[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08162162A - Organic electrolytic battery - Google Patents

Organic electrolytic battery

Info

Publication number
JPH08162162A
JPH08162162A JP6330721A JP33072194A JPH08162162A JP H08162162 A JPH08162162 A JP H08162162A JP 6330721 A JP6330721 A JP 6330721A JP 33072194 A JP33072194 A JP 33072194A JP H08162162 A JPH08162162 A JP H08162162A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
positive electrode
pas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6330721A
Other languages
Japanese (ja)
Other versions
JP2869355B2 (en
Inventor
Nobuo Ando
信雄 安東
Hajime Kinoshita
肇 木下
Masaki Yamaguchi
正起 山口
Yukinori Hadou
之規 羽藤
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP6330721A priority Critical patent/JP2869355B2/en
Publication of JPH08162162A publication Critical patent/JPH08162162A/en
Application granted granted Critical
Publication of JP2869355B2 publication Critical patent/JP2869355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To easily manufacture an organic electrolytic battery with high capacity, high voltage and low internal resistance by using an insoluble and infusible base as a negative electrode and a metal oxide as a positive electrode, properly controlling the Li quantity in the battery and the Li quantity derived from the negative electrode, and properly selecting the carrying method of the Li derived from the negative electrode. CONSTITUTION: This organic electrolytic battery is formed of a positive electrode 1 containing a Li contained-metal oxide (Lix CoO, etc.), a negative electrode 2 which is an insoluble and infusible base (PAS) with polyacene frame structure consisting of the thermally treated material of an aromatic condensed polymer (methylene- bisphenols) and having a H/C atomic ratio of 0.5-0.05, and an electrolyte consisting of an aprotic organic solvent solution of Li salt. To the negative electrode PAS, the total Li quantity contained in the electrode and the Li derived from the negative electrode are set to 500mAh/g or more and 100mAh/g or more, respectively. The Li derived from the negative electrode is supported by negative electrode PAS from the positive electrode Li-contained metal oxide after battery assembling, and after carried by the negative electrode PAS, the Li is supported by the positive electrode 1 by the electrochemical contact with Li.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極にポリアセン系骨
格構造を有する不溶不融性基体、正極に金属酸化物を用
いた、高容量かつ高電圧を有する有機電解質電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electrolyte battery having a high capacity and a high voltage, which uses an insoluble and infusible substrate having a polyacene skeleton structure for a negative electrode and a metal oxide for a positive electrode.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属あるいはリチウム合金
を用いた二次電池がエネルギー密度が高いことから、N
i−Cd電池、鉛電池に代る電池として提案されてい
る。しかし、これら二次電池は繰り返し充放電を行うと
正極、あるいは負極の劣化による容量低下が大きく実用
に問題が残されている。特に負極の劣化はデントライト
と呼ばれるこけ状のリチウム結晶の生成を伴い、充放電
の繰り返しにより終局的にはデントライトがセパレータ
を貫通し、電池内部でショートを引き起こし、場合によ
っては電池が破裂する等、安全面においても問題があっ
た。
2. Description of the Related Art In recent years, secondary batteries using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode have a high energy density.
It has been proposed as an alternative to i-Cd batteries and lead batteries. However, when these secondary batteries are repeatedly charged and discharged, the capacity decreases due to deterioration of the positive electrode or the negative electrode, and a problem remains for practical use. In particular, the deterioration of the negative electrode is accompanied by the generation of moss-like lithium crystals called dendrites, and the dendrites eventually penetrate the separator due to repeated charging and discharging, causing a short circuit inside the battery, and in some cases the battery bursts. There was also a problem in terms of safety.

【0003】近時、上記問題点を解決すべく、グラファ
イト等の炭素材料を負極に用い、正極にLiCoO2
のリチウム含有金属酸化物を用いた電池が提案されてい
る。該電池は、電池組立後、充電する事により正極のリ
チウム含有金属酸化物より負極にリチウムを供給し、更
に放電では負極リチウムを正極に戻すという、いわゆる
ロッキングチェア型電池である。該電池は高電圧、高容
量を特長とするものの、その容量は最大80〜90mA
h/cc(電極、セパレータ、集電材の総体積基準)程
度であり、リチウム電池の特徴である高エネルギ−密度
を得るに至っていない。一方、芳香族系縮合ポリマーの
熱処理物であって水素原子/炭素原子の原子比が0.5
〜0.05であるポリアセン系骨格構造を有する不溶不
融性基体は、一般の炭素材料に比べ大量にリチウムをド
ープする事が可能であるが、該不溶不融性基体を負極、
正極にリチウム含有酸化物を用いた上記ロッキングチェ
ア型の電池を組み立てた場合、炭素材料に比べ高容量が
得られるものの、その容量には不満足な点が残されてい
た。上記問題点を解決する為に、本願と同一の出願人に
係る、特願平5−259403号は未だ未公開ながら、
正極,負極並びに電解液としてリチウム塩の非プロトン
性有機溶媒溶液を備えた有機電解質電池であって、
(1)正極が金属酸化物を含み(2)負極が芳香族系縮
合ポリマーの熱処理物であって水素原子/炭素原子の原
子比が0.5〜0.05であるポリアセン系骨格構造を
有する不溶不融性基体(以下PAS)であり、(3)負
極PASに対し、電池内に含まれる総リチウム量が50
0mAh/g以上であり、かつ負極由来のリチウムが1
00mAh/g以上である事を特徴とする有機電解質電
池が提案されている。該電池は高容量であるものの、円
筒型等の実用電池を組む場合、実用的かつ簡便な負極由
来のリチウムの担持法が求められている。
Recently, in order to solve the above problems, a battery using a carbon material such as graphite for the negative electrode and a lithium-containing metal oxide such as LiCoO 2 for the positive electrode has been proposed. The battery is a so-called rocking chair type battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and the negative electrode lithium is returned to the positive electrode by discharging. Although the battery is characterized by high voltage and high capacity, its capacity is 80 to 90 mA at maximum.
It is about h / cc (based on the total volume of the electrode, the separator, and the current collector), and has not reached the high energy density that is a characteristic of lithium batteries. On the other hand, it is a heat-treated product of an aromatic condensation polymer and has an atomic ratio of hydrogen atoms / carbon atoms of 0.5.
The insoluble infusible substrate having a polyacene skeleton structure of ˜0.05 can be doped with a large amount of lithium as compared with a general carbon material.
When the above-mentioned rocking chair type battery using a lithium-containing oxide for the positive electrode was assembled, a high capacity was obtained as compared with the carbon material, but the capacity was unsatisfactory. In order to solve the above-mentioned problems, Japanese Patent Application No. 5-259403 related to the same applicant as the present application has not been published yet,
An organic electrolyte battery comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution,
(1) The positive electrode contains a metal oxide, (2) the negative electrode is a heat-treated product of an aromatic condensation polymer, and has a polyacene skeleton structure in which the atomic ratio of hydrogen atoms / carbon atoms is 0.5 to 0.05. It is an insoluble and infusible substrate (hereinafter referred to as PAS), and the total amount of lithium contained in the battery is 50 relative to (3) the negative electrode PAS.
0 mAh / g or more, and the lithium derived from the negative electrode is 1
An organic electrolyte battery has been proposed which is characterized in that it is at least 00 mAh / g. Although the battery has a high capacity, a practical and simple method for supporting lithium derived from the negative electrode is required when a practical battery such as a cylindrical battery is assembled.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記問題
点に鑑み、鋭意研究を続けた結果本発明を完成したもの
であって、本発明の目的は高容量かつ高電圧を有する二
次電池を提供するにある。本発明の他の目的は長期に亘
って充放電が可能で、安全性に優れた二次電池を提供す
るにある。本発明の更に他の目的は内部抵抗が低い二次
電池を提供するにある。本発明の更に他の目的は製造が
容易な二次電池を提供するにある。本発明の更に他の目
的は以下の説明から明らかにされよう。
The inventors of the present invention have completed the present invention as a result of intensive research in view of the above problems, and an object of the present invention is to provide a secondary battery having a high capacity and a high voltage. To provide batteries. Another object of the present invention is to provide a secondary battery which can be charged and discharged for a long period of time and is excellent in safety. Still another object of the present invention is to provide a secondary battery having a low internal resistance. Still another object of the present invention is to provide a secondary battery that is easy to manufacture. Still other objects of the present invention will be apparent from the following description.

【0005】[0005]

【課題を解決するための手段】本発明者らは、正極に金
属酸化物、負極にポリアセン系骨格構造を有する不溶不
融性基体を用い、かつ、電池内のリチウム量を適切に制
御すると共に、負極由来の担持法(ドープ法)を選択す
ることにより本発明を完成した。すなわち、本発明は、
正極,負極並びに電解液としてリチウム塩の非プロトン
性有機溶媒溶液を備えた有機電解質電池であって、
(1)正極がリチウム含有金属酸化物を含み(2)負極
が芳香族系縮合ポリマーの熱処理物であって水素原子/
炭素原子の原子比が0.5〜0.05であるポリアセン
系骨格構造を有する不溶不融性基体(PAS)であり、
(3)負極PASに対し、電池内に含まれる総リチウム
量が500mAh/g以上であり、かつ負極由来のリチ
ウムが100mAh/g以上であり負極由来のリチウム
が、電池組立後に正極リチウム含有金属酸化物よりPA
Sに担持されたものであり、かつ正極にはPASにリチ
ウムを供給した後、リチウムとの電気化学的接触により
リチウムを担持させる事を特徴とする有機電解質電池で
ある。
The present inventors have used a metal oxide for a positive electrode, an insoluble and infusible substrate having a polyacene-based skeleton structure for a negative electrode, and appropriately control the amount of lithium in a battery. The present invention was completed by selecting a supporting method (dope method) derived from a negative electrode. That is, the present invention is
An organic electrolyte battery comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution,
(1) The positive electrode contains a lithium-containing metal oxide, and (2) the negative electrode is a heat-treated product of an aromatic condensation polymer containing hydrogen atoms /
An insoluble infusible substrate (PAS) having a polyacene-based skeleton structure in which the atomic ratio of carbon atoms is 0.5 to 0.05,
(3) With respect to the negative electrode PAS, the total amount of lithium contained in the battery is 500 mAh / g or more, and the amount of lithium derived from the negative electrode is 100 mAh / g or more. PA from things
An organic electrolyte battery which is supported on S, and which is characterized in that after positive electrode lithium is supplied to PAS, lithium is supported by electrochemical contact with lithium.

【0006】本発明における芳香族系縮合ポリマーと
は、芳香族炭化水素化合物とアルデヒド類との縮合物で
ある。芳香族炭化水素化合物としては、例えば、フェノ
ール,クレゾール,キシレノール等の如き、いわゆるフ
ェノール類が好適である。例えば、下記式
The aromatic condensation polymer in the present invention is a condensation product of an aromatic hydrocarbon compound and aldehydes. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol and xylenol are suitable. For example, the following formula

【化1】 (ここで、xおよびyはそれぞれ独立に、0、1又は2
である)で表されるメチレン・ビスフェノール類である
ことができ、或いはヒドロキシ・ビフェニル類、ヒドロ
キシナフタレン類であることもできる。これらの内、実
用的にはフェノール類、特にフェノールが好適である。
本発明における芳香族系縮合ポリマ−として、上記のフ
ェノール性水酸基を有する芳香族炭化水素化合物の1部
をフェノール性水酸基を有さない芳香族炭化水素化合
物、例えば、キシレン、トルエン、アニリン等で置換し
た変成芳香族系縮合ポリマー例えばフェノールとキシレ
ンとホルムアルデヒドとの縮合物を用いることもでき、
また、メラミン、尿素で置換した変成芳香族系ポリマー
を用いることもできる。また、フラン樹脂も好適であ
る。また、アルデヒドとしては、ホルムアルデヒド、ア
セトアルデヒド、フルフラール等のアルデヒドを使用す
ることができるが、ホルムアルデヒドが好適である。フ
ェノールホルムアルデヒド縮合物としては、ノボラック
型又はレゾール型或はそれらの混合物のいずれであって
もよい。
Embedded image (Where x and y are each independently 0, 1 or 2
Methylene bisphenols represented by the formula), or hydroxy biphenyls and hydroxynaphthalenes. Of these, phenols, particularly phenol, are practically preferred.
As the aromatic condensation polymer in the present invention, a part of the above aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline and the like. It is also possible to use a modified aromatic condensation polymer such as a condensation product of phenol, xylene and formaldehyde.
Further, a modified aromatic polymer substituted with melamine or urea can also be used. Furan resin is also suitable. Aldehydes such as formaldehyde, acetaldehyde and furfural can be used as the aldehyde, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a mixture thereof.

【0007】本発明における不溶不融性基体は、上記芳
香族系ポリマ−を熱処理する事により得られ、特公平1
−44212号公報、特公平3−24024号公報等に
記載されているポリアセン系骨格構造を有する不溶不融
性基体は全て用いることができ、例えば、次のようにし
て製造することもできる。該芳香族系縮合ポリマ−を、
非酸化性雰囲気下(真空も含む)中で、400°C〜8
00°Cの適当な温度まで徐々に加熱する事により、水
素原子/炭素原子の原子比(以下H/Cと記す)が0.
50〜0.05、好ましくは0.35〜0.10の不溶
不融性基体を得ることができる。また、特公平3−24
024号公報等に記載されている方法で、600m2
g以上のBET法による比表面積を有する不溶不融性基
体を得ることもできる。例えば、芳香族系縮合ポリマー
の初期縮合物と無機塩、例えば塩化亜鉛を含む溶液を調
製し、該溶液を加熱して型内で硬化する。かくして得ら
れた硬化体を、非酸化性雰囲気化(真空も含む)中で、
350°C〜800°Cの温度まで、好ましくは400
°C〜750°Cの適当な温度まで徐々に加熱した後、
水あるいは希塩酸等によって充分に洗浄することによ
り、上記H/Cを有し、かつ、例えば600m2 /g以
上のBET法による比表面積を有する不溶不融性基体を
得ることもできる。
The insoluble and infusible substrate in the present invention is obtained by heat-treating the above aromatic polymer.
All of the insoluble and infusible substrates having a polyacene-based skeleton structure described in JP-A-44212, JP-B-3-24024, etc. can be used. For example, they can be produced as follows. The aromatic condensation polymer is
400 ° C to 8 in a non-oxidizing atmosphere (including vacuum)
By gradually heating to an appropriate temperature of 00 ° C, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as H / C) is 0.
It is possible to obtain an insoluble and infusible substrate of 50 to 0.05, preferably 0.35 to 0.10. In addition, Japanese Examined Patent Publication 3-24
In the method described in Japanese Patent No. 024, etc., 600 m 2 /
It is also possible to obtain an insoluble and infusible substrate having a BET specific surface area of g or more. For example, a solution containing an initial condensation product of an aromatic condensation polymer and an inorganic salt such as zinc chloride is prepared, and the solution is heated and cured in a mold. The cured product thus obtained is subjected to a non-oxidizing atmosphere (including vacuum),
Up to a temperature of 350 ° C to 800 ° C, preferably 400
After gradually heating to an appropriate temperature of ° C to 750 ° C,
By sufficiently washing with water or dilute hydrochloric acid, an insoluble infusible substrate having the above H / C and having a specific surface area by the BET method of, for example, 600 m 2 / g or more can be obtained.

【0008】本発明に用いる不溶不融性基体は、X線回
折(CuKα)によれば、メイン・ピークの位置は2θ
で表して24°以下に存在し、また該メイン・ピークの
他に41〜46°の間にブロードな他のピークが存在す
る。すなわち、上記不溶不融性基体は芳香族系多環構造
が適度に発達したポリアセン系骨格構造を有し、かつア
モルファス構造をとると示唆され、リチウムを安定にド
ーピングできることから電池用活物質として有用であ
る。H/Cが0.50を越える場合、芳香族系多環構造
が充分に発達していないため、リチウムのドーピング、
脱ドーピングがスムーズに行うことができず、電池を組
んだ時、充放電効率が低下する。また、H/Cが0.0
5以下の場合、本発明の電池の容量が低下し好ましくな
い。
The insoluble and infusible substrate used in the present invention has a main peak position of 2θ according to X-ray diffraction (CuKα).
In addition to the main peak, there is another broad peak between 41 and 46 °. That is, it is suggested that the insoluble and infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, and that it has an amorphous structure, which is useful as a battery active material because it can be stably doped with lithium. Is. When H / C exceeds 0.50, the aromatic polycyclic structure is not sufficiently developed, and therefore lithium doping,
Dedoping cannot be performed smoothly, and the charge / discharge efficiency decreases when the battery is assembled. Also, H / C is 0.0
When it is 5 or less, the capacity of the battery of the present invention decreases, which is not preferable.

【0009】本発明の負極は上記不溶不融性基体(以下
PAS)より成り、粉末状、粒状、短繊維状等の成形し
やすい形状にあるPASをバインダーで成形したもので
ある。バインダーとしては、ポリ四フッ化エチレン、ポ
リフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレ
ン、ポリエチレン等の熱可塑性樹脂がを用いる事ができ
るが、好ましくフッ素系バインダ−が好ましく、更には
フッ素原子/炭素原子の原子比(以下、F/Cと記す)
が1.5未満0.75以上であるフッ素系バインダーが
好ましく、特に、1.3未満0.75以上のフッ素系バ
インダーが好ましい。上記フッ素系バインダーとして
は、例えば、ポリフッ化ビニリデン、フッ化ビニリデン
−3フッ化エチレン共重合体、エチレン−4フッ化エチ
レン共重合体、プロピレン−4フッ化エチレン共重合体
等が挙げられ、更に主鎖の水素をアルキル基で置換した
含フッ素系ポリマ−も用いることできる。ポリフッ化ビ
ニリデンの場合、F/Cは1であり、フッ化ビニリデン
−3フッ化エチレン共重合体の場合、フッ化ビニリデン
のモル分率が50%の時、80%の時それぞれF/Cは
1.25、1.1となり、更にプロピレン−4フッ化エ
チレン共重合体の場合、プロピレンのモル分率が50%
の時、F/Cは0.75となる。中でも、ポリフッ化ビ
ニリデン、フッ化ビニリデンのモル分率が50%以上の
フッ化ビニリデン−3フッ化エチレン共重合体が好まし
く、実用的にはポリフッ化ビニリデンが好ましい。これ
らバインダーを用いた場合、PASの有するリチウムの
ドープ能(容量)を充分に利用することができる。
The negative electrode of the present invention comprises the above-mentioned insoluble and infusible substrate (hereinafter referred to as PAS), and is formed from a PAS having a shape such as powder, granules, short fibers, etc., which can be easily molded, with a binder. As the binder, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, a thermoplastic resin such as polypropylene or polyethylene can be used, but a fluorine-based binder is preferable, and a fluorine atom / carbon is more preferable. Atomic ratio of atoms (hereinafter referred to as F / C)
Is preferably less than 1.5 and 0.75 or more, and particularly preferably less than 1.3 and 0.75 or more. Examples of the above-mentioned fluorine-based binder include polyvinylidene fluoride, vinylidene fluoride-3 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, propylene-4 fluoroethylene copolymer, and the like. A fluorine-containing polymer in which hydrogen in the main chain is replaced with an alkyl group can also be used. In the case of polyvinylidene fluoride, the F / C is 1, and in the case of vinylidene fluoride-3 fluoroethylene copolymer, the F / C is 50% and 50%, respectively, when the vinylidene fluoride mole fraction is 50%. 1.25 and 1.1, and in the case of propylene-4 fluoroethylene copolymer, the propylene mole fraction is 50%.
At that time, the F / C is 0.75. Among them, polyvinylidene fluoride and a vinylidene fluoride-3 fluoroethylene copolymer having a molar fraction of vinylidene fluoride of 50% or more are preferable, and polyvinylidene fluoride is practically preferable. When these binders are used, the dope capacity (capacity) of lithium that PAS has can be fully utilized.

【0010】本発明の有機電解質電池の正極としては、
LiX CoO2 、 LiX NiO2 、LiX MnO2 、L
X FeO2 等のLiX y Z (Mは金属、二種以上
の金属でも良い)の一般式で表され得る、リチウムを電
気化学的にドープ、脱ドープが可能なリチウム含有金属
酸化物を用いる。特にリチウム金属に対し4V以上の電
圧を有するリチウム含有酸化物が好ましい。中でも、リ
チウム含有コバルト酸化物、リチウム含有ニッケル酸化
物が好ましい。本発明における正極は、上記活物質、及
び必要に応じて導電材、バインダーを加え成形したもの
であり、導電材、バインダーの種類、組成等は適宜設定
すればよい。
As the positive electrode of the organic electrolyte battery of the present invention,
Li X CoO 2, Li X NiO 2, Li X MnO 2 , L
i X FeO 2, etc. Li X M y O Z (M is a metal, may also be in two or more metals) may be represented by the general formula, electrochemically doped, de-doped Lithium-containing metal oxide of lithium Use things. Particularly, a lithium-containing oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Of these, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable. The positive electrode in the present invention is formed by adding the above active material and, if necessary, a conductive material and a binder, and the kind and composition of the conductive material and the binder may be appropriately set.

【0011】導電剤の種類は、金属ニッケル等の金属粉
末でもよいが、例えば、活性炭、カーボンブラック、ア
セチレンブラック、黒鉛等の炭素系のものが特に好まし
い。混合比は活物質の電気伝導度、電極形状等により異
なるが、活物質に対して2〜40%加えるのが適当であ
る。また、バインダーの種類は、後述の本発明にて用い
る電解液に不溶のものであればよく、例えば、SBR等
のゴム系バインダー、ポリ四フッ化エチレン、ポリフッ
化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポ
リエチレン等の熱可塑性樹脂が好ましく、その混合比は
20%以下とするのが好ましい。
The kind of the conductive agent may be a metal powder such as metallic nickel, but carbon-based ones such as activated carbon, carbon black, acetylene black and graphite are particularly preferable. The mixing ratio varies depending on the electric conductivity of the active material, the shape of the electrode, etc., but it is appropriate to add 2 to 40% to the active material. Further, the kind of binder may be one that is insoluble in the electrolytic solution used in the present invention described later, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, Thermoplastic resins such as polypropylene and polyethylene are preferable, and the mixing ratio thereof is preferably 20% or less.

【0012】本発明に用いる正極、負極の電極形状は、
目的とする電池により、板状、フィルム状、円柱状、あ
るいは、金属箔上に成形するなど、種々の形状をとるこ
とが出来る。特に、金属箔上に成形したものは集電体一
体電極として、種々の電池に応用できることから好まし
い。
The shape of the positive and negative electrodes used in the present invention is as follows:
Depending on the intended battery, various shapes such as a plate shape, a film shape, a column shape, or molding on a metal foil can be adopted. In particular, the one formed on a metal foil is preferable as it can be applied to various batteries as a collector-integrated electrode.

【0013】本発明の電池は、上記PASを負極に用
い、かつ電池内に含まれるリチウム量を適切に制御する
事により従来の電池に比べ、容量を大幅に向上すること
ができる。本発明において電池内の総リチウム量とは正
極由来のリチウム、電解液由来のリチウム、負極由来の
リチウムの総計である。正極由来のリチウムとは、(電
池組立時正極に含まれるリチウム)+(リチウム源より
正極に供給されたリチウム)−(負極に供給されたリチ
ウム)である。また、電解液由来のリチウムとは、セパ
レータ、正極、負極等に含まれる電解液中のリチウムで
ある。また、負極由来のリチウムとは、本発明の負極P
ASに、電池完成前に、正極からの供給により担持され
ているリチウムである(正極由来のリチウム、電解液由
来のリチウム以外のリチウムである)。本発明におい
て、負極由来のリチウムは、電池組立後に正極リチウム
含有金属酸化物より負極PASに担持される。具体的に
は、例えば、円筒型電池を組む場合、正極と負極をセパ
レーターを介して、巻き取った後、電気化学的に正極リ
チウム含有酸化物より負極PASに下記に記載の範囲の
所定量のリチウムを担持させる。その後、正極には負極
PASにリチウムを供給した後、リチウムとの電気化学
的接触によりリチウムを担持させる。この時の、リチウ
ム量は、正極単独の充放電効率等を考慮して決定される
が、負極由来のリチウム量相当、あるいは負極由来のリ
チウム量より少なくすることが、好ましい。この負極由
来のリチウムを担持させる一連の操作は、一回で行って
もよいが、数回の繰り返しの操作により行ってもよい。
本発明において、正極リチウム含有酸化物にリチウムと
の電気化学的接触によりリチウムを担持させる事が終了
したとき、電池完成とする。負極リチウムの担持方法と
しては、電池組立前に担持させる、すなわち、あらかじ
め負極PASに所定のリチウムを担持させた後、電池を
組み立てる方法もあるが、電池生産において、その工程
が煩雑になる事から、好ましくない。
The battery of the present invention can be remarkably improved in capacity as compared with a conventional battery by using the above PAS as a negative electrode and appropriately controlling the amount of lithium contained in the battery. In the present invention, the total amount of lithium in the battery is the total amount of lithium derived from the positive electrode, lithium derived from the electrolytic solution, and lithium derived from the negative electrode. The lithium derived from the positive electrode is (lithium contained in the positive electrode during battery assembly) + (lithium supplied to the positive electrode from the lithium source) − (lithium supplied to the negative electrode). Further, the lithium derived from the electrolytic solution is lithium in the electrolytic solution contained in the separator, the positive electrode, the negative electrode, and the like. The lithium derived from the negative electrode means the negative electrode P of the present invention.
It is lithium carried by the supply from the positive electrode on the AS before the battery is completed (lithium derived from the positive electrode and lithium other than lithium derived from the electrolytic solution). In the present invention, the lithium derived from the negative electrode is supported on the negative electrode PAS from the positive electrode lithium-containing metal oxide after the battery is assembled. Specifically, for example, when assembling a cylindrical battery, after winding the positive electrode and the negative electrode via a separator, the negative electrode PAS is electrochemically converted from the positive electrode lithium-containing oxide into a predetermined amount within the range described below. Support lithium. Then, after supplying lithium to the negative electrode PAS for the positive electrode, lithium is supported by electrochemical contact with lithium. At this time, the amount of lithium is determined in consideration of the charge / discharge efficiency of the positive electrode alone, but it is preferable that the amount of lithium is equivalent to the amount of lithium derived from the negative electrode or smaller than the amount of lithium derived from the negative electrode. The series of operations for supporting lithium derived from the negative electrode may be performed once, or may be repeated several times.
In the present invention, when the supporting of lithium on the positive electrode lithium-containing oxide by electrochemical contact with lithium is completed, the battery is completed. As a method of supporting the negative electrode lithium, there is a method of supporting before the battery is assembled, that is, a method of preliminarily supporting the predetermined lithium on the negative electrode PAS and then assembling the battery, but since the process becomes complicated in the battery production. , Not preferable.

【0014】本発明において電池内の総リチウム量は、
負極PASに対し500mAh/g以上,好ましくは6
00mAh/g以上であり、500mAh/g未満の場
合、容量が充分に得られない。また、本発明における負
極由来のリチウムは負極PASに対し100mAh/g
以上、好ましくは150mAh/g以上であり、100
mAh/g未満の場合、たとえ総リチウム量が負極PA
Sに対し500mAh/g以上であったとしても充分な
容量が得られない。また、正極にリチウム含有酸化物を
用いる場合においては、負極由来のリチウムは負極PA
Sに対し600mAh/g以下にすることが、実用的で
ある。本発明における正極由来のリチウム、電解液由来
のリチウムは上記条件を満たしていればよいが、正極由
来のリチウムが負極PASに対し300mAh/g以上
であることが好ましい。
In the present invention, the total amount of lithium in the battery is
500 mAh / g or more, preferably 6 with respect to the negative electrode PAS
When the amount is 00 mAh / g or more and less than 500 mAh / g, sufficient capacity cannot be obtained. Further, the lithium derived from the negative electrode in the present invention is 100 mAh / g with respect to the negative electrode PAS.
Or more, preferably 150 mAh / g or more, and 100
If it is less than mAh / g, the total amount of lithium is negative electrode PA.
Even if it is 500 mAh / g or more with respect to S, a sufficient capacity cannot be obtained. Further, when a lithium-containing oxide is used for the positive electrode, the lithium derived from the negative electrode is the negative electrode PA.
It is practical to set S to 600 mAh / g or less. The lithium derived from the positive electrode and the lithium derived from the electrolytic solution in the present invention may satisfy the above conditions, but the lithium derived from the positive electrode is preferably 300 mAh / g or more based on the negative electrode PAS.

【0015】本発明に用いる電解液を構成する溶媒とし
ては非プロトン性有機溶媒が用いられる。非プロトン性
有機溶媒としては、例えば、エチレンカーボネイト、プ
ロピレンカーボネイト、ジメチルカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、アセトニトリ
ル、ジメトキシエタン、テトラヒドロフラン、ジオキソ
ラン、塩化メチレン、スルホラン等が挙げられ、更に、
これら非プロトン性有機溶媒の二種以上の混合液も用い
ることができる。
An aprotic organic solvent is used as a solvent constituting the electrolytic solution used in the present invention. Examples of the aprotic organic solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, and the like.
Mixtures of two or more of these aprotic organic solvents can also be used.

【0016】また、上記の混合又は単一の溶媒に溶解さ
せる電解質は、リチウムイオンを生成しうる電解質のい
ずれでも良い。このような電解質としては、例えばLi
I、LiClO4 、LiAsF6 、LiBF4 、LiP
6 、又はLiHF2 等が挙げられる。上記の電解質及
び溶媒は充分に脱水された状態で混合され、電解液とす
るのであるが、電解液中の電解質の濃度は電解液による
内部抵抗を小さくするため少なくとも0.1モル/l以
上とするのが好ましく、通常0.2〜1.5モル/lと
するのが更に好ましい。
The electrolyte mixed or dissolved in a single solvent may be any electrolyte capable of producing lithium ions. As such an electrolyte, for example, Li
I, LiClO 4 , LiAsF 6 , LiBF 4 , LiP
F 6 or LiHF 2 may, for example, be mentioned. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / l or more in order to reduce the internal resistance of the electrolytic solution. It is preferable that the amount is usually 0.2 to 1.5 mol / l.

【0017】電池外部に電流を取り出すための集電体、
あるいはリード端子としては、例えば、炭素、白金、ニ
ッケル、ステンレス、アルミニウム、銅等を用いること
が出来、箔状、ネット状の集電体を用いる場合、電極を
集電体上に成形することにより集電体一体型電極として
用いることもできる。
A current collector for extracting a current to the outside of the battery,
Alternatively, for the lead terminal, for example, carbon, platinum, nickel, stainless steel, aluminum, copper or the like can be used. When a foil-shaped or net-shaped current collector is used, by forming the electrode on the current collector, It can also be used as a collector-integrated electrode.

【0018】次に図面により本発明の実施態様の一例を
説明する。図1は本発明に係る電池の基本構成説明図で
ある。図1において、(1)は正極であり、(2)は負
極である。(3),(3′)は集電体であり、各電極及
び外部端子(7),(7′)に電圧降下を生じないよう
に接続されている。(4)は電解液であり、ドーピング
されうるイオンを生成し得る前述の化合物が非プロトン
性有機溶媒に溶解されている。電解液は通常液状である
が漏液を防止するためゲル状又は固体状にして用いるこ
ともできる。(5)は正負両極の接触を阻止する事及び
電解液を保持する事を目的として配置されたセパレータ
ーである。
Next, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the basic configuration of a battery according to the present invention. In FIG. 1, (1) is a positive electrode and (2) is a negative electrode. Current collectors (3) and (3 ') are connected to the electrodes and the external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution in which the above-mentioned compound capable of generating a dopable ion is dissolved in an aprotic organic solvent. The electrolytic solution is usually liquid, but it may be used in the form of gel or solid to prevent liquid leakage. (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution.

【0019】該セパレーターは、電解液或は電極活物質
等に対し、耐久性のある連通気孔を有する電子伝導性の
ない多孔体であり、通常ガラス繊維、ポリエチレン或は
ポリプロピレン等からなる布、不織布或は多孔体が用い
られる。好ましくは、3次元的な孔を有するセパレ−タ
であり、リチウム担持時間が短くなる効果が得られる。
セパレータの厚さは電池の内部抵抗を小さくするため薄
い方が好ましいが、電解液の保持量、流通性、強度等を
勘案して決定される。正負極及びセパレータは電池ケー
ス(6)内に実用上問題が生じないように固定される。
電極の形状、大きさ等は目的とする電池の形状、性能に
より適宜決められる。本発明の電池形状は上記基本構成
を満足する、コイン型、円筒型、角形、箱型等が挙げら
れ、その形状は特に限定されない。
The separator is a porous body having no continuous electron-permeation holes, which has durability to the electrolytic solution or the electrode active material, and is usually a cloth or non-woven fabric made of glass fiber, polyethylene or polypropylene. Alternatively, a porous body is used. A separator having three-dimensional pores is preferable, and the effect of shortening the lithium carrying time can be obtained.
The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of retained electrolyte, flowability, strength, and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem.
The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery. Examples of the battery shape of the present invention include a coin shape, a cylinder shape, a square shape, and a box shape, which satisfy the above basic configuration, and the shape thereof is not particularly limited.

【0020】[0020]

【発明の効果】本発明の有機電解質電池は、負極にPA
S、正極に金属酸化物を用い、かつ電池内のリチウム
量、負極PAS由来のリチウム量の両者を適切に制御
し、かつ、負極PAS由来のリチウムの担持方法を適切
に選択することにより、高容量、高電圧かつ低内部抵抗
の電池であり、また、製造も容易な電池である。以下、
実施例を挙げて本発明を具体的に説明する。
INDUSTRIAL APPLICABILITY The organic electrolyte battery of the present invention uses PA as the negative electrode.
S, a metal oxide is used for the positive electrode, both the amount of lithium in the battery and the amount of lithium derived from the negative electrode PAS are appropriately controlled, and a method for supporting lithium derived from the negative electrode PAS is appropriately selected to achieve high It is a battery with high capacity, high voltage and low internal resistance, and is also easy to manufacture. Less than,
The present invention will be specifically described with reference to examples.

【0021】[0021]

【実施例】【Example】

実施例1 厚さ0.5mmのフェノール樹脂成形板をシリコニット
電気炉中に入れ窒素雰囲気下で10℃/時間の速度で昇
温し、650℃まで熱処理し、不溶不融性基体(PAS
と記す)を合成した。かくして得られたPAS板をディ
スクミルで粉砕することにより平均粒径約15μmのP
AS粉体を得た。H/C比は0.22であった。次に上
記PAS粉末100重量部と、ポリフッ化ビニリデン粉
末10重量部をN,N−ジメチルホルムアミド90重量
部に溶解した溶液100重量部とを充分に混合する事に
よりスラリーを得た。該スラリーをアプリケーターを用
い厚さ10μmの銅箔(負極集電体)上の片面に塗布
し、乾燥、プレスし、厚さ100μmのPAS負極を得
た。LiCoO2 100部、グラファイト5部対し、ポ
リフッ化ビニリデン粉末10重量部、、N,N−ジメチ
ルホルムアミド90重量部に溶解した溶液50重量部を
充分に混合する事によりスラリーを得た。該スラリーを
アプリケーターを用い厚さ20μmのアルミ箔(正極集
電体)上の片面に塗布し、乾燥、プレスし、厚さ115
μmの正極1を得た。
Example 1 A phenol resin molded plate having a thickness of 0.5 mm was placed in a silicon knit electric furnace, heated at a rate of 10 ° C./hour in a nitrogen atmosphere, and heat-treated to 650 ° C. to obtain an insoluble infusible substrate (PAS).
Was described) was synthesized. The PAS plate thus obtained was crushed by a disk mill to obtain P having an average particle size of about 15 μm.
AS powder was obtained. The H / C ratio was 0.22. Next, 100 parts by weight of the PAS powder and 100 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry was applied to one surface of a copper foil (negative electrode current collector) having a thickness of 10 μm using an applicator, dried and pressed to obtain a PAS negative electrode having a thickness of 100 μm. A slurry was obtained by thoroughly mixing 100 parts of LiCoO 2 and 5 parts of graphite, 10 parts by weight of polyvinylidene fluoride powder, and 50 parts by weight of a solution prepared by dissolving 90 parts by weight of N, N-dimethylformamide. The slurry was applied to one surface of an aluminum foil (positive electrode current collector) having a thickness of 20 μm using an applicator, dried, pressed, and formed to a thickness of 115.
A positive electrode 1 of μm was obtained.

【0022】上記負極と正極1をセパレータを介して対
向させ図1のような電池を組んだ。正極及び負極のサイ
ズはいずれも5×3cm2 とした。セパレーターとして
は、厚さ25μmのポリプロピレン製を用いた。また電
解液としてはプロピレンカーボネートとジエチルカーボ
ネ−トの1:1(重量比)混合液に、1モル/lの濃度
にLiPF6 を溶解した溶液を用いた。上記電池に0.
25mA/cm2 の定電流にて、負極PASに対して3
30mAh/gに相当する電気量を通じ、負極PASに
330mAh/gのリチウムを正極よりドーピングし
た。続いて、電極ユニットの断面方向にリチウム金属を
配置し、該リチウム金属と正極の間に0.02mA/c
2 の定電流により負極PASに対して315mAh/
gに相当する電気量を通じ、正極にリチウムを担持させ
た。電池内の負極PASに対する総リチウム量は、11
30mAh/gであった。電池完成に要した時間は10
日であった。上記電池に0.25mA/cm2 の定電流
で電池電圧が4.3Vになるまで充電し、続いて0.2
5mA/cm2 の定電流で電池電圧が2.5Vになるま
で放電した。この4.3V−2.5Vのサイクルを繰り
返し、3回目の放電において、体積容量(mAh/c
c)にて評価した。体積基準としては、電極体積、セパ
レータ体積、集電体体積の総計を用いた。結果を表1に
示す。
A battery as shown in FIG. 1 was assembled with the negative electrode and the positive electrode 1 facing each other with a separator interposed therebetween. The size of each of the positive electrode and the negative electrode was 5 × 3 cm 2 . As the separator, a polypropylene product having a thickness of 25 μm was used. As the electrolytic solution, a solution prepared by dissolving LiPF 6 at a concentration of 1 mol / l in a 1: 1 (weight ratio) mixed solution of propylene carbonate and diethyl carbonate was used. 0.
3 against negative electrode PAS at a constant current of 25 mA / cm 2.
The negative electrode PAS was doped with 330 mAh / g of lithium from the positive electrode through an amount of electricity corresponding to 30 mAh / g. Subsequently, lithium metal was arranged in the cross-sectional direction of the electrode unit, and 0.02 mA / c was provided between the lithium metal and the positive electrode.
315 mAh / with respect to the negative electrode PAS by the constant current of m 2.
Through the amount of electricity corresponding to g, lithium was supported on the positive electrode. The total amount of lithium with respect to the negative electrode PAS in the battery is 11
It was 30 mAh / g. 10 hours to complete the battery
It was a day. The above battery was charged with a constant current of 0.25 mA / cm 2 until the battery voltage reached 4.3 V, and then 0.2
It was discharged at a constant current of 5 mA / cm 2 until the battery voltage reached 2.5V. This 4.3 V-2.5 V cycle was repeated, and in the third discharge, the volume capacity (mAh / c
It was evaluated in c). As the volume reference, the total of the electrode volume, the separator volume, and the current collector volume was used. The results are shown in Table 1.

【0023】実施例2 実施例1と同様に電池を組み、正極1から負極PASへ
330mAh/gのリチウムを同様にドーピングした。
続いて、実施例1と同様に電極ユニットの断面方向にリ
チウム金属を配置し、リチウム金属と正極の間に2Vの
電圧を印加し、負極PASに対して315mAh/gに
相当する電気量を通じ、正極にリチウムを担持させ実施
例1と同様に体積容量を評価した。電池完成後の電池内
の負極PASに対する総リチウム量は、1130mAh
/gであった。電池完成に要した時間は15日であっ
た。結果を表1に示す。 実施例3 実施例1において、正極1のサイズを5×43cm2
負極のサイズを5×48cm2 とした。正極端子として
は厚さ150μm、幅5mmのアルミニウム端子、負極
端子としては正極と同サイズのニッケルを用い、それぞ
れ、電極の端(幅5cmの側)にとりつけた。正極1と
負極をセパレータを介して渦巻き状に巻き取り、円筒状
の電池を組んだ。実施例1と同様にして正極から負極P
ASへ330mAh/gのリチウムをドーピングした。
続いて、実施例1と同様に電池系外のリチウム金属と正
極の間に0.02mA/cm2 の定電流により負極PA
Sに対して315mAh/gに相当する電気量を通じ、
正極にリチウムを担持させた。電池内の負極PASに対
する総リチウム量は、1130mAh/gであった。電
池完成に要した時間は11日であった。結果を表1に示
す。
Example 2 A battery was assembled in the same manner as in Example 1 and the positive electrode 1 and the negative electrode PAS were similarly doped with 330 mAh / g of lithium.
Subsequently, as in Example 1, lithium metal was arranged in the cross-sectional direction of the electrode unit, a voltage of 2 V was applied between the lithium metal and the positive electrode, and an electric quantity equivalent to 315 mAh / g was applied to the negative electrode PAS, Lithium was supported on the positive electrode, and the volume capacity was evaluated in the same manner as in Example 1. The total amount of lithium with respect to the negative electrode PAS in the battery after completion of the battery is 1130 mAh.
/ G. It took 15 days to complete the battery. The results are shown in Table 1. Example 3 In Example 1, the size of the positive electrode 1 was 5 × 43 cm 2 ,
The size of the negative electrode was 5 × 48 cm 2 . An aluminum terminal having a thickness of 150 μm and a width of 5 mm was used as the positive electrode terminal, and nickel of the same size as the positive electrode was used as the negative electrode terminal, and they were attached to the ends of the electrodes (on the side having a width of 5 cm). The positive electrode 1 and the negative electrode were spirally wound with a separator interposed therebetween to form a cylindrical battery. From positive electrode to negative electrode P in the same manner as in Example 1.
The AS was doped with 330 mAh / g of lithium.
Then, as in Example 1, a negative electrode PA was applied between the lithium metal outside the battery system and the positive electrode by a constant current of 0.02 mA / cm 2.
Through the amount of electricity corresponding to 315 mAh / g for S,
Lithium was supported on the positive electrode. The total amount of lithium with respect to the negative electrode PAS in the battery was 1130 mAh / g. It took 11 days to complete the battery. The results are shown in Table 1.

【0024】比較例1 実施例1と同様の方法で厚さ330μmの正極2を得
た。正極、負極のサイズはいずれも5×3cm2 とし
た。負極由来のリチウムを0mAh/gとして、実施例
1と同様の方法で電池を組み、体積容量を評価した。電
池内の負極PASに対する総リチウム量は、1250m
Ah/gであった。結果を表1に示す。 比較例2 実施例1と同様に電池を組んだ。電極ユニットの断面方
向に330mAh/g相当のリチウム金属を配置し、負
極PASと短絡させた。40日室温にて放置後電池を分
解したところ、完全にリチウム金属は無くなっていた。
また実施例1と同様に体積容量を評価した。電池内の負
極PASに対する総リチウム量は、1130mAh/g
であった。電池完成に要した時間は40日であった。結
果を表1に示す。 比較例3 実施例1と同様に電池を組んだ。電極ユニットの断面方
向に330mAh/g相当のリチウム金属を配置し、該
リチウム金属と負極の間に0Vの電圧を印加し、負極P
ASに対して330mAh/gのリチウムをドーピング
させた。また実施例1と同様に体積容量を評価した。電
池内の負極PASに対する総リチウム量は、1130m
Ah/gであった。電池完成に要した時間は40日であ
った。結果を表1に示す。
Comparative Example 1 In the same manner as in Example 1, a positive electrode 2 having a thickness of 330 μm was obtained. The size of both the positive electrode and the negative electrode was 5 × 3 cm 2 . A lithium battery derived from the negative electrode was set to 0 mAh / g, a battery was assembled in the same manner as in Example 1, and the volume capacity was evaluated. The total amount of lithium with respect to the negative electrode PAS in the battery is 1250 m
It was Ah / g. The results are shown in Table 1. Comparative Example 2 A battery was assembled in the same manner as in Example 1. A lithium metal equivalent to 330 mAh / g was placed in the cross-sectional direction of the electrode unit and short-circuited with the negative electrode PAS. When the battery was disassembled after being left at room temperature for 40 days, lithium metal was completely lost.
The volume capacity was evaluated in the same manner as in Example 1. The total amount of lithium with respect to the negative electrode PAS in the battery is 1130 mAh / g.
Met. It took 40 days to complete the battery. The results are shown in Table 1. Comparative Example 3 A battery was assembled in the same manner as in Example 1. A lithium metal equivalent to 330 mAh / g is arranged in the cross-sectional direction of the electrode unit, a voltage of 0 V is applied between the lithium metal and the negative electrode, and the negative electrode P
The AS was doped with 330 mAh / g of lithium. The volume capacity was evaluated in the same manner as in Example 1. The total amount of lithium with respect to the negative electrode PAS in the battery is 1130 m
It was Ah / g. It took 40 days to complete the battery. The results are shown in Table 1.

【0025】負極由来のリチウムを電極ユニットの断面
方向に配置したリチウムから負極PASへドーピングし
た場合、時間がかかり工業的には好ましくない。 比較例4 実施例1と同様に電池を組んだ。電極ユニットの断面方
向に330mAh/g相当のリチウム金属を配置し、該
リチウム金属と負極の間に0.02mA/cm2 の定電
流(実施例1と同等の速度)により負極PASに対して
330mAh/gに相当する電気量を通じたところ、電
極ユニットの断面部にリチウム金属が析出し正極と短絡
したため、体積容量の評価はできなかった。
When the lithium derived from the negative electrode is doped into the negative electrode PAS from lithium arranged in the cross-sectional direction of the electrode unit, it takes a long time and is not industrially preferable. Comparative Example 4 A battery was assembled in the same manner as in Example 1. A lithium metal equivalent to 330 mAh / g was arranged in the cross-sectional direction of the electrode unit, and a constant current of 0.02 mA / cm 2 (speed equivalent to that of Example 1) was applied between the lithium metal and the negative electrode to reach 330 mAh to the negative electrode PAS. When the amount of electricity corresponding to / g was passed, lithium metal was deposited on the cross-section of the electrode unit and short-circuited with the positive electrode, so that the volume capacity could not be evaluated.

【0026】[0026]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電池の基本構成説明図。FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3、3’集電体 4 電解液 5 セパレータ 6 電池ケース 7、7’ 外部端子 1 Positive Electrode 2 Negative Electrode 3, 3'Current Collector 4 Electrolyte 5 Separator 6 Battery Case 7, 7'External Terminal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極,負極並びに電解液としてリチウム
塩の非プロトン性有機溶媒溶液を備えた有機電解質電池
であって、(1)正極がリチウム含有金属酸化物を含み
(2)負極が芳香族系縮合ポリマーの熱処理物であって
水素原子/炭素原子の原子比が0.5〜0.05である
ポリアセン系骨格構造を有する不溶不融性基体(PA
S)であり、(3)負極PASに対し、電池内に含まれ
る総リチウム量が500mAh/g以上であり、かつ負
極由来のリチウムが100mAh/g以上であり、負極
由来のリチウムが、電池組立後に正極リチウム含有金属
酸化物より負極PASに担持させたものであり、かつ正
極にはPASにリチウムを供給した後、リチウムとの電
気化学的接触によりリチウムを担持させる事を特徴とす
る有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein (1) the positive electrode contains a lithium-containing metal oxide and (2) the negative electrode is aromatic. Insoluble infusible substrate (PA) having a polyacene skeleton structure having a hydrogen atom / carbon atom atomic ratio of 0.5 to 0.05
S), and (3) with respect to the negative electrode PAS, the total amount of lithium contained in the battery is 500 mAh / g or more, the lithium derived from the negative electrode is 100 mAh / g or more, and the lithium derived from the negative electrode is the battery assembly. An organic electrolyte battery which is later supported on a negative electrode PAS from a positive electrode lithium-containing metal oxide, and which is characterized in that after supplying lithium to the positive electrode PAS, lithium is supported by electrochemical contact with lithium. .
【請求項2】 正極、負極が3次元連通気孔を有するセ
パレータを介して対向させた事を特徴とする請求項1記
載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the positive electrode and the negative electrode are opposed to each other via a separator having a three-dimensional continuous air hole.
JP6330721A 1994-12-06 1994-12-06 Organic electrolyte battery Expired - Fee Related JP2869355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330721A JP2869355B2 (en) 1994-12-06 1994-12-06 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330721A JP2869355B2 (en) 1994-12-06 1994-12-06 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08162162A true JPH08162162A (en) 1996-06-21
JP2869355B2 JP2869355B2 (en) 1999-03-10

Family

ID=18235830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330721A Expired - Fee Related JP2869355B2 (en) 1994-12-06 1994-12-06 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2869355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007255A1 (en) * 1998-07-27 2000-02-10 Kanebo, Limited Organic electrolytic cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000007255A1 (en) * 1998-07-27 2000-02-10 Kanebo, Limited Organic electrolytic cell
US6740454B1 (en) 1998-07-27 2004-05-25 Kanebo Limited Organic electrolytic cell with a porous current collector

Also Published As

Publication number Publication date
JP2869355B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
JP3218285B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH0864251A (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JP2869355B2 (en) Organic electrolyte battery
JP2968097B2 (en) Organic electrolyte battery
JP2869354B2 (en) Organic electrolyte battery
JPH09102328A (en) Organic electrolyte battery
JP3403857B2 (en) Organic electrolyte battery
JP2912517B2 (en) Organic electrolyte battery
JP2920070B2 (en) Organic electrolyte battery
JPH09102301A (en) Organic electrolyte battery
JP2574731B2 (en) Organic electrolyte battery
JPH0864249A (en) Organic electrolyte battery
JP2619842B2 (en) Organic electrolyte battery
JP2869191B2 (en) Organic electrolyte battery
JP2781725B2 (en) Organic electrolyte battery
JP2920069B2 (en) Organic electrolyte battery
JPH0864252A (en) Organic electrolyte battery
JPH0864250A (en) Organic electrolyte battery
JP2646462B2 (en) Organic electrolyte battery
JPH0864248A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees