JPH0816234A - Device for detecting abnormality of plant - Google Patents
Device for detecting abnormality of plantInfo
- Publication number
- JPH0816234A JPH0816234A JP6146162A JP14616294A JPH0816234A JP H0816234 A JPH0816234 A JP H0816234A JP 6146162 A JP6146162 A JP 6146162A JP 14616294 A JP14616294 A JP 14616294A JP H0816234 A JPH0816234 A JP H0816234A
- Authority
- JP
- Japan
- Prior art keywords
- image
- difference
- picture
- area
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Alarm Systems (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、プラントにおける異常
を自動的に検出する輪郭判定によるプラント異常検出装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plant abnormality detecting apparatus by contour judgment for automatically detecting abnormality in a plant.
【0002】[0002]
【従来の技術】近年、プラントにおける異常を、人間に
よる現場巡回や監視テレビ目視による検出を行ななうこ
となく、画像処理により自動的に検出する装置が種々提
案されている。例えば油漏れ、蒸気漏れ、人間の侵入や
発煙等の異常を検出する場合、異常が発生していない映
像と、異常の発生した映像を比較し、異なっている部分
を検出する手法が用いられる。異常が発生していない状
態の映像は、予め基準映像として記憶されており、検査
時において取り込まれた映像と比較を行なう。基準映像
は、プラントの状態に応じて複数用意され、あるいはプ
ラントの状態変化に追従して自動的に更新される。基準
映像および検査時において取り込まれた映像は、異なっ
ている部分を検出しやすくするためにフィルタやマスク
を通して映像の特徴を強調したり、不要なノイズ部分を
減少させるために数枚分の映像を平均化したりしてい
る。2. Description of the Related Art In recent years, various devices have been proposed for automatically detecting an abnormality in a plant by image processing without the need for a person to visit the site or visually check a surveillance television. For example, when detecting an abnormality such as an oil leak, a steam leak, a human invasion, or smoke generation, a method of comparing a video in which no abnormality has occurred and a video in which abnormality has occurred and detecting a different portion is used. The image in which no abnormality has occurred is stored in advance as a reference image and is compared with the image captured at the time of inspection. A plurality of reference images are prepared according to the state of the plant, or are automatically updated by following changes in the state of the plant. The reference image and the images captured at the time of inspection emphasize the features of the image through filters and masks to make it easier to detect different areas, and several images to reduce unnecessary noise areas. They are averaging.
【0003】従来方式におけるプラント異常検出装置の
例を図11に示す。図11において、10は複数のテレ
ビカメラ又は赤外線カメラで、その映像信号は、カメラ
セレクタ11により選択されてプラント異常検出装置2
1へ送られる。このプラント異常検出装置21には、A
/D変換部22、差分演算部23、画像状態判定部2
4、映像記憶用メモリ25、差分映像記憶用メモリ26
が設けられている。FIG. 11 shows an example of a plant abnormality detecting apparatus in the conventional system. In FIG. 11, reference numeral 10 denotes a plurality of television cameras or infrared cameras, the video signals of which are selected by the camera selector 11 and the plant abnormality detection device 2
Sent to 1. This plant abnormality detection device 21 has A
/ D conversion unit 22, difference calculation unit 23, image state determination unit 2
4, video storage memory 25, differential video storage memory 26
Is provided.
【0004】プラント異常検出装置21は、カメラセレ
クタ11により選択された映像をA/D変換部22でデ
ジタル映像に変換して映像記憶用メモリ25に記憶す
る。この映像記憶用メモリ25には、予め基準映像を記
憶している。この映像記憶用メモリ25に予め記憶され
ている基準映像および検査時において取り込まれた映像
は、差分演算部23において比較され、異なっている部
分の検出が行なわれる。この差分演算部23により求め
た差分映像は、差分映像記憶用メモリ26に記憶され
る。画像状態判定部24は、差分映像記憶用メモリ26
に記憶された差分映像の状態が異常発生の有無を判定
し、異常を検出した際に異常信号を系列制御計算機12
へ出力する。系列制御計算機12は、プラント異常検出
装置1から異常信号が送られてくると警報を発し、異常
が発生したことを監視者に知らせる。The plant abnormality detection device 21 converts the image selected by the camera selector 11 into a digital image by the A / D converter 22 and stores it in the image storage memory 25. The reference image is stored in advance in the image storage memory 25. The reference image stored in advance in the image storage memory 25 and the image captured at the time of inspection are compared in the difference calculation unit 23, and different portions are detected. The difference image obtained by the difference calculation unit 23 is stored in the difference image storage memory 26. The image state determination unit 24 includes a difference video storage memory 26.
Whether the status of the differential image stored in the memory is abnormal or not is determined, and when an abnormality is detected, an abnormal signal is output to the series control computer 12
Output to. When the abnormality signal is sent from the plant abnormality detection device 1, the sequence control computer 12 issues an alarm to notify the supervisor that the abnormality has occurred.
【0005】[0005]
【発明が解決しようとする課題】上記したように従来方
式においては、異常が発生していない通常の状態での映
像を基準画像として差分映像記憶用メモリ26に記憶し
ておき、テレビカメラ10にて取り込んだ映像との差分
映像を2値化し、面積や重心点の移動状態に着目して異
常が発生しているかどうかの判定を行なっている。例え
ば監視領域に煙が発生した場合、差分演算部23から出
力される差分映像には発生した煙の部分が差分となって
現れるので、異常が発生したことを検知できる。As described above, in the conventional system, the image in the normal state in which no abnormality has occurred is stored as the reference image in the differential image storage memory 26, and is stored in the television camera 10. The difference image from the captured image is binarized, and whether or not an abnormality has occurred is determined by focusing on the area and the movement state of the center of gravity. For example, when smoke is generated in the monitoring area, the generated smoke portion appears as a difference in the difference image output from the difference calculation unit 23, so that it is possible to detect that an abnormality has occurred.
【0006】しかし、この方法では人間等の異物が侵入
した場合にも差分映像に差分が現れるため、煙だけを分
離して検知することが困難であった。この難点を解消す
るために差分の時間的な変化を捉え、例えば人間のよう
な異物であれば時とともに移動するが煙は一ケ所から発
生するために全体的な移動は無い、といったような差分
変化の様子で分離判断する方法を用いている。However, with this method, even if a foreign object such as a human invades, a difference appears in the difference image, so that it is difficult to detect only smoke separately. In order to eliminate this difficulty, the change in the difference over time is captured, and if there is a foreign object such as a human, it moves over time, but smoke is generated from one place, so there is no overall difference. It uses a method of making a separation judgment based on the state of change.
【0007】しかし、この方法では人間等の異物侵入と
煙発生の分離判別までにかなりの時間を必要とする上
に、異物が侵入後その場所に留まった場合に煙と誤判断
してしまうことが有り、また、差分が微小な場合には、
時間的な変化を捉えるのが難しいという欠点が有った。However, this method requires a considerable amount of time between the invasion of foreign matter by humans and the separation of smoke generation, and the misjudgment of smoke when the foreign matter stays in its place after invasion. And if the difference is small,
The drawback was that it was difficult to capture changes over time.
【0008】本発明は上記実情に鑑みてなされたもの
で、異常検出時において人間等の異物侵入と煙発生の分
離判別を確実に行ない得ると共に、時間的な処理を不要
として即時分離判断し得るプラント異常検出装置を提供
することを目的とする。The present invention has been made in view of the above-mentioned circumstances, and when an abnormality is detected, it is possible to reliably determine the separation of a foreign substance such as a human being and the smoke generation, and it is possible to perform an immediate separation determination without the need for temporal processing. An object is to provide a plant abnormality detection device.
【0009】また、本発明は、基準映像と取り込み映像
間の差分が微小な場合においても、人間等の異物侵入と
煙の発生を正しく分離判別し得るプラント異常検出装置
を提供することを目的とする。It is another object of the present invention to provide a plant abnormality detecting apparatus capable of correctly separating and discriminating the intrusion of foreign matter such as a human and the generation of smoke even when the difference between the reference image and the captured image is small. To do.
【0010】[0010]
【課題を解決するための手段】本発明は、プラントにお
ける任意の監視場所に設置された監視用カメラによる映
像を取り込んでプラントの異常の有無を検出する異常検
出装置において、上記監視用カメラから出力される映像
をデジタル映像に変換するA/D変換手段と、この手段
を介して取り込んだ映像と異常の発生していない基準映
像との差分映像を求める差分処理手段と、この手段によ
り求めた差分映像の変化がみられる部分に含まれる輪郭
の面積を計測して異常の有無を判定する判定手段とを具
備したことを特徴とする。SUMMARY OF THE INVENTION The present invention is an abnormality detection apparatus for capturing an image from a monitoring camera installed at an arbitrary monitoring place in a plant to detect the presence or absence of an abnormality in the plant, which is output from the monitoring camera. A / D conversion means for converting the image to be converted into a digital image, a difference processing means for obtaining a difference image between the image captured through this means and a reference image having no abnormality, and a difference obtained by this means It is characterized by further comprising a determining means for determining the presence or absence of abnormality by measuring the area of the contour included in the portion where the change of the image is seen.
【0011】また、本発明は、上記判定手段の判定結果
に対して、更に差分映像の面積に対する輪郭面積の含有
率を計測することによって微小変化時における異物侵入
と煙等の発生を分離判別することを特徴とする。Further, according to the present invention, the content of the contour area with respect to the area of the difference image is further measured with respect to the judgment result of the above-mentioned judgment means to separately judge the intrusion of foreign matter and the generation of smoke or the like at the minute change. It is characterized by
【0012】[0012]
【作用】煙と人間等の異物の映像的な特徴の相違点とし
て、煙にははっきりとした輪郭が認められないが、人間
等の異物にははっきりとした輪郭があることが挙げられ
る。差分映像の微分処理を行なった微分画像において値
の大きな部分の面積を輪郭面積とすると、人間等の異物
では輪郭面積が大きく、煙では輪郭面積が小さいので、
この面積を計測することにより煙と人間等の異物を分離
することが可能となる。The difference between the image features of smoke and foreign matter such as human beings is that there is no clear contour in smoke, but there is a clear contour in foreign matter such as humans. When the area of a large value in the differential image obtained by differentiating the difference image is defined as the contour area, the contour area is large for foreign matter such as humans and small for smoke, so
By measuring this area, it is possible to separate smoke and foreign matter such as humans.
【0013】ところが実際には、映像の歪み等より基準
映像と取り込み映像間に差異が少なかった部分でも微分
値が大きくなり面積として現れ、誤検出を起こす。これ
ら不適当な面積を除外し正しく輪郭面積を得るために、
差分映像からノイズ除去を施し2値化後膨張処理を施し
た画像をマスク画像として使用し、マスク画像を通過し
た部分のみを異常判定用の画像として使用する。ここで
行なう膨張処理は、目的部分における輪郭部分は主に差
分映像の境界部分に多く発生するといった現象から目的
部分よりも少し大きい領域を抽出領域とすればよい、と
言った原理に基づき行なっている。こうすることにより
目的部分の輪郭部のみが得られ、この得られた輪郭部の
面積を計測することで煙と人間等の異物を正しく分離検
出することができる。However, in practice, even in a portion where there is little difference between the reference image and the captured image due to image distortion or the like, the differential value becomes large and appears as an area, resulting in erroneous detection. In order to exclude these inappropriate areas and obtain the correct contour area,
An image obtained by performing noise reduction and binarization and expansion processing from the difference image is used as a mask image, and only a portion passing through the mask image is used as an image for abnormality determination. The dilation process performed here is performed based on the principle that a region slightly larger than the target part may be used as the extraction region because the contour part of the target part mainly occurs at the boundary part of the difference image. There is. By doing so, only the contour portion of the target portion is obtained, and by measuring the area of the obtained contour portion, smoke and foreign matter such as a human can be correctly separated and detected.
【0014】異物の侵入がごく僅かであった場合は、上
記の方法で得られる輪郭面積は小さくなり、分離判定が
正しく行なえなくなる場合が発生する。しかし、差分映
像を2値化し求めた差分面積に対する輪郭面積の含有率
を求めることにより、侵入したものが人間等の異物の場
合は輪郭面積の含有率が大きく、煙の場合は輪郭面積の
含有率が小さくなるため、微小変化時における煙と人間
等の異物の分離判定することが可能となる。If the intrusion of foreign matter is very small, the contour area obtained by the above method becomes small, and the separation determination may not be performed correctly. However, by calculating the content rate of the contour area with respect to the difference area obtained by binarizing the difference image, the content rate of the contour area is large when the intruder is a foreign substance such as a human, and the content of the contour area is included when the smoke is Since the rate becomes small, it becomes possible to determine the separation of smoke and foreign matter such as human beings when a minute change occurs.
【0015】[0015]
【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は、本発明によるプラント異常検出装置を
使用して異常検出システムを構築した実施例を示したも
のである。また、図2は、図1における異常検出の処理
動作を示すフローチャートである。図1において、10
はプラント異常を監視する複数台のテレビカメラ(又は
赤外線カメラ)で、その映像出力はカメラセレクタ11
により選択されてラント異常検出装置1へ送られる。プ
ラント異常検出装置1は、A/D変換部2、差分処理部
3、微分処理部4、画像状態判定部5、微小判定部6、
基準画像記憶用メモリ7、差分画像記憶用メモリ8及び
微分画像記憶用メモリ9からなる。上記基準画像記憶用
メモリ7には、予め異常が発生していない状態における
監視対象の映像、例えば図3に示すような基準映像が格
納されている。図3において、13は監視対象装置であ
る。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment in which an abnormality detection system is constructed using the plant abnormality detection device according to the present invention. Further, FIG. 2 is a flowchart showing the processing operation of the abnormality detection in FIG. In FIG. 1, 10
Is a plurality of TV cameras (or infrared cameras) for monitoring plant abnormalities, and its video output is the camera selector 11
And is sent to the runt abnormality detecting device 1. The plant abnormality detection device 1 includes an A / D conversion unit 2, a difference processing unit 3, a differentiation processing unit 4, an image state determination unit 5, a minute determination unit 6,
It comprises a reference image storage memory 7, a difference image storage memory 8 and a differential image storage memory 9. The reference image storage memory 7 stores a video to be monitored in advance in a state where no abnormality has occurred, for example, a reference video as shown in FIG. In FIG. 3, 13 is a device to be monitored.
【0016】上記プラント異常検出装置1の下流側には
系列制御計算機12が接続されており、プラント異常検
出装置1から異常信号が出力されると警報を発する。次
に上記実施例の動作を図2のフローチャートを参照して
説明する。A series control computer 12 is connected to the downstream side of the plant abnormality detection device 1 and issues an alarm when the plant abnormality detection device 1 outputs an abnormality signal. Next, the operation of the above embodiment will be described with reference to the flowchart of FIG.
【0017】プラントの監視領域に対する映像は、テレ
ビカメラ10によって撮影される。このテレビカメラ1
0により撮影された映像は、カメラセレクタ11に集め
られ、必要な映像が1つ選択されてプラント異常検出装
置1に送り出される(ステップA1)。An image of the monitoring area of the plant is taken by the television camera 10. This TV camera 1
The images captured by 0 are collected by the camera selector 11, one required image is selected and sent to the plant abnormality detection device 1 (step A1).
【0018】今、カメラセレクタ11から例えば図4に
示すように人間等の異物14を含む映像がプラント異常
検出装置1に送り出されたとすると、この映像は逐次A
/D変換部2にてデジタル画像に変換される。このデジ
タル化された監視対象の画像は、差分処理部3に送ら
れ、基準画像記憶用メモリ7に格納されている図3に示
した基準画像との差分処理が施される。これにより図5
に示すような人間等の異物部分の差分画像15が求めら
れ、差分画像記憶用メモリ8に記憶される(ステップA
2)。Now, assuming that an image containing a foreign matter 14 such as a human being is sent from the camera selector 11 to the plant abnormality detection apparatus 1 as shown in FIG.
It is converted into a digital image by the / D converter 2. The digitized monitoring target image is sent to the difference processing unit 3 and subjected to difference processing with the reference image shown in FIG. 3 stored in the reference image storage memory 7. As a result,
The difference image 15 of the foreign substance portion such as a person as shown in FIG. 3 is obtained and stored in the difference image storage memory 8 (step A
2).
【0019】そして、画像状態判定部5は、上記差分画
像において、2値化後の面積が大きいか否かを判定し
(ステップA3)、2値化後の面積が大きくなければ、
変化なし(正常)と判定し(ステップA4)、その判定
結果を微小判定部6へ出力する。Then, the image state judging section 5 judges whether or not the area after binarization is large in the difference image (step A3), and if the area after binarization is not large,
It is determined that there is no change (normal) (step A4), and the determination result is output to the minute determination unit 6.
【0020】また、ステップA3において、2値化後の
面積が大きかった場合には異変が有ると判断し、微分処
理部4は、差分画像記憶用メモリ8に記憶された図5に
示すような差分画像に対してノイズ除去を施した後、2
値化後膨張処理を行なって図6に示すような変化部分の
みの2値化膨張画像16を作成する(ステップA6)。
また、差分画像にて値が現れた部分に関して微分処理を
施した図7のような微分画像17を、微分画像記憶用メ
モリ9に記憶する(ステップA7)。更に、ステップA
6,A7の処理結果から変化部分の微分画像を抽出する
(ステップA8)。即ち、正しく輪郭面積を得るために
ノイズ除去及び2値化後膨張処理を施した画像をマスク
画像として使用し、マスク画像を通過した部分のみを異
常判定用の画像として使用する。Further, in step A3, if the area after binarization is large, it is determined that there is an abnormality, and the differential processing section 4 stores the difference image storage memory 8 as shown in FIG. After removing noise from the difference image, 2
After the binarization, the dilation process is performed to create the binarized dilated image 16 of only the changed portion as shown in FIG. 6 (step A6).
Further, the differential image 17 as shown in FIG. 7, which is obtained by performing the differential processing on the portion where the value appears in the differential image, is stored in the differential image storage memory 9 (step A7). Furthermore, step A
A differential image of the changed portion is extracted from the processing results of 6 and A7 (step A8). That is, an image that has been subjected to noise removal and binarization and expansion processing in order to correctly obtain the contour area is used as a mask image, and only a portion that has passed through the mask image is used as an image for abnormality determination.
【0021】ここで、監視領域内に人間等の異物が侵入
した場合、図7に示した微分画像17のように輪郭が明
確に現れ、輪郭面積が大きくなる。ところが、図8のよ
うに煙18が発生した映像の場合、図9に示すように煙
部分の差分画像19が現れるが、はっきりとした輪郭を
持たないため差分を微分した図10のような微分画像2
0には輪郭が現れず、輪郭面積は小さくなる。Here, when a foreign substance such as a human invades the monitoring area, the contour clearly appears as in the differential image 17 shown in FIG. 7, and the contour area becomes large. However, in the case of the image in which the smoke 18 is generated as shown in FIG. 8, the difference image 19 of the smoke portion appears as shown in FIG. 9, but since there is no clear contour, the difference is differentiated as shown in FIG. Image 2
No contour appears at 0, and the contour area becomes small.
【0022】そこで、画像状態判定部5は、微分画像の
2値化画像において輪郭面積が大きいか否かをチェック
し(ステップA9)、輪郭面積が大きい場合には人間等
の異物と判定し(ステップA10)、輪郭面積が小さい
場合には煙が発生したものと仮の判定を行ない(ステッ
プA12)、その判定結果を微小判定部6へ出力する。Therefore, the image state judging unit 5 checks whether or not the contour area in the binary image of the differential image is large (step A9), and if the contour area is large, it is judged as a foreign substance such as a human ( In step A10), if the contour area is small, it is tentatively determined that smoke is generated (step A12), and the determination result is output to the minute determination unit 6.
【0023】この微小判定部6では、ステップA13,
A14からなる輪郭含有率判定モジュールにより、輪郭
含有率を判定処理するが、画像状態判定部5からの判定
が異変無し又は人間等の異物である場合は、そのまま判
定結果を系列制御計算機12へと出力する(ステップA
5,A11)。しかし、煙と判定された場合には、差分
面積と微分面積から輪郭部含有率を算出し(ステップA
13)、輪郭部含有率が予め設定した値より大きいか否
かをチェックし(ステップA14)、輪郭部含有率が大
きい場合には人間等の異物と判定し、この修正した判定
結果を系列制御計算機12へ出力する(ステップA1
1)。また、微小判定部6は、上記輪郭部含有率が小さ
かった場合には煙が発生したものと判定し(ステップA
15)、その判定結果を系列制御計算機12へ出力する
(ステップA16)。In this minute determination section 6, step A13,
The contour content rate determination module composed of A14 determines the contour content rate. However, if the determination from the image state determination unit 5 is that there is no change or a foreign substance such as a human being, the determination result is directly sent to the series control computer 12. Output (Step A
5, A11). However, if it is determined to be smoke, the contour portion content rate is calculated from the difference area and the differential area (step A
13) It is checked whether or not the contour portion content rate is larger than a preset value (step A14). If the contour portion content rate is large, it is determined that the foreign matter is a human or the like, and the corrected determination result is sequence controlled. Output to computer 12 (step A1)
1). Further, the minute determination unit 6 determines that smoke is generated when the above-mentioned content ratio of the contour portion is small (step A
15), and outputs the determination result to the series control computer 12 (step A16).
【0024】異物の侵入がごく僅かであった場合は、上
記の方法で得られる輪郭面積は小さくなり、ステップA
9における分離判定が正確に行なえなくなる場合が発生
する。そこで、ステップA9で輪郭面積が小さいと判断
された場合、煙が発生したものと仮に判定し、その後、
微小判定部6により、差分映像を2値化して求めた差分
面積に対する輪郭面積の含有率を求める。侵入したもの
が人間等の異物の場合は輪郭面積の含有率が大きく、煙
の場合は輪郭面積の含有率が小さいので、微小変化時に
おける煙と人間等の異物を正確に分離判定することが可
能となる。If the intrusion of foreign matter is very small, the contour area obtained by the above method becomes small, and the step A
In some cases, the separation determination in 9 cannot be performed accurately. Therefore, if it is determined in step A9 that the contour area is small, it is temporarily determined that smoke is generated, and then
The minute determination unit 6 obtains the content rate of the contour area with respect to the difference area obtained by binarizing the difference image. If the invaded matter is a foreign substance such as a human being, the content rate of the contour area is large, and if it is smoke, the content rate of the contour area is small. It will be possible.
【0025】[0025]
【発明の効果】以上詳記したように本発明によれば、基
準画像に対し監視画像の変化の有った部分の輪郭の状態
を捉えて異常の判断を行なっているので、人間等の異物
と煙発生の分離を確実に行なうことができ、また、時間
的な処理を不要として即時分離判断することができる。
また、時間的な変化に依存しないので、侵入した人間等
の異物が侵入後その場に留まるようなことが有っても常
に正しく判断することができる。更に、基準映像と取り
込み映像間の差分が微小な場合においても、差分面積に
対する輪郭面積の含有率を求めることにより、人間等の
異物と煙発生を正しく分離判別することができる。As described above in detail, according to the present invention, the abnormality is judged by grasping the state of the contour of the portion where the monitor image has changed with respect to the reference image. The smoke generation can be reliably separated, and the immediate separation determination can be performed without the need for time processing.
Further, since it does not depend on the change over time, it is possible to always make a correct judgment even if a foreign object such as an intruding person stays on the spot after the intrusion. Further, even when the difference between the reference image and the captured image is small, by determining the content rate of the contour area with respect to the difference area, it is possible to correctly separate and discriminate between foreign matter such as human being and smoke generation.
【図1】本発明の一実施例に係るプラント異常検出装置
の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of a plant abnormality detection apparatus according to an embodiment of the present invention.
【図2】同実施例における異常検出のフローチャート。FIG. 2 is a flowchart of abnormality detection in the embodiment.
【図3】判定の基準となる映像を示す概念図。FIG. 3 is a conceptual diagram showing an image serving as a criterion for determination.
【図4】人間等の異物侵入時の映像を示す概念図。FIG. 4 is a conceptual diagram showing an image when a foreign matter such as a human invades.
【図5】人間等の異物侵入時の差分映像を示す概念図。FIG. 5 is a conceptual diagram showing a difference image when a foreign matter such as a human invades.
【図6】人間等の異物侵入時の差分映像を2値化膨張し
た映像を示す概念図。FIG. 6 is a conceptual diagram showing an image obtained by binarizing and expanding a difference image when a foreign matter such as a human intrudes.
【図7】人間等の異物侵入時の輪郭部映像を示す概念
図。FIG. 7 is a conceptual diagram showing a contour image when a foreign matter such as a human invades.
【図8】煙発生時の映像を示す概念図。FIG. 8 is a conceptual diagram showing an image when smoke is generated.
【図9】煙発生時の差分映像を示す概念図。FIG. 9 is a conceptual diagram showing a differential image when smoke is generated.
【図10】煙発生時の輪郭部映像を示す概念図。FIG. 10 is a conceptual diagram showing an outline image when smoke is generated.
【図11】従来方式を使用したプラント異常検出装置の
構成を示すブロック図。FIG. 11 is a block diagram showing the configuration of a plant abnormality detection device using a conventional method.
1 プラント異常検出装置 2 A/D変換部 3 差分処理部 4 微分処理部 5 画像状態判定部 6 微小判定部 7 基準画像記憶用メモリ 8 差分画像記憶用メモリ 9 微分画像記憶用メモリ 10 テレビカメラ又は赤外線カメラ 11 カメラセレクタ 12 系列制御計算機 13 監視対象装置 14 人間等の異物 15 人間等異物部分の差分画像 16 人間等異物部分の差分画像を2値化膨張した画像 17 人間等異物部分の差分画像を微分した画像 18 煙 19 煙部分の差分画像 20 煙部分の差分画像を微分した画像 1 Plant Abnormality Detection Device 2 A / D Conversion Section 3 Difference Processing Section 4 Differentiation Processing Section 5 Image State Determination Section 6 Minute Determination Section 7 Reference Image Storage Memory 8 Difference Image Storage Memory 9 Differential Image Storage Memory 10 Television Camera or Infrared camera 11 Camera selector 12 Sequence control computer 13 Monitoring target device 14 Foreign body such as human being 15 Difference image of foreign body portion such as human 16 Image obtained by binarizing and expanding difference image of foreign body portion such as human being 17 Difference image of foreign body portion such as human being Differentiated image 18 Smoke 19 Difference image of smoke part 20 Image differentiated difference image of smoke part
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G08B 25/00 510 M 0803−2E H04N 7/18 D Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location G08B 25/00 510 M 0803-2E H04N 7/18 D
Claims (2)
された監視用カメラによる映像を取り込んでプラントの
異常の有無を検出する異常検出装置において、上記監視
用カメラから出力される映像をデジタル映像に変換する
A/D変換手段と、この手段を介して取り込んだ映像と
異常の発生していない基準映像との差分映像を求める差
分処理手段と、この手段により求めた差分映像の変化が
みられる部分に含まれる輪郭の面積を計測して異常の有
無を判定する判定手段とを具備したことを特徴とするプ
ラント異常検出装置。1. An abnormality detection device for detecting the presence or absence of abnormality in a plant by capturing an image from a monitoring camera installed at an arbitrary monitoring location in a plant, and converting the image output from the monitoring camera into a digital image. A / D conversion means, a difference processing means for obtaining a difference image between the image captured through this means and a reference image having no abnormality, and a portion where a change in the difference image obtained by this means is seen. A plant abnormality detection apparatus comprising: a determination unit that determines the presence or absence of abnormality by measuring the area of the included contour.
差分映像の面積に対する輪郭面積の含有率を計測するこ
とによって微小変化時における異物侵入と煙等の発生を
分離判別することを特徴とする請求項1記載のプラント
異常検出装置。2. The intrusion of foreign matter and the occurrence of smoke or the like at the time of a minute change are separately determined by measuring the content rate of the contour area with respect to the area of the difference image with respect to the determination result of the determination means. The plant abnormality detection device according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6146162A JPH0816234A (en) | 1994-06-28 | 1994-06-28 | Device for detecting abnormality of plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6146162A JPH0816234A (en) | 1994-06-28 | 1994-06-28 | Device for detecting abnormality of plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0816234A true JPH0816234A (en) | 1996-01-19 |
Family
ID=15401537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6146162A Withdrawn JPH0816234A (en) | 1994-06-28 | 1994-06-28 | Device for detecting abnormality of plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0816234A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001056294A1 (en) * | 2000-01-28 | 2001-08-02 | Adt Services Ag | Closed circuit television system |
KR100659781B1 (en) * | 2005-12-31 | 2006-12-20 | 주식회사 센텍 | Smoke Detecting Method and System using CCD Image |
JP2009165185A (en) * | 2009-04-23 | 2009-07-23 | Mega Chips Corp | Video recording determining apparatus and method |
JP2010218046A (en) * | 2009-03-13 | 2010-09-30 | Nohmi Bosai Ltd | Smoke detection device |
JP2014102737A (en) * | 2012-11-21 | 2014-06-05 | Nohmi Bosai Ltd | Smoke detection device |
CN106991795A (en) * | 2017-05-10 | 2017-07-28 | 克拉玛依油城数据有限公司 | Monitor terminal, system, method and device |
US11188047B2 (en) | 2016-06-08 | 2021-11-30 | Exxonmobil Research And Engineering Company | Automatic visual and acoustic analytics for event detection |
-
1994
- 1994-06-28 JP JP6146162A patent/JPH0816234A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001056294A1 (en) * | 2000-01-28 | 2001-08-02 | Adt Services Ag | Closed circuit television system |
KR100659781B1 (en) * | 2005-12-31 | 2006-12-20 | 주식회사 센텍 | Smoke Detecting Method and System using CCD Image |
JP2010218046A (en) * | 2009-03-13 | 2010-09-30 | Nohmi Bosai Ltd | Smoke detection device |
JP2009165185A (en) * | 2009-04-23 | 2009-07-23 | Mega Chips Corp | Video recording determining apparatus and method |
JP2014102737A (en) * | 2012-11-21 | 2014-06-05 | Nohmi Bosai Ltd | Smoke detection device |
US11188047B2 (en) | 2016-06-08 | 2021-11-30 | Exxonmobil Research And Engineering Company | Automatic visual and acoustic analytics for event detection |
CN106991795A (en) * | 2017-05-10 | 2017-07-28 | 克拉玛依油城数据有限公司 | Monitor terminal, system, method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8200024B2 (en) | Image monitoring system | |
JP2552728B2 (en) | Infrared surveillance system | |
KR101980551B1 (en) | System For Detecting An Action Through Real-Time Intelligent CCTV Image Analysis Using Machine Learning Object Detection And Method For Detecting An Action Through Real-Time Intelligent CCTV Image Analysis Using Machine Learning Object Detection | |
JP5644097B2 (en) | Image processing apparatus, image processing method, and program | |
JPH0950585A (en) | Intruder monitoring device | |
JP2001211466A (en) | Image processing system having self-diagnostic function | |
JPH0816234A (en) | Device for detecting abnormality of plant | |
JP4707019B2 (en) | Video surveillance apparatus and method | |
JPH07254096A (en) | Disaster prevention system | |
JP2010200190A (en) | Video monitoring system | |
JP5710230B2 (en) | Monitoring system and monitoring method | |
JP4302801B2 (en) | Object tracking method and object tracking apparatus | |
JPH0620049A (en) | Intruder identification system | |
JP2659080B2 (en) | Noise removal method for surveillance equipment using infrared image by infrared camera | |
KR101732402B1 (en) | Gait monitoring apparatus by video observation and method of thereof | |
JP2003143593A (en) | Monitor method and system utilizing picture processing | |
JPH08122197A (en) | Method and equipment for detecting leakage by image | |
JPH01236791A (en) | Proximity supervisory equipment | |
JPH04311187A (en) | Method for extracting change area of image to be monitored | |
KR19990066063A (en) | Video surveillance system and its control method | |
JP3402856B2 (en) | Plant abnormality detector | |
JP2503613B2 (en) | Abnormality monitoring device | |
JP3454979B2 (en) | Abnormal state detection method and abnormal state detection device | |
JPH08101979A (en) | Method for detecting abnormality by monitoring camera | |
JPH04200084A (en) | Image monitor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010904 |