JPH08165209A - Antimicrobial and antifungal member utilizing catalytic function and its production - Google Patents
Antimicrobial and antifungal member utilizing catalytic function and its productionInfo
- Publication number
- JPH08165209A JPH08165209A JP6332117A JP33211794A JPH08165209A JP H08165209 A JPH08165209 A JP H08165209A JP 6332117 A JP6332117 A JP 6332117A JP 33211794 A JP33211794 A JP 33211794A JP H08165209 A JPH08165209 A JP H08165209A
- Authority
- JP
- Japan
- Prior art keywords
- film
- vapor deposition
- ion beam
- antibacterial
- tio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000843 anti-fungal effect Effects 0.000 title claims abstract description 50
- 229940121375 antifungal agent Drugs 0.000 title claims description 36
- 230000003197 catalytic effect Effects 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000000845 anti-microbial effect Effects 0.000 title abstract 5
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 66
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 230000001678 irradiating effect Effects 0.000 claims abstract description 4
- 238000007740 vapor deposition Methods 0.000 claims description 101
- 238000000034 method Methods 0.000 claims description 70
- 230000000844 anti-bacterial effect Effects 0.000 claims description 64
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 32
- 239000000126 substance Substances 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 7
- 238000007735 ion beam assisted deposition Methods 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001882 dioxygen Inorganic materials 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 10
- 239000011248 coating agent Substances 0.000 abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000919 ceramic Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000000835 fiber Substances 0.000 abstract description 5
- 229920001971 elastomer Polymers 0.000 abstract description 4
- 230000001699 photocatalysis Effects 0.000 abstract description 4
- 239000004033 plastic Substances 0.000 abstract description 4
- 229920003023 plastic Polymers 0.000 abstract description 4
- 239000005060 rubber Substances 0.000 abstract description 4
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229910010252 TiO3 Inorganic materials 0.000 abstract 1
- 230000000717 retained effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 102
- 230000000052 comparative effect Effects 0.000 description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- 238000010828 elution Methods 0.000 description 10
- 239000003242 anti bacterial agent Substances 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 239000003429 antifungal agent Substances 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- 239000011941 photocatalyst Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- -1 coatings Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003113 dilution method Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000002468 redox effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Catalysts (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属,セラミックス等
の基材に抗菌・防カビ処理を施した非溶出型の抗菌部材
及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-eluting type antibacterial member obtained by subjecting a base material such as metal or ceramics to antibacterial and antifungal treatment and a method for producing the same.
【0002】[0002]
【従来の技術】抗菌・防カビ性を付与する表面処理に
は、抗菌・防カビ剤をプラスチックス,繊維等に練り込
む方法,抗菌・防カビ塗料を基材表面に塗布する方法,
イオン注入,蒸着,溶射等の乾式法によって基材表面を
抗菌・防カビ物質で処理する方法等が知られている。た
とえば、特公平4−16179号公報では、予めイオン
化又はラジカル状態にされた活性物質を合成樹脂,ゴ
ム,合成繊維,セラミックス等の基材にイオン注入して
いる。注入された活性物質は、細菌の繁殖を抑制し、基
材表面を衛生的な状態に維持する。特開平3−2135
09号公報では、真空蒸着,溶射,スパッタリング,イ
オンプレーティング等の乾式法で抗菌性物質を表面に付
着させたポリマーを溶融紡糸することにより、抗菌性繊
維を製造している。2. Description of the Related Art As a surface treatment for imparting antibacterial / antifungal properties, a method of kneading an antibacterial / antifungal agent into plastics, fibers, etc., a method of applying an antibacterial / antifungal paint to a substrate surface,
It is known that the surface of the substrate is treated with an antibacterial / antifungal substance by a dry method such as ion implantation, vapor deposition, or thermal spraying. For example, in Japanese Patent Publication No. 4-16179, an active substance that has been ionized or radicalized in advance is ion-implanted into a base material such as synthetic resin, rubber, synthetic fiber, or ceramics. The injected active substance suppresses bacterial growth and keeps the surface of the substrate hygienic. JP-A-3-2135
In Japanese Patent Publication No. 09, an antibacterial fiber is manufactured by melt spinning a polymer having an antibacterial substance attached to the surface thereof by a dry method such as vacuum deposition, thermal spraying, sputtering, and ion plating.
【0003】抗菌・防カビ性を付与する従来の方法は、
基材表面から雰囲気中に溶出する抗菌・防カビ剤の作用
に依存している。そのため、優れた抗菌・防カビ性を得
る上で、可能な限り基材表面の広い範囲にわたって抗菌
・防カビ物質を露出させることが要求される。しかし、
そのような状態に抗菌・防カビ剤を基材表面に練り込み
やイオン注入で施すことは操作条件に厳格な制御が必要
となり、作業性の低下を招く。塗装,蒸着,溶射等の方
法では、有効成分が無駄に溶出したり、膜が基材から剥
離する欠点がある。そのため、長期間にわたって良好な
抗菌・防カビ性を持続させることが困難である。抗菌・
防カビ剤は、その性質上から毒物も含まれている。その
ため、強い抗菌・防カビ性を呈する物質であっても、溶
出等によって人体に悪影響を与えるものは好ましくな
い。そこで、最近では安全で環境に優しい抗菌・防カビ
処理が望まれている。他方、有機系の薬剤では、抗菌・
防カビ性がなくなったとき、細菌の栄養源となり易く、
却って細菌の繁殖を促進させることもある。このような
ことから、抗菌・防カビ性に優れ、且つ安全度の高い物
質としてAgが抗菌・防カビ剤として注目され、Agを
担持した無機系の抗菌・防カビ剤が開発されてきた。た
とえば、特開平3−172113号公報では、難溶性リ
ン酸塩の表面にAgイオンを担持させ、Ti,Zr,Z
n等でコーティングしたリン酸塩系の抗菌剤が紹介され
ている。Agは、食器,装飾品等としても使用されてき
た材料であり、安全面でも信頼性が高い。また、特開平
6−65012号公報では、抗菌・防カビ作用の持続性
を改善するため、光触媒としての作用をもつTiO2 を
Agと併用している。The conventional methods for imparting antibacterial and antifungal properties are as follows:
It relies on the action of antibacterial and antifungal agents that elute from the surface of the base material into the atmosphere. Therefore, in order to obtain excellent antibacterial and antifungal properties, it is required to expose the antibacterial and antifungal substance over a wide range of the substrate surface as much as possible. But,
If the antibacterial / antifungal agent is kneaded or ion-implanted on the surface of the base material in such a state, strict control of operating conditions is required, resulting in deterioration of workability. The methods such as coating, vapor deposition, and thermal spraying have drawbacks such that the active ingredient is unnecessarily eluted and the film peels off from the substrate. Therefore, it is difficult to maintain good antibacterial and antifungal properties for a long period of time. antibacterial·
Antifungal agents include poisonous substances due to their properties. Therefore, even if the substance exhibits strong antibacterial and antifungal properties, it is not preferable that it has a bad influence on the human body due to elution or the like. Therefore, recently, safe and environmentally friendly antibacterial and antifungal treatments have been desired. On the other hand, with organic drugs, antibacterial
When it loses its antifungal properties, it easily becomes a nutrient source for bacteria,
On the contrary, it may promote the reproduction of bacteria. For these reasons, Ag has attracted attention as an antibacterial / antifungal agent as a substance having excellent antibacterial / antifungal properties and high safety, and an inorganic antibacterial / antifungal agent carrying Ag has been developed. For example, in JP-A-3-172113, Ag ions are carried on the surface of a sparingly soluble phosphate, and Ti, Zr, Z
A phosphate-based antibacterial agent coated with n or the like has been introduced. Ag is a material that has been used as tableware, ornaments, etc., and is highly reliable in terms of safety. Further, in Japanese Patent Laid-Open No. 6-65012, TiO 2 having a function as a photocatalyst is used in combination with Ag in order to improve the durability of antibacterial / antifungal action.
【0004】[0004]
【発明が解決しようとする課題】TiO2 系のコーティ
ングを施す場合、基材に対する密着性を高めるため焼成
が繰り返される。しかし、焼成の繰返しは、手数及び時
間のかかる作業工程を余儀なくする。また、高温での処
理であることから、処理可能な基材の材質に制約を加え
る。焼成に起因する問題を解消する方法としては、酸化
チタン皮膜を形成した基材をAgイオン含有液に浸漬
し、或いはAgイオン含有液を酸化チタン皮膜に塗布し
焼成する方法がある。しかし、このような方法でAgイ
オンを担持させたものでは、密着力が弱く、Agの無駄
な溶出が避けられない。そのため、予期するほどに抗菌
・防カビ作用の持続性が改善されない。本発明は、この
ような問題を解消すべく案出されたものであり、イオン
ビーム支援蒸着法で形成した蒸着膜が優れた密着性及び
活性度を示すことを利用することにより、Agイオンの
溶出に依らずに長期間にわたって抗菌・防カビ性を持続
し、密着性に優れた抗菌・防カビ性皮膜を得ることを目
的とする。When a TiO 2 based coating is applied, firing is repeated in order to improve the adhesion to the substrate. However, repeated firing necessitates a labor-intensive and time-consuming working process. Further, since the treatment is performed at a high temperature, the material of the treatable base material is restricted. As a method for solving the problem caused by firing, there is a method of immersing the base material on which the titanium oxide film is formed in an Ag ion-containing liquid or applying the Ag ion-containing liquid to the titanium oxide film and firing. However, in the case of supporting Ag ions by such a method, the adhesion is weak, and wasteful elution of Ag cannot be avoided. Therefore, the durability of antibacterial / antifungal action is not improved as expected. The present invention has been devised to solve such a problem, and by utilizing the fact that a vapor deposition film formed by an ion beam assisted vapor deposition method exhibits excellent adhesion and activity, The purpose is to obtain an antibacterial and antifungal coating having excellent adhesion, which maintains antibacterial and antifungal properties for a long period of time regardless of elution.
【0005】[0005]
【課題を解決するための手段】本発明の抗菌・防カビ部
材は、その目的を達成するため、イオンビーム支援蒸着
法で形成したAg蒸着膜,TiO2 膜,白金族元素の蒸
着膜等を抗菌・防カビ作用を呈するとして使用する。A
g蒸着膜,TiO2 膜,白金族元素の蒸着膜等は、次に
示す組合せのように何れの順序で形成しても良く、また
TiO2 膜及び白金族元素の何れか一方を省略すること
も可能である。更には、Ag,TiO2,白金族元素等
を含み、或いはこれらの皮膜が予め形成された基材を使
用することも可能である。処理される基材には、金属,
セラミックス,塗膜,プラスチックス,ゴム,セラミッ
クス,繊維等がある。In order to achieve the object, the antibacterial / antifungal member of the present invention comprises an Ag vapor deposition film, a TiO 2 film, a platinum group element vapor deposition film, etc. formed by an ion beam assisted vapor deposition method. Used as an antibacterial and antifungal agent. A
The vapor-deposited film, the TiO 2 film, the platinum-group element vapor-deposited film, etc. may be formed in any order as in the following combinations, and either one of the TiO 2 film and the platinum-group element may be omitted. Is also possible. Further, it is also possible to use a substrate containing Ag, TiO 2 , a platinum group element, or the like, or a film on which these films are formed in advance. The substrate to be treated includes metal,
There are ceramics, coatings, plastics, rubber, ceramics, fibers, etc.
【0006】(1)単体,合金,化合物又は皮膜として
Agを含む基材に、イオンビーム支援蒸着法によりTi
O2 膜を形成。 (2)単体,合金,化合物又は皮膜としてAgを含む基
材に、イオンビーム支援蒸着法により白金族元素の蒸着
膜を形成。 (3)単体,合金,化合物又は皮膜としてAgを含む基
材に、イオンビーム支援蒸着法によりTiO2 膜を形成
し、TiO2 膜の上にイオンビーム支援蒸着法で白金族
元素の蒸着膜を形成。 (4)単体,合金,化合物又は皮膜としてAgを含む基
材に、イオンビーム支援蒸着法により白金族元素の蒸着
膜を形成し、更にイオンビーム支援蒸着法でTiO2 膜
を形成。 (5)単体,合金,化合物又は皮膜としてAgを含む基
材に、イオンビーム支援蒸着法でTi及び白金族元素を
同時に蒸着させ、TiO2 と白金族元素との混合膜を形
成。 (6)TiO2 が内部又は表面にある基材に、イオンビ
ーム支援蒸着法でAg蒸着膜を形成。 (7)TiO2 が内部又は表面にある基材に、イオンビ
ーム支援蒸着法でAg蒸着膜を形成し、次いでイオンビ
ーム支援蒸着法で白金族元素の蒸着膜の形成。 (8)TiO2 が内部又は表面にある基材に、イオンビ
ーム支援蒸着法で白金族元素の蒸着膜を形成した後、イ
オンビーム支援蒸着法でAg蒸着膜を形成。 (9)TiO2 が内部又は表面にある基材に、イオンビ
ーム支援蒸着法でAg及び白金族元素を同時に蒸着し、
Ag−白金族元素の混合蒸着膜を形成。 (10)白金族元素が内部又は表面にある基材に、イオ
ンビーム支援蒸着法でAg蒸着膜を形成。 (12)白金族元素が内部又は表面にある基材に、イオ
ンビーム支援蒸着法でAg蒸着膜を形成し、次いでイオ
ンビーム支援蒸着法でTiO2 膜を形成。 (13)白金族元素が内部又は表面にある基材に、イオ
ンビーム支援蒸着法でTiO2 膜を形成した後、イオン
ビーム支援蒸着法でAg蒸着膜を形成。 (14)白金族元素が内部又は表面にある基材に、イオ
ンビーム支援蒸着法でTi及びAgを同時に蒸着し、A
g−TiO2 混合膜を形成。(1) Ti on a substrate containing a simple substance, an alloy, a compound, or Ag as a film by an ion beam assisted vapor deposition method.
Form an O 2 film. (2) A vapor deposition film of a platinum group element is formed on a substrate containing a simple substance, an alloy, a compound, or Ag as a film by an ion beam assisted vapor deposition method. (3) A TiO 2 film is formed on a substrate containing a simple substance, an alloy, a compound, or Ag as a film by an ion beam assisted vapor deposition method, and a vapor deposition film of a platinum group element is formed on the TiO 2 film by an ion beam assisted vapor deposition method. Formation. (4) A platinum group element vapor deposition film is formed by an ion beam assisted vapor deposition method on a base material containing a simple substance, an alloy, a compound or Ag as a film, and a TiO 2 film is further formed by an ion beam assisted vapor deposition method. (5) Ti and a platinum group element are simultaneously vapor-deposited on a base material containing a simple substance, an alloy, a compound or Ag as a film by an ion beam assisted vapor deposition method to form a mixed film of TiO 2 and a platinum group element. (6) An Ag vapor deposition film is formed on a substrate having TiO 2 inside or on the surface by an ion beam assisted vapor deposition method. (7) On a substrate having TiO 2 inside or on the surface thereof, an Ag vapor deposition film is formed by an ion beam assisted vapor deposition method, and then a platinum group element vapor deposition film is formed by an ion beam assisted vapor deposition method. (8) After forming a vapor deposition film of a platinum group element on a substrate having TiO 2 inside or on the surface by an ion beam assisted vapor deposition method, an Ag vapor deposited film is formed by an ion beam assisted vapor deposition method. (9) Ag and platinum group elements are simultaneously vapor-deposited on a substrate having TiO 2 inside or on its surface by an ion beam assisted vapor deposition method,
A mixed vapor deposition film of Ag-platinum group elements is formed. (10) An Ag vapor deposition film is formed on a substrate having a platinum group element inside or on the surface by an ion beam assisted vapor deposition method. (12) An Ag vapor deposition film is formed by an ion beam assisted vapor deposition method on a substrate having a platinum group element inside or on the surface, and then a TiO 2 film is formed by an ion beam assisted vapor deposition method. (13) After forming a TiO 2 film on a substrate having a platinum group element inside or on the surface by an ion beam assisted vapor deposition method, an Ag evaporated film is formed by an ion beam assisted vapor deposition method. (14) Ti and Ag are simultaneously vapor-deposited on a substrate having a platinum group element inside or on the surface thereof by an ion beam assisted vapor deposition method, and A
Form a g-TiO 2 mixed film.
【0007】[0007]
【作用】イオンビーム支援蒸着法は、10-2〜10-3P
a程度の真空容器内に基材を配置し、イオンビームで基
材表面を照射しながら金属を蒸着させる。蒸着金属は、
電子ビーム等で溶融され、蒸気として基材表面に送り込
まれる。イオンビームは、イオン銃でAr,He等をイ
オン化して、0.1kV以上の加速電圧を印加すること
により発生させる。Tiの蒸着に際しては、酸素ガスを
イオン化したビームを使用する方法がある。この場合、
蒸着中にTiが酸化され、TiO2 として基材表面に被
着する。或いは、Ar等のイオンビームを支援しながら
TiO2 を蒸着することもできる。TiO2 は、光照射
によって電子や正孔が生成し、強力な酸化還元作用を発
現する光触媒としての機能を持っていることから、活性
酸素の生成を促進させ、Agと共同して抗菌・防カビ性
を著しく向上させる。このような作用は、TiO2 の膜
厚を0.01〜1μmにするとき顕著となる。また、T
iO2 の光触媒作用は、イオンビームの照射によっても
高められる。[Operation] The ion beam assisted deposition method is 10 -2 to 10 -3 P
The base material is placed in a vacuum container of about a and metal is vapor-deposited while irradiating the surface of the base material with an ion beam. Evaporated metal is
It is melted by an electron beam and sent to the surface of the substrate as vapor. The ion beam is generated by ionizing Ar, He or the like with an ion gun and applying an acceleration voltage of 0.1 kV or more. For vapor deposition of Ti, there is a method of using a beam obtained by ionizing oxygen gas. in this case,
During the vapor deposition, Ti is oxidized and deposited as TiO 2 on the substrate surface. Alternatively, TiO 2 can be deposited by supporting an ion beam such as Ar. TiO 2 has a function as a photocatalyst that produces a strong redox effect by generating electrons and holes upon irradiation with light, and therefore promotes the production of active oxygen and cooperates with Ag to prevent antibacterial and antibacterial action. Remarkably improves moldability. Such an effect becomes remarkable when the film thickness of TiO 2 is 0.01 to 1 μm. Also, T
The photocatalytic action of iO 2 can also be enhanced by irradiation with an ion beam.
【0008】Pt,Pa,Ru等の白金族元素も、Ti
O2 と同様な光触媒としての機能を持っている。これら
白金族元素の蒸着に際してはO2 ,Ar,He等をイオ
ン化したイオンビームを使用することができ、好ましく
は0.01〜0.5μmの膜厚で蒸着膜を形成する。O
2 ,Ar,He等をイオン化したイオンビームは、Ag
蒸着膜を形成するときにも使用される。形成されたAg
蒸着膜は、イオンビーム支援蒸着法によるものであるた
め、基材に対する密着性に優れ、Agが非溶出化され
る。なお、Ag蒸着膜は、0.01〜1μmの膜厚をも
つことが好ましい。形成された蒸着膜は、イオンビーム
の照射によって活性化された基材表面に蒸着されたもの
であるため、基材に対する密着性が極めて高くなってい
る。また、蒸着膜のAgやTiO2 ,白金族元素等が、
空気中の酸素や水中の酸素から活性酸素を発生させる触
媒作用を呈する。発生した活性酸素は、周辺にある菌
類,カビ等の細胞膜を破壊し、雑菌やカビを死滅させ
る。そのため、溶出したAgイオンに依存する従来の抗
菌・防カビ処理と異なり、長期間にわたって優れた抗菌
・防カビ作用が持続する。しかも、抗菌・防カビ性を呈
する物質の溶出がないので、長期間の使用後にも基材表
面に変色がない。Platinum group elements such as Pt, Pa and Ru are also included in Ti.
It has the same function as a photocatalyst like O 2 . An ion beam obtained by ionizing O 2 , Ar, He or the like can be used for vapor deposition of these platinum group elements, and the vapor deposition film is preferably formed with a film thickness of 0.01 to 0.5 μm. O
The ion beam that ionizes 2 , Ar, He, etc. is Ag
It is also used when forming a vapor deposition film. Ag formed
Since the vapor deposition film is formed by the ion beam assisted vapor deposition method, it has excellent adhesion to the base material and Ag is not eluted. The Ag vapor deposition film preferably has a film thickness of 0.01 to 1 μm. Since the formed vapor deposition film is vapor-deposited on the surface of the base material activated by the irradiation of the ion beam, the adhesion to the base material is extremely high. In addition, Ag, TiO 2 , platinum group elements, etc. of the deposited film are
It exhibits a catalytic action to generate active oxygen from oxygen in the air and oxygen in water. The generated active oxygen destroys cell membranes of fungi and mold in the vicinity, and kills various bacteria and mold. Therefore, unlike the conventional antibacterial and antifungal treatment which depends on the eluted Ag ions, the excellent antibacterial and antifungal action continues for a long period of time. Moreover, since the substance exhibiting antibacterial and antifungal properties is not eluted, there is no discoloration on the surface of the substrate even after long-term use.
【0009】イオンビーム支援蒸着法で形成された薄膜
の触媒作用は、イオンビームの作用でAg,Ti,白金
族元素等の一部がイオン化し、更に膜の配向性が制御さ
れた結果として活性部位が表面に露出すること、及びA
g,TiO2 ,白金族元素等の組合せによる相乗作用に
よって強い効果を示すことによって得られるものと推察
される。このような触媒作用は、真空蒸着や溶射等のP
VD法で形成されたAg薄膜にもみられるが、イオンビ
ーム支援蒸着法に比較して投入エネルギーが少ないた
め、触媒化したAgから発生する活性酸素量が少ない。
また、形成された薄膜の基材に対する密着性も弱く、過
酷な使用環境に耐えることができない。しかも、イオン
ビーム支援蒸着法では、比較的低温で基材が処理される
ため、加熱による悪影響を基材に及ぼすこともない。A
gを含む又はAg系の皮膜をもつ基材には、たとえばA
g系抗菌剤を含む塗膜,Ag系抗菌剤を練り込んだも
の,Ag又はAg化合物をCVD,PVD等によって被
覆したもの,イオン注入やイオンビーム蒸着法でAg又
はAg化合物の被覆層を設けたもの等がある。或いは、
イオンビーム支援蒸着法によってAg皮膜を形成したも
のを、基材として使用することもできる。TiO2 を含
む又はTiO2 を皮膜をもつ基材や、白金族元素を含む
又は白金族元素でコーティングされた基材も、同様にし
て用意される。The catalytic action of the thin film formed by the ion beam assisted vapor deposition method is activated as a result of the ion beam action partially ionizing Ag, Ti, platinum group elements and the like and further controlling the orientation of the film. The part is exposed on the surface, and A
It is presumed that it can be obtained by exhibiting a strong effect by the synergistic effect of the combination of g, TiO 2 , platinum group elements and the like. Such a catalytic action can be achieved by P deposition such as vacuum deposition or thermal spraying.
Although it is also found in the Ag thin film formed by the VD method, since the input energy is smaller than that in the ion beam assisted vapor deposition method, the amount of active oxygen generated from the catalyzed Ag is small.
Further, the formed thin film has poor adhesion to the base material, and cannot withstand a harsh use environment. Moreover, in the ion beam assisted vapor deposition method, the base material is treated at a relatively low temperature, so that the base material is not adversely affected by heating. A
Substrates containing g or having an Ag-based coating include, for example, A
Coating film containing g-based antibacterial agent, kneaded with Ag-based antibacterial agent, coated with Ag or Ag compound by CVD, PVD, etc., provided with a coating layer of Ag or Ag compound by ion implantation or ion beam evaporation method There are things such as things. Alternatively,
The Ag film formed by the ion beam assisted vapor deposition method can also be used as the substrate. The substrate and having a containing or TiO 2 film of TiO 2, or comprises a platinum group element substrate coated with a platinum group element is also prepared in a similar manner.
【0010】このようにして用意された基材に、イオン
ビーム支援蒸着法でAg蒸着膜,TiO2 膜及び/又は
白金族元素の蒸着膜を形成する。また、Ag−TiO
2 ,Ag−白金族元素,TiO2 −白金族元素等の混合
薄膜を形成する場合、それぞれ異なる蒸発源を収容した
2個のルツボを配置し、電子ビームによって2種類の蒸
気を発生させる。形成された薄膜は、基材に対する密着
性が極めて高く、水中においても溶出することがない。
そのため、長時間使用後においても、基材表面が変色す
ることはない。形成されたTiO2 膜や白金族元素の蒸
着膜は、基材に含まれるAgやAg皮膜と共同して従来
にない優れた抗菌・防カビ作用を呈する。また、TiO
2 膜と白金族元素の蒸着膜との間でも、光触媒作用を相
乗的に高める効果があり、単独でTiO2 膜又は白金族
元素の蒸着膜を形成した場合に比較して良好な抗菌・防
カビ作用が発揮される。On the thus prepared substrate, an Ag vapor deposition film, a TiO 2 film and / or a platinum group element vapor deposition film is formed by an ion beam assisted vapor deposition method. In addition, Ag-TiO
When forming a mixed thin film of 2 , Ag-platinum group element, TiO 2 -platinum group element, etc., two crucibles containing different evaporation sources are arranged and two kinds of vapor are generated by an electron beam. The formed thin film has extremely high adhesion to the substrate and does not elute even in water.
Therefore, the base material surface does not discolor even after long-term use. The formed TiO 2 film and the vapor-deposited film of the platinum group element exhibit excellent antibacterial / antifungal action which has not been achieved in the past in cooperation with Ag or Ag film contained in the substrate. Also, TiO
The photocatalytic effect is synergistically enhanced between the two films and the platinum group element vapor-deposited film, and the antibacterial / preventive property is better than that when the TiO 2 film or the platinum group element vapor-deposited film is formed alone. Mold effect is exhibited.
【0011】[0011]
(試料の作成) 実施例1:200mm×200mmのアルミニウム合金
(1100)板に膜厚20μmのアルマイト皮膜を形成
したものを基材として使用した。この基材に真空蒸着法
で膜厚1μmのAg蒸着膜を形成した後、酸素イオンビ
ームで照射しながら、イオンビーム支援蒸着法によりT
iを蒸着させ、膜厚0.4μmのTiO2 膜を形成し
た。 実施例2:実施例1と同様に膜厚1μmのAg蒸着膜及
び膜厚0.2μmのTiO2 膜を形成した後、Arイオ
ンビームを使用したイオンビーム支援蒸着法によって膜
厚0.2μmのPt蒸着膜を形成した。 実施例3:実施例1と同様に膜厚1μmのAg蒸着膜を
形成した後、酸素イオンビームを使用したイオンビーム
支援蒸着法でTi及びPtを蒸着し、膜厚0.4μmの
Pt含有TiO2 膜を形成した。(Preparation of Sample) Example 1: A 200 mm × 200 mm aluminum alloy (1100) plate on which an alumite film having a film thickness of 20 μm was formed was used as a substrate. After forming a 1 μm-thick Ag vapor-deposited film on this base material by a vacuum vapor-deposition method, while irradiating with an oxygen ion beam, T
i was vapor-deposited to form a TiO 2 film having a thickness of 0.4 μm. Example 2 After forming an Ag vapor deposition film having a film thickness of 1 μm and a TiO 2 film having a film thickness of 0.2 μm in the same manner as in Example 1, a film having a film thickness of 0.2 μm was formed by an ion beam assisted vapor deposition method using Ar ion beam. A Pt vapor deposition film was formed. Example 3: After forming an Ag vapor-deposited film with a thickness of 1 μm as in Example 1, Ti and Pt are vapor-deposited by an ion beam assisted vapor deposition method using an oxygen ion beam, and Pt-containing TiO with a thickness of 0.4 μm. Two films were formed.
【0012】実施例4:200mm×200mmのアル
ミニウム合金(1100)板に膜厚20μmのTiO2
含有塗膜を形成したものを、基材として用意した。この
基材に、Arイオンビームを用いてAgを蒸着し、膜厚
0.4μmのAg蒸着膜を形成した。 実施例5:実施例4と同じ基材に、Arイオンビームを
用いてPtを蒸着し、膜厚0.2μmのPt蒸着膜を形
成した。次いで、Arイオンビームを用いてAgを蒸着
し、膜厚0.2μmのAg蒸着膜を形成した。 実施例6:実施例4と同じ基材に、Arイオンビームを
用いてPt及びAgを同時に蒸着し、膜厚0.4μmの
Pt−Ag混合蒸着膜を形成した。 実施例7:実施例1と同じアルマイト処理したアルミニ
ウム合金板に真空蒸着法でPtを蒸着したものを、基材
として用意した。この基材に、酸素イオンビームを使用
したイオンビーム支援蒸着法でTi及びAgを蒸着し、
膜厚0.4μmのAg含有TiO2 膜を形成した。Example 4: A 200 mm × 200 mm aluminum alloy (1100) plate with a TiO 2 film thickness of 20 μm
What formed the content coating film was prepared as a base material. Ag was vapor-deposited on this substrate using an Ar ion beam to form a 0.4 μm-thick Ag vapor-deposited film. Example 5: Pt was vapor-deposited on the same substrate as in Example 4 using an Ar ion beam to form a Pt vapor-deposited film having a film thickness of 0.2 μm. Next, Ag was vapor-deposited by using an Ar ion beam to form an Ag vapor-deposited film having a film thickness of 0.2 μm. Example 6: Pt and Ag were simultaneously vapor-deposited on the same substrate as in Example 4 by using an Ar ion beam to form a Pt-Ag mixed vapor deposition film having a film thickness of 0.4 μm. Example 7: The same alumite-treated aluminum alloy plate as in Example 1 with Pt vapor-deposited by a vacuum vapor deposition method was prepared as a substrate. Ti and Ag are vapor-deposited on this substrate by an ion beam assisted vapor deposition method using an oxygen ion beam,
An Ag-containing TiO 2 film having a film thickness of 0.4 μm was formed.
【0013】蒸着処理された各基材の抗菌性及び防カビ
性を、以下に説明する方法で調査した。なお、イオンビ
ーム支援蒸着法で形成した皮膜の有効性を明らかにする
ため、次の比較材を用意した。 比較例1:実施例1〜3と同じアルマイト処理したアル
ミニウム合金板にAgを真空蒸着したもの 比較例2:実施例4〜6と同じ塗装を施したアルミニウ
ム合金板 比較例3:実施例7と同じPtを蒸着したままの基材 比較例4:比較例1の基材に真空蒸着法で膜厚0.4μ
mのTiO2 膜を形成したもの 比較例5:比較例1の基材に真空蒸着法で膜厚0.2μ
mのTiO2 膜を形成した後、真空蒸着法で膜厚0.2
μmのPt蒸着膜を形成したもの 比較例6:比較例2と同じ基材に、真空蒸着法で膜厚
0.4μmのAg蒸着膜を形成したもの 比較例7:比較例2と同じ基材に、真空蒸着法で膜厚
0.2μmのPt蒸着膜を形成した後、真空蒸着法で膜
厚0.2μmのAg蒸着膜を形成したものThe antibacterial and antifungal properties of the respective vapor-deposited substrates were investigated by the method described below. The following comparative materials were prepared to clarify the effectiveness of the film formed by the ion beam assisted vapor deposition method. Comparative Example 1: Vacuum deposition of Ag on an aluminum alloy plate subjected to the same alumite treatment as in Examples 1 to 3 Comparative Example 2: Aluminum alloy plate subjected to the same coating as Examples 4 to 6 Comparative Example 3: Example 7 Base material on which the same Pt was vapor-deposited Comparative Example 4: A film thickness of 0.4 μm was formed on the base material of Comparative Example 1 by a vacuum vapor deposition method.
m TiO 2 film was formed Comparative Example 5: A film having a thickness of 0.2 μm was formed on the base material of Comparative Example 1 by a vacuum deposition method.
m TiO 2 film is formed, and then the film thickness is 0.2 by the vacuum evaporation method.
Formed Pt vapor-deposited film of μm Comparative Example 6: Formed Ag vapor-deposited film of 0.4 μm in thickness on the same base material as in Comparative Example 2 Comparative Example 7: Same base material as Comparative Example 2 A Pt vapor deposition film having a thickness of 0.2 μm formed by vacuum vapor deposition method, and then an Ag vapor deposition film having a thickness of 0.2 μm formed by vacuum vapor deposition method
【0014】(抗菌性の評価)各試料から20mm×5
0mmの試験片を切り出し、抗菌性試験に供した。抗菌
性試験は、シェイクフラスコ法で行った。Nutrie
nt broth培地で大腸菌及び黄色ブドウ球菌それ
ぞれを25℃で20時間培養し、培養液をpH7.2の
0.5Mリン酸緩衝液の800倍希釈液で約1〜2×1
04 個/mlの菌液に希釈し、試験菌液を調製した。試
験菌液10mlを各試験片と共に三角フラスコに入れ、
180rpmで1時間振盪した。振盪前後の生菌数を平
板希釈法で測定し、菌減少率を算出した。菌減少率は、
振盪前の生菌数をA,振盪後の生菌数をBとするとき、
(A−B)/A×100(%)で表した。菌減少率が3
0%を超えるとき、有効な抗菌性が発揮されたものとし
て評価される。試験結果を、大腸菌及び黄色ブドウ球菌
に分けて、それぞれ表1及び表2に示す。また、表1及
び表2には、1時間振盪後の試験片表面を原子吸光法で
測定することにより算出されたAgの溶出量も併せ示
す。(Evaluation of antibacterial property) 20 mm × 5 from each sample
A 0 mm test piece was cut out and subjected to an antibacterial property test. The antibacterial test was performed by the shake flask method. Nutrie
Escherichia coli and Staphylococcus aureus were each cultured in an nt broth medium at 25 ° C. for 20 hours, and the culture solution was diluted with an 800-fold dilution of 0.5 M phosphate buffer (pH 7.2) to about 1 to 2 × 1.
A test bacterial solution was prepared by diluting the bacterial solution of 0 4 cells / ml. Put 10 ml of the test bacterial solution together with each test piece into an Erlenmeyer flask,
Shake at 180 rpm for 1 hour. The viable cell count before and after shaking was measured by the plate dilution method, and the bacterial reduction rate was calculated. The bacterial reduction rate is
When the viable cell count before shaking is A and the viable cell count after shaking is B,
It was represented by (A−B) / A × 100 (%). Bacteria reduction rate is 3
When it exceeds 0%, it is evaluated that effective antibacterial properties are exhibited. The test results are shown in Table 1 and Table 2 for E. coli and S. aureus, respectively. In addition, Tables 1 and 2 also show the elution amount of Ag calculated by measuring the surface of the test piece after shaking for 1 hour by an atomic absorption method.
【0015】[0015]
【表1】 [Table 1]
【0016】[0016]
【表2】 [Table 2]
【0017】表1及び表2から明らかなように、本発明
に従った実施例1〜7の試験片では、何れも高い菌減少
率を示し、振盪後の生菌数が極めて少なくなっていた。
また、Ag溶出量も、実質的に溶出がみられない0.0
01μg/l未満の微量で、優れた抗菌性が長期間持続
することが判る。これに対し、Agを真空蒸着しただけ
の比較例1では、菌減少率が高い値を示すものの、Ag
溶出量が多く、長時間にわたり抗菌性が持続しないこと
が判る。TiO2 含有塗装を施しただけの比較例2及び
Ptを真空蒸着しただけの比較例3では、菌減少率が低
く、多量の菌類が試験片表面に付着していた。その他の
比較例4〜7では、Ag溶出量が多く、長時間にわたり
抗菌性が持続しないことが示唆されている。As is clear from Tables 1 and 2, all the test pieces of Examples 1 to 7 according to the present invention showed a high bacterial reduction rate, and the viable cell count after shaking was extremely small. .
In addition, the elution amount of Ag is 0.0, in which substantially no elution is observed.
It can be seen that the excellent antibacterial property lasts for a long time with a trace amount of less than 01 μg / l. On the other hand, in Comparative Example 1 in which only Ag was vacuum-deposited, although the bacterial reduction rate showed a high value,
It can be seen that the amount of elution is large and the antibacterial property does not last for a long time. In Comparative Example 2 where only the coating containing TiO 2 was applied and Comparative Example 3 where only Pt was vacuum-deposited, the bacterial reduction rate was low and a large amount of fungi adhered to the surface of the test piece. In other Comparative Examples 4 to 7, it is suggested that the Ag elution amount is large and the antibacterial property does not last for a long time.
【0018】(防カビ性試験)各試料から切り出された
40mm×40mmの試験片を、防カビ性試験に供し
た。防カビ性試験では、試験準備及びカビ胞子懸濁液の
調製等はJIS Z2911に準拠した。そして、4%
ブドウ糖・1%ペプトン寒天培地の上に試験片を静置
し、その上にカビ胞子懸濁液1mlを散布した。この条
件下で温度25℃及び相対湿度95%で2か月間培養し
た後、試験片表面におけるカビ発生状況を観察した。(Moldproofing Test) A 40 mm × 40 mm test piece cut out from each sample was subjected to a moldproofing test. In the antifungal test, the test preparation, the preparation of the mold spore suspension, etc. were based on JIS Z2911. And 4%
The test piece was allowed to stand on a glucose / 1% peptone agar medium, and 1 ml of a mold spore suspension was sprayed on the test piece. After culturing under these conditions at a temperature of 25 ° C. and a relative humidity of 95% for 2 months, the mold generation state on the surface of the test piece was observed.
【0019】[0019]
【表3】 [Table 3]
【0020】観察結果を示す表3にみられるように、実
施例1〜7の試験片では、2か月後にも表面にカビの発
生がなく、或いは発生しても極くわずかであった。他
方、比較例2〜5では、試験片の表面に多量のカビが発
生していた。また、比較例1,6,7では、実施例1〜
7とほぼ同じ防カビ性を示したものの、表1及び表2の
Ag溶出量にみられるように効果の持続性に問題があっ
た。As can be seen from Table 3 showing the observation results, the test pieces of Examples 1 to 7 had no or no mold on the surface even after 2 months. On the other hand, in Comparative Examples 2 to 5, a large amount of mold was generated on the surface of the test piece. In Comparative Examples 1, 6 and 7, Examples 1 to 1
Although it showed almost the same antifungal property as that of No. 7, there was a problem in the sustainability of the effect as seen in the Ag elution amounts in Tables 1 and 2.
【0021】[0021]
【発明の効果】以上に説明したように、本発明の抗菌・
防カビ部材は、金属,塗膜,プラスチックス,,ゴム,
セラミックス,繊維等の素材又は加工品の表面にイオン
ビーム支援蒸着法でAg蒸着膜,TiO2 膜,白金族元
素の蒸着膜等を形成している。これら薄膜は、通常の真
空蒸着法で形成された薄膜に比較して基材に対する密着
性及び活性度が高く、互いに共同して空気や水中の酸素
を活性化する触媒作用を呈する。特に、TiO2 膜,白
金族元素の蒸着膜は、光触媒作用があり、Ag蒸着膜の
抗菌・防カビ作用を向上させる作用がある。そのため、
本発明に従った抗菌・防カビ部材は、従来のAgイオン
溶出に依存する抗菌・防カビ処理と異なり、Ag,Ti
O2 ,白金族元素等の触媒作用によって生成する活性酸
素で抗菌・防カビ作用を発現するものであるから、長期
間にわたって優れた抗菌・防カビ作用が持続される。こ
のようにして、処理された部材は、厨房器具,家具,家
電製品,医療器具,建材等として広範な分野で使用され
る。As described above, the antibacterial effect of the present invention
Antifungal materials include metal, paint film, plastics, rubber,
An Ag vapor deposition film, a TiO 2 film, a platinum group element vapor deposition film, etc. are formed on the surface of a material such as ceramics or fibers or a processed product by an ion beam assisted vapor deposition method. These thin films have higher adhesion to the substrate and higher activity than thin films formed by the ordinary vacuum deposition method, and exhibit a catalytic action that activates oxygen in air or water in cooperation with each other. In particular, the TiO 2 film and the platinum group element vapor deposition film have a photocatalytic action, and have an action of improving the antibacterial / antifungal action of the Ag vapor deposition film. for that reason,
The antibacterial and antifungal member according to the present invention is different from the conventional antibacterial and antifungal treatment which depends on elution of Ag ions, and Ag, Ti
Since the active oxygen generated by the catalytic action of O 2 , platinum group elements and the like exerts an antibacterial and antifungal action, the excellent antibacterial and antifungal action is maintained for a long period of time. The member thus treated is used in a wide range of fields such as kitchen appliances, furniture, home appliances, medical appliances, and building materials.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/08 N 8939−4K 14/48 D 8939−4K (72)発明者 堀 久司 静岡県庵原郡蒲原町蒲原1丁目34番1号 株式会社日軽技研内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication C23C 14/08 N 8939-4K 14/48 D 8939-4K (72) Inventor Hisashi Hori Anzuhara, Shizuoka Prefecture 1-34 Kambara, Kambara-cho, Gunchi Nipparu Giken Co., Ltd.
Claims (16)
を含む基材と、イオンビーム支援蒸着法で形成したTi
O2 膜又は白金族元素の蒸着膜とを備えている触媒作用
を利用した抗菌・防カビ部材。1. Ag as a simple substance, alloy, compound or film
Containing Ti and Ti formed by ion beam assisted deposition
An antibacterial / antifungal member utilizing a catalytic action, which comprises an O 2 film or a platinum group element vapor deposition film.
を含む基材と、イオンビーム支援蒸着法で形成したTi
O2 膜、更に該TiO2 膜の上にイオンビーム支援蒸着
法で形成した白金族元素の蒸着膜とを備えている触媒作
用を利用した抗菌・防カビ部材。2. Ag as a simple substance, alloy, compound or film
Containing Ti and Ti formed by ion beam assisted deposition
An antibacterial / antifungal member utilizing a catalytic action, comprising an O 2 film and a platinum group element vapor deposition film formed by an ion beam assisted vapor deposition method on the TiO 2 film.
を含む基材と、イオンビーム支援蒸着法で形成した白金
族元素の蒸着膜と、更に該白金族元素の蒸着膜の上にイ
オンビーム支援蒸着法で形成したTiO2 膜とを備えて
いる触媒作用を利用した抗菌・防カビ部材。3. Ag as a simple substance, alloy, compound or film
A catalyst comprising a base material containing platinum, a vapor deposition film of a platinum group element formed by an ion beam assisted vapor deposition method, and a TiO 2 film formed on the vapor deposition film of the platinum group element by an ion beam assisted vapor deposition method. Antibacterial and antifungal member that utilizes the action.
を含む基材と、イオンビーム支援蒸着法で形成したTi
O2 と白金族元素との混合膜とを備えている触媒作用を
利用した抗菌・防カビ部材。4. Ag as a simple substance, alloy, compound or film
Containing Ti and Ti formed by ion beam assisted deposition
An antibacterial / antifungal member utilizing a catalytic action, which comprises a mixed film of O 2 and a platinum group element.
イオンビーム支援蒸着法で形成したAg蒸着膜とを備え
ている触媒作用を利用した抗菌・防カビ部材。5. A substrate having TiO 2 inside or on its surface,
An antibacterial / antifungal member utilizing a catalytic action, which comprises an Ag vapor deposition film formed by an ion beam assisted vapor deposition method.
イオンビーム支援蒸着法で形成したAg蒸着膜と、該A
g蒸着膜の上又は下にイオンビーム支援蒸着法で形成さ
れた白金族元素の蒸着膜とを備えている触媒作用を利用
した抗菌・防カビ部材。6. A substrate having TiO 2 inside or on its surface,
An Ag vapor deposition film formed by an ion beam assisted vapor deposition method,
An antibacterial / antifungal member utilizing a catalytic action, comprising a vapor deposition film of a platinum group element formed by an ion beam assisted vapor deposition method on or under the vapor deposition film.
イオンビーム支援蒸着法で形成したAgと白金族元素の
混合蒸着膜とを備えている触媒作用を利用した抗菌・防
カビ部材。7. A substrate having TiO 2 inside or on its surface,
An antibacterial and antifungal member utilizing a catalytic action, which comprises a mixed vapor deposition film of Ag and a platinum group element formed by an ion beam assisted vapor deposition method.
と、イオンビーム支援蒸着法で形成したAg蒸着膜とを
備えている触媒作用を利用した抗菌・防カビ部材。8. An antibacterial / antifungal member utilizing a catalytic action, comprising a base material having a platinum group element inside or on the surface thereof and an Ag vapor deposition film formed by an ion beam assisted vapor deposition method.
と、イオンビーム支援蒸着法で形成したAg蒸着膜と、
該Ag蒸着膜の上又は下にイオンビーム支援蒸着法で形
成されたTiO2 膜を備えている触媒作用を利用した抗
菌・防カビ部材。9. A substrate having a platinum group element inside or on the surface thereof, and an Ag vapor deposition film formed by an ion beam assisted vapor deposition method,
An antibacterial / antifungal member utilizing a catalytic action, comprising a TiO 2 film formed by an ion beam assisted vapor deposition method on or under the Ag vapor deposition film.
と、イオンビーム支援蒸着法で形成したAgとTiO2
との混合膜を備えている触媒作用を利用した抗菌・防カ
ビ部材。10. A substrate having a platinum group element inside or on the surface thereof, and Ag and TiO 2 formed by an ion beam assisted deposition method.
An antibacterial and antifungal member that uses a catalytic action and has a mixed film with.
gを含む基材を酸素ガスをイオン化したビームで照射さ
せながらTiを蒸着し、又はAr等のイオンビームを支
援しながらTiO2 を蒸着することにより、前記基材の
表面にTiO2 膜を形成する抗菌・防カビ部材の製造方
法。11. A as a simple substance, alloy, compound or film
a substrate comprising a g oxygen gas by depositing Ti while irradiated with ionized beam, or by depositing TiO 2 while helping the ion beam such as Ar, form a TiO 2 film on the surface of the substrate A method for manufacturing an antibacterial / antifungal member.
る前又は後、或いはTiO2 膜の形成と同時に、イオン
ビーム支援蒸着法で白金族元素を蒸着させる抗菌・防カ
ビ部材の製造方法。12. A method for producing an antibacterial / antifungal member, comprising depositing a platinum group element by an ion beam assisted vapor deposition method before or after forming the TiO 2 film according to claim 11, or simultaneously with forming the TiO 2 film.
に、イオンビーム支援蒸着法でAgを蒸着させる抗菌・
防カビ部材の製造方法。13. An antibacterial for vapor-depositing Ag on a substrate having TiO 2 inside or on its surface by an ion beam assisted vapor deposition method.
Manufacturing method of antifungal member.
又は後、或いはAg蒸着と同時に、イオンビーム支援蒸
着法で白金族元素を蒸着させる抗菌・防カビ部材の製造
方法。14. A method for producing an antibacterial / antifungal member, which comprises depositing a platinum group element by an ion beam assisted vapor deposition method before or after vapor deposition of Ag according to claim 13, or simultaneously with Ag vapor deposition.
に、イオンビーム支援蒸着法でAgを蒸着させる抗菌・
防カビ部材の製造方法。15. An antibacterial for depositing Ag on a substrate having a platinum group element inside or on the surface thereof by an ion beam assisted vapor deposition method.
Manufacturing method of antifungal member.
又は後、或いはAg蒸着と同時に、酸素ガスをイオン化
したビームで照射しながらTiを蒸着し、又はAr等の
イオンビームを支援しながらTiO2 を蒸着することに
より、前記基材の表面にTiO2 膜又はAg−TiO2
混合膜を形成する抗菌・防カビ部材の製造方法。16. Before or after vapor deposition of Ag according to claim 15, or simultaneously with Ag vapor deposition, Ti is vapor-deposited while irradiating with an ionized beam of oxygen gas, or TiO while supporting an ion beam such as Ar. 2 is vapor-deposited on the surface of the base material to form a TiO 2 film or Ag—TiO 2 film.
A method for producing an antibacterial / antifungal member for forming a mixed film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33211794A JP3433546B2 (en) | 1994-12-12 | 1994-12-12 | Antibacterial / mildew-proof member utilizing catalytic action and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33211794A JP3433546B2 (en) | 1994-12-12 | 1994-12-12 | Antibacterial / mildew-proof member utilizing catalytic action and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08165209A true JPH08165209A (en) | 1996-06-25 |
JP3433546B2 JP3433546B2 (en) | 2003-08-04 |
Family
ID=18251350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33211794A Expired - Fee Related JP3433546B2 (en) | 1994-12-12 | 1994-12-12 | Antibacterial / mildew-proof member utilizing catalytic action and manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3433546B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1076222C (en) * | 1999-01-26 | 2001-12-19 | 南京化工大学 | Photocatalytic deposition process to prepare carried palladium film |
JP2002186860A (en) * | 2000-12-20 | 2002-07-02 | Nihon Tetra Pak Kk | Photocatalyst material |
JP2002187806A (en) * | 2000-12-20 | 2002-07-05 | Nihon Tetra Pak Kk | Antimicrobial material |
JP2006063382A (en) * | 2004-08-26 | 2006-03-09 | Kyoto Univ | Method for forming titanium oxide thin film on surface of substrate |
FR2887560A1 (en) * | 2005-06-28 | 2006-12-29 | Commissariat Energie Atomique | COMPOSITE METAL AND OXIDE FILMS FOR ANTIMICROBIAL APPLICATIONS AND METHOD FOR PROTECTING OR DECONTAMINATING A SUBSTRATE USING SUCH FILMS |
EP1933079A1 (en) * | 2006-12-14 | 2008-06-18 | AGC Flat Glass Europe SA | Illuminated panel |
CN105562111A (en) * | 2015-12-11 | 2016-05-11 | 长春工业大学 | Preparation method of Pd/ZIF-67/TiO2 nanotube composite catalyst |
-
1994
- 1994-12-12 JP JP33211794A patent/JP3433546B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1076222C (en) * | 1999-01-26 | 2001-12-19 | 南京化工大学 | Photocatalytic deposition process to prepare carried palladium film |
JP2002186860A (en) * | 2000-12-20 | 2002-07-02 | Nihon Tetra Pak Kk | Photocatalyst material |
JP2002187806A (en) * | 2000-12-20 | 2002-07-05 | Nihon Tetra Pak Kk | Antimicrobial material |
JP2006063382A (en) * | 2004-08-26 | 2006-03-09 | Kyoto Univ | Method for forming titanium oxide thin film on surface of substrate |
FR2887560A1 (en) * | 2005-06-28 | 2006-12-29 | Commissariat Energie Atomique | COMPOSITE METAL AND OXIDE FILMS FOR ANTIMICROBIAL APPLICATIONS AND METHOD FOR PROTECTING OR DECONTAMINATING A SUBSTRATE USING SUCH FILMS |
WO2007000556A2 (en) * | 2005-06-28 | 2007-01-04 | Commissariat A L'energie Atomique | Composite films based on metal and on oxide for antimicrobial applications and method for protecting or decontaminating a substrate by using films of this type |
WO2007000556A3 (en) * | 2005-06-28 | 2007-05-24 | Commissariat Energie Atomique | Composite films based on metal and on oxide for antimicrobial applications and method for protecting or decontaminating a substrate by using films of this type |
EP1933079A1 (en) * | 2006-12-14 | 2008-06-18 | AGC Flat Glass Europe SA | Illuminated panel |
WO2008071763A1 (en) * | 2006-12-14 | 2008-06-19 | Agc Flat Glass Europe Sa | Luminous panel |
CN105562111A (en) * | 2015-12-11 | 2016-05-11 | 长春工业大学 | Preparation method of Pd/ZIF-67/TiO2 nanotube composite catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP3433546B2 (en) | 2003-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2546230C (en) | Antimicrobial composite material | |
US6080490A (en) | Actively sterile surfaces | |
US9107981B2 (en) | Antibacterial coating for an implant and method for producing said coating | |
CA2853512C (en) | Coatings, coated surfaces, and methods for production thereof | |
US20080085326A1 (en) | Antimicrobial material compositions enriched with different active oxygen species | |
Ma et al. | Plasma for biomedical decontamination: From plasma-engineered to plasma-active antimicrobial surfaces | |
JP2009536837A (en) | Novel antimicrobial substrate and use thereof | |
JP3433546B2 (en) | Antibacterial / mildew-proof member utilizing catalytic action and manufacturing method | |
Coad et al. | Plasma polymerization for biomedical applications: A review | |
TW201239113A (en) | Antibacterial article and method for making the same | |
TW201305358A (en) | Antibacterial article and method for making the same | |
Monetta et al. | Strong and durable antibacterial effect of titanium treated in Rf oxygen plasma: Preliminary results | |
TWI437110B (en) | Antibacterial article and method for making the same | |
JPH08165561A (en) | Non-eluting antimicrobial member and its production | |
TWI428458B (en) | Antibacterial article and method for making the same | |
TWI427179B (en) | Antibacterial article and method for making the same | |
JP2002187806A (en) | Antimicrobial material | |
US20040219117A1 (en) | Method of spray-coating deodorant, antibacterial and antifungal agent and deodorized and antibacterially and antifungally treated articles | |
TWI427164B (en) | Antibacterial article and method for making the same | |
Chung et al. | Microstructural effect on the antimicrobial efficacy of arc ion plated TiO 2 | |
JPH08296031A (en) | Metal oxide coated product and its production | |
Han et al. | Plasma SiOx: H nanocoatings to enhance the antibacterial and anti-inflammatory properties of biomaterials | |
CN1272041A (en) | Antibacterial and mildewproofing solutions containing inorganic silver complex salts and process for producing same | |
Gospodonova et al. | Fabrication and Characterization of Antimicrobial Magnetron Cosputtered TiO2/Ag/Cu Composite Coatings. Coatings 2021, 11, 473 | |
Rtimi et al. | Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces: Latest Developments and Critical Issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080530 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090530 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |