】4成分系混合溶媒中のエチレンカーボネートの
比率と充電状態での保存特性の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the ratio of ethylene carbonate in a four-component mixed solvent and the storage characteristics in a charged state.

【符号の説明】[Explanation of symbols]

A1 円筒型のリチウム二次電池(本発明電池) 1 正極 2 負極 3 セパレータ A1 Cylindrical lithium secondary battery (cell of the present invention) 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幹也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mikiya Yamazaki 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5 Keihan-hondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極と、格子面(002)面に於けるd値
(d002 )が3.35〜3.39Å、且つc軸方向の結
晶子の大きさ(Lc)が50Å以上の炭素材料を電極材
料とする負極と、溶媒及び溶質からなる非水電解液と、
セパレータとを備えるリチウム二次電池において、前記
溶媒が、エチレンカーボネート30〜70体積%と、メ
チルプロピルカーボネート、メチルイソプロピルカーボ
ネート及びエチルプロピルカーボネートよりなる群から
選ばれた少なくとも一種の低粘度溶媒70〜30体積%
とからなる混合溶媒であることを特徴するリチウム二次
電池。
1. A carbon having a positive electrode and a d value (d 002 ) of 3.35 to 3.39Å in the lattice plane (002) plane and a crystallite size (Lc) in the c-axis direction of 50 Å or more. A negative electrode using a material as an electrode material, a non-aqueous electrolyte solution containing a solvent and a solute,
In a lithium secondary battery including a separator, the solvent is ethylene carbonate 30 to 70% by volume, and at least one low-viscosity solvent 70 to 30 selected from the group consisting of methylpropyl carbonate, methylisopropyl carbonate and ethylpropyl carbonate. volume%
A lithium secondary battery, which is a mixed solvent consisting of
【請求項2】前記正極が、リチウム含有マンガン酸化
物、リチウム含有コバルト酸化物、リチウム含有ニッケ
ル酸化物、リチウム含有マンガン・ニッケル複合酸化
物、リチウム含有マンガン・コバルト複合酸化物又はリ
チウム含有ニッケル・コバルト複合酸化物を活物質とす
るものである請求項1記載のリチウム二次電池。
2. The positive electrode comprises a lithium-containing manganese oxide, a lithium-containing cobalt oxide, a lithium-containing nickel oxide, a lithium-containing manganese-nickel composite oxide, a lithium-containing manganese-cobalt composite oxide or a lithium-containing nickel-cobalt. The lithium secondary battery according to claim 1, wherein a composite oxide is used as an active material.
【請求項3】前記溶質が、LiPF6 、LiBF4 、L
iClO4 、LiAsF6 、LiCF3 SO3 又はLi
N(CF3 SO2 2 である請求項1記載のリチウム二
次電池。
3. The solute is LiPF 6 , LiBF 4 , L
iClO 4 , LiAsF 6 , LiCF 3 SO 3 or Li
The lithium secondary battery according to claim 1, which is N (CF 3 SO 2 ) 2 .
JP6334248A 1994-12-16 1994-12-16 Lithium secondary battery Pending JPH08171934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334248A JPH08171934A (en) 1994-12-16 1994-12-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334248A JPH08171934A (en) 1994-12-16 1994-12-16 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08171934A true JPH08171934A (en) 1996-07-02

Family

ID=18275210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334248A Pending JPH08171934A (en) 1994-12-16 1994-12-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08171934A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO1999004447A1 (en) * 1997-07-15 1999-01-28 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cells
US5922494A (en) * 1997-04-14 1999-07-13 Valence Technology, Inc. Stabilized electrolyte for electrochemical cells and batteries
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
WO2000079632A1 (en) * 1999-06-18 2000-12-28 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
KR20190128140A (en) 2016-03-31 2019-11-15 주식회사 엘지화학 Manufacturing method of secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027597A (en) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US5922494A (en) * 1997-04-14 1999-07-13 Valence Technology, Inc. Stabilized electrolyte for electrochemical cells and batteries
WO1999004447A1 (en) * 1997-07-15 1999-01-28 Valence Technology, Inc. Electrolyte solvent for lithium ion electrochemical cells
US5986879A (en) * 1997-12-31 1999-11-16 Covalent Associates Asymmetric organic alkyl ethyl carbonates for non-aqueous power sources
US5994000A (en) * 1997-12-31 1999-11-30 Covalent Associates, Inc. Asymmetric organic alkyl methyl carbonates for non-aqueous power sources
WO2000079632A1 (en) * 1999-06-18 2000-12-28 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
US6919145B1 (en) 1999-06-18 2005-07-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution type secondary battery
KR20190128140A (en) 2016-03-31 2019-11-15 주식회사 엘지화학 Manufacturing method of secondary battery
US11367905B2 (en) 2016-03-31 2022-06-21 Lg Energy Solution, Ltd. Method of preparing secondary battery

Similar Documents

Publication Publication Date Title
JP3685500B2 (en) Nonaqueous electrolyte secondary battery
JP3439085B2 (en) Non-aqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4878683B2 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JPH1069922A (en) Non-aqueous electrolyte lithium secondary battery
JPH0864237A (en) Nonaqueous electrolyte battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP3244389B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JPH05290844A (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPH09147910A (en) Lithium secondary battery
JPH11283667A (en) Lithium ion battery
JPH08171934A (en) Lithium secondary battery
US6620552B2 (en) Lithium secondary battery
JP3188032B2 (en) Lithium secondary battery
JP3016447B2 (en) Non-aqueous electrolyte battery
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2002075460A (en) Lithium secondary cell
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same