JPH0815303B2 - Solid-state imaging device - Google Patents
Solid-state imaging deviceInfo
- Publication number
- JPH0815303B2 JPH0815303B2 JP60071202A JP7120285A JPH0815303B2 JP H0815303 B2 JPH0815303 B2 JP H0815303B2 JP 60071202 A JP60071202 A JP 60071202A JP 7120285 A JP7120285 A JP 7120285A JP H0815303 B2 JPH0815303 B2 JP H0815303B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- pixel
- scanning
- light beam
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims description 13
- 239000012212 insulator Substances 0.000 claims description 3
- 238000003491 array Methods 0.000 claims 3
- 230000005684 electric field Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Light Receiving Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Facsimile Heads (AREA)
Description
【発明の詳細な説明】 〔技術分野〕 本発明は、映像信号を電気信号に変換する固体撮像装
置に関する。Description: TECHNICAL FIELD The present invention relates to a solid-state imaging device that converts a video signal into an electrical signal.
従来の固体撮像装置は、光電変換部と走査部とが同一
平面上にあり、素子構造が複雑なため、画素数を増加し
たり、大口径化しようとすると、開口率が小さくなつて
感度が低下してしまつたり、また、歩留りが下つてしま
い生産性が失なわれるという問題点があつた。In the conventional solid-state imaging device, the photoelectric conversion unit and the scanning unit are on the same plane, and the element structure is complicated. Therefore, when the number of pixels is increased or the aperture is increased, the aperture ratio becomes small and the sensitivity becomes low. There was a problem that productivity would be lost due to a decrease in yield and a decrease in yield.
本発明は、上述の問題点に着目してなされたもので、
光電変換部と走査部とを3次元的に配列し、特に光ビー
ムを走査部に使用するようにして、これらの問題点を解
決することを目的としている。The present invention has been made by focusing on the above problems,
It is an object of the present invention to solve these problems by arranging the photoelectric conversion section and the scanning section three-dimensionally and using a light beam in the scanning section in particular.
以下、本発明の一実施例を第1図ないし第3図に基づ
いて説明する。An embodiment of the present invention will be described below with reference to FIGS.
まず、構造を述べる。 First, the structure will be described.
この固体撮像装置は、第1図の構成図に示すように、
レンズ1に面する撮像部2と、これに接合し、光ビーム
発生器(図示省略)からの光ビーム4を受ける走査部3
とからなる。なお、Eは、該走査部3に接続された電
源、RLは、撮像部2からアンプAMPを介して出力端子5
に至る回路から分岐して設けられた負荷抵抗である。This solid-state imaging device, as shown in the configuration diagram of FIG.
The imaging unit 2 facing the lens 1, and the scanning unit 3 bonded to the imaging unit 2 and receiving the light beam 4 from a light beam generator (not shown).
Consists of In addition, E is a power source connected to the scanning unit 3, and R L is an output terminal 5 from the imaging unit 2 via an amplifier AMP.
Is a load resistance provided by branching from the circuit leading to.
第2図は、前記装置の一画素6分の部分拡大図で、撮
像部2は、レンズ1側から透明電極7,光導電膜8,微小電
極9から構成されており、該電極9は、遮光も兼ねてい
て各画素6にそれぞれ対応している。また、各微小電極
9間は、遮光絶縁体10により埋められていて、撮像部2
と走査部3とは光の透過はできない。なお、各微小電極
9は電気的にはフローテイング状態である。FIG. 2 is a partially enlarged view of one pixel 6 of the device, and the image pickup unit 2 is composed of a transparent electrode 7, a photoconductive film 8 and a microelectrode 9 from the lens 1 side, and the electrode 9 is It also serves as a light shield and corresponds to each pixel 6. In addition, a space between the micro electrodes 9 is filled with a light shielding insulator 10, and
The scanning unit 3 cannot transmit light. In addition, each microelectrode 9 is in a floating state electrically.
走査部3は、微小電極9とSiPINフオトダイオードア
レイ11とにより構成されている。該アレイ11は、p+n-n-
接合になつており、p+n-の接合面は、図中右側の表面に
十分近くに位置されてあるので、走査の光ビーム4が到
達する。なお、該光ビーム4は、右方から当てられる
が、そのスポツトサイズは、p+の径よりも十分小さいも
のである。The scanning unit 3 is composed of a microelectrode 9 and a SiPIN photodiode array 11. The array 11, p + n - n -
It is a junction, and the p + n − junction surface is located sufficiently close to the surface on the right side in the figure, so that the scanning light beam 4 reaches. The light beam 4 is applied from the right side, and its spot size is sufficiently smaller than the diameter of p + .
光ビーム4の走査手段は、機械的でも電気的でもよ
く、走査パターンは、その適用状況に応じて行う。The scanning means of the light beam 4 may be mechanical or electrical, and the scanning pattern is determined according to its application.
次に、第3図に示す等価回路により作用を述べる。 Next, the operation will be described with reference to the equivalent circuit shown in FIG.
まず、1番地の画素61について説明すると、走査の光
ビーム4がPINフオトダイオードD1に当ると、該ダイオ
ードD1に電流が流れコンデンサC1は電源Eで充電され
る。また光ビーム4が消えると前記ダイオードD1はOFF
となる。したがつて撮像部2の面に被写体の光学像が結
ばれていると抵抗R1が、その照度に応じて変化し、コン
デンサC1の電荷を放電する。次に、走査の光ビーム4が
当たるとフオトダイオードD1に電流が流れ、コンデンサ
C1から失なわれた電荷を補うが、この電流は抵抗R1を流
れるので、光の強弱に応じた信号として出力端子5から
取り出すことができる。そして他番地の画素6nについて
も同様に所要信号が取り出されるわけである。First, to describe the pixels 61 of the address 1, the light beam 4 scans hits the PIN photodiode D 1, the capacitor C 1 current flows through the diode D 1 is charged by the power supply E. When the light beam 4 disappears, the diode D 1 turns off.
Becomes Therefore, when the optical image of the subject is formed on the surface of the image pickup unit 2, the resistance R 1 changes according to the illuminance and discharges the electric charge of the capacitor C 1 . Next, when the scanning light beam 4 strikes, a current flows through the photodiode D 1 and the capacitor D
Although the electric charge lost from C 1 is compensated for, this current flows through the resistor R 1 , so that it can be taken out from the output terminal 5 as a signal according to the intensity of light. Then, the required signal is similarly extracted for the pixel 6n at the other address.
これらの画素6を1次元、又は2次元に配列すれば、
1次元、又は2次元の画像信号が得られる。If these pixels 6 are arranged one-dimensionally or two-dimensionally,
A one-dimensional or two-dimensional image signal can be obtained.
なお、他の実施例として第4図に示すような構成にし
てもよい。It should be noted that as another embodiment, the configuration shown in FIG. 4 may be adopted.
この実施例は、第4図に全体構成図を示すように、走
査部3′を、微小電極9、該電極9と同数の画素6を有
する光導電膜21及び透明電極22とで構成したものであ
る。そして、走査用の光ビーム4のスポツトサイズは、
前記微小電極9の径よりは通常は小さいものとしてあ
る。In this embodiment, as shown in the overall configuration of FIG. 4, the scanning portion 3'is composed of a microelectrode 9, a photoconductive film 21 having the same number of pixels 6 as the electrodes 9 and a transparent electrode 22. Is. The spot size of the scanning light beam 4 is
It is usually smaller than the diameter of the microelectrode 9.
次に、第5図に示す等価回路により作用を述べる。 Next, the operation will be described with reference to the equivalent circuit shown in FIG.
まず、1番地の画素61について説明すると、走査の光
ビーム4が該画素61に当たると、その部分の光導電膜11
が導通状態になり、等価回路における、光によつて作動
するスイツチング素子SW−1がONとなり電流が流れて、
コンデンサC1は電源Eによつて充電される。また、光ビ
ーム4が消えるとスイツチング素子SW−1はOFFして撮
像状態となる。撮像部2に被写体の光学像が結像されて
いると、この画素61に照射されている光の強さによつて
抵抗R1の値が変化し、C1に充電された電荷が放電する。
一定時間経過後に走査用光ビーム4を当てると再び前記
スイツチング素子SW−1がONとなり、失われた電荷が補
充されるが、この電流は抵抗RLを通るので光の強弱に対
応した信号として取り出される。そして他の番地の画素
6nについても同様に所要の信号が取り出されるわけで、
画素6の配列により前記実施例と同様の画像信号が得ら
れる。First, the pixel 61 at the address 1 will be described. When the scanning light beam 4 hits the pixel 61, the photoconductive film 11 in that portion is detected.
Becomes conductive, the switching element SW-1 operated by light in the equivalent circuit is turned on, and a current flows,
The capacitor C 1 is charged by the power source E. Further, when the light beam 4 disappears, the switching element SW-1 is turned off and the image pickup state is set. When an optical image of the subject is formed on the image pickup unit 2, the value of the resistance R 1 changes depending on the intensity of light applied to the pixel 61, and the electric charge charged in C 1 is discharged. .
When the scanning light beam 4 is applied after a certain period of time, the switching element SW-1 is turned on again to replenish the lost charges, but this current passes through the resistance RL , so that it is regarded as a signal corresponding to the intensity of light. Taken out. And the pixels at other addresses
Similarly for 6n, the required signal is extracted,
An image signal similar to that in the above-described embodiment can be obtained by the arrangement of the pixels 6.
以上説明してきたように、本発明は、薄膜による撮像
部とモノリシツク型の走査部とにより構成されているた
め、構造が簡単となり、大画面,多画素対応に適してお
り、また、開口率も100%に近い値となり、画素数依存
度も少い。As described above, the present invention is simple in structure and suitable for a large screen and a large number of pixels because it is composed of an imaging unit made of a thin film and a scanning unit of monolithic type. The value is close to 100% and has little dependency on the number of pixels.
更に、光ビームによる走査を行うようにしてあるの
で、自在に走査の光ビームを制御することができ、ま
た、スポツトの形を変えることにより複数個の画素の同
時読み出しや、あるいは、全面照射により一括リセツト
も可能となり、その応用範囲は、従来の装置に比べて大
幅に拡張することができる。そのうえ、光導電膜材料
は、使用する波長に応じて自由に選択することができる
ので、最適なものを充当し得るなど、数々の効果があ
る。Further, since the scanning is performed by the light beam, the scanning light beam can be freely controlled. Also, by changing the shape of the spot, it is possible to read out a plurality of pixels simultaneously or to irradiate the entire surface. A batch reset is also possible, and its application range can be greatly expanded compared to the conventional device. In addition, since the photoconductive film material can be freely selected according to the wavelength to be used, there are various effects such that the optimum material can be applied.
更に、従来の固定撮像素子で発生するブルーミングも
起きないという利点もある。Further, there is an advantage that blooming which occurs in the conventional fixed image pickup device does not occur.
第1図は、本発明の一実施例を示す全体構成図、第2図
は、同じく一画素の部分拡大図、第3図は、同じく等価
回路図、第4図は、他の実施例を示す全体構成図、第5
図は、同じく等価回路図である。 1……レンズ 2……撮像部 3……走査部 4……光ビーム 7……透明電極 8……光導電膜 9……微小電極 10……遮光絶縁体 11……SiPINフオトダイオードアレイFIG. 1 is an overall configuration diagram showing an embodiment of the present invention, FIG. 2 is a partially enlarged view of one pixel, FIG. 3 is an equivalent circuit diagram of the same, and FIG. 4 is another embodiment. 5 is an overall configuration diagram showing
The figure is also an equivalent circuit diagram. 1 ... Lens 2 ... Imaging unit 3 ... Scanning unit 4 ... Light beam 7 ... Transparent electrode 8 ... Photoconductive film 9 ... Microelectrode 10 ... Shading insulator 11 ... SiPIN photodiode array
Claims (1)
極に接する光導電膜と、遮光絶縁体で仕切って配設され
た、各画素に対応した遮光性の複数の微小電極とを有す
る撮像層と、 該撮像層に対して被写体光の入射面と反対側に設けら
れ、該撮像層の前記複数の微小電極にそれぞれ接続され
た複数のフォトダイオードアレイからなる走査層と、 前記走査層の複数のフォトダイオードアレイに対して光
ビームを順次入射することにより各画素に対応した光導
電膜部分に所定の電荷を蓄積し、その後被写体像を前記
光導電膜に入射することにより前記各画素に蓄積された
電荷を変化させ、その後再び前記走査層の複数のフォト
ダイオードアレイに対して光ビームを順次入射すること
により前記電荷のパターンを検出する駆動手段と、を有
することを特徴とする固体撮像装置。1. A transparent electrode on which subject light is incident, a photoconductive film in contact with the transparent electrode, and a plurality of light-shielding minute electrodes corresponding to each pixel, which are arranged by being partitioned by a light-shielding insulator. An imaging layer; a scanning layer comprising a plurality of photodiode arrays provided on the side of the imaging layer opposite to the incident surface of the subject light and connected to the microelectrodes of the imaging layer; Light beams are sequentially incident on the plurality of photodiode arrays to accumulate a predetermined charge in the photoconductive film portion corresponding to each pixel, and then a subject image is incident on the photoconductive film to form each pixel. Driving means for detecting the pattern of the electric charge by changing the electric charge stored in the electric field, and then successively injecting a light beam to the plurality of photodiode arrays of the scanning layer again. The solid-state imaging device according to claim.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60071202A JPH0815303B2 (en) | 1985-04-05 | 1985-04-05 | Solid-state imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60071202A JPH0815303B2 (en) | 1985-04-05 | 1985-04-05 | Solid-state imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61230559A JPS61230559A (en) | 1986-10-14 |
JPH0815303B2 true JPH0815303B2 (en) | 1996-02-14 |
Family
ID=13453849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60071202A Expired - Fee Related JPH0815303B2 (en) | 1985-04-05 | 1985-04-05 | Solid-state imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815303B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0338091A4 (en) * | 1987-10-21 | 1992-12-09 | Hitachi, Ltd. | Light-receiving element and method of operating the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063975A (en) * | 1983-09-17 | 1985-04-12 | Toshiba Corp | Semiconductor laser |
-
1985
- 1985-04-05 JP JP60071202A patent/JPH0815303B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6063975A (en) * | 1983-09-17 | 1985-04-12 | Toshiba Corp | Semiconductor laser |
Also Published As
Publication number | Publication date |
---|---|
JPS61230559A (en) | 1986-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1302986B1 (en) | Photodetector with high dynamic range and increased operating temperature | |
US4242706A (en) | Visible light and near infrared imaging device | |
US4360732A (en) | Infrared charge transfer device (CTD) system | |
JPH0784055A (en) | Radiation two-dimensional detector | |
US6628331B1 (en) | Cyan-magenta-yellow-blue color filter array | |
US4652926A (en) | Solid state imaging technique | |
US4837631A (en) | Electronic still camera tube | |
US3748485A (en) | Optical-to-electrical signal transducer apparatus | |
JPH0815303B2 (en) | Solid-state imaging device | |
US5351209A (en) | Apparatus for converting optical information into electrical information signal, information storage element and method for storing information in the information storage element | |
US5864132A (en) | Full image optical detector with spaced detector pixels | |
JPH0795825B2 (en) | Solid-state imaging device | |
JP4078707B2 (en) | Imaging device | |
JP2519412B2 (en) | Optical image information to electrical signal converter | |
EP0338091A1 (en) | Light-receiving element and method of operating the same | |
US5285234A (en) | Phase difference detecting type autofocusing device including an optical system having first and second lenses | |
US4827346A (en) | Electronic camera tube utilizing an array of charge storage cells for image storage and tunneling devices for readout | |
JPH0738437B2 (en) | Image sensor | |
JPH1152058A (en) | Two dimensional radiation detector | |
JP2591120B2 (en) | Imaging device | |
KR100355992B1 (en) | A digital radiation image processing system | |
JP3168599B2 (en) | Image sensor | |
KR100425379B1 (en) | digital radiography detecting equipment and radiography detecting method | |
JP2818850B2 (en) | Optical image information to electrical signal converter | |
JPS6184055A (en) | Photosensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |