[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08138690A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH08138690A
JPH08138690A JP6272354A JP27235494A JPH08138690A JP H08138690 A JPH08138690 A JP H08138690A JP 6272354 A JP6272354 A JP 6272354A JP 27235494 A JP27235494 A JP 27235494A JP H08138690 A JPH08138690 A JP H08138690A
Authority
JP
Japan
Prior art keywords
anode electrode
anode
fuel cell
alloy
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6272354A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshida
利彦 吉田
Naoki Ito
直樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP6272354A priority Critical patent/JPH08138690A/en
Publication of JPH08138690A publication Critical patent/JPH08138690A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To exhibit a function comparable to that of a solid electrolyte fuel cell requiring high-temperature operation even in low-temperature operation or a greater function in pressurized operation, so as to reduce costs. CONSTITUTION: A slid electrolyte fuel cell is provided with a structure as a cell structure wherein an anode constituted of an anode electrode supporting body containing porous materials made of heat resisting metal containing iron- base alloy, nickel-base alloy and cobalt-base alloy and an anode electrode, a cerium oxide electrolyte and a cathode are laminated in this order. It can be provided by forming the anode by fixing the anode electrode to the anode electrode supporting body, and then sequentially laminating the cerium oxide electrolyte and the cathode on it, or laminating a cell through a separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温でも高性能・高信
頼性をもちかつ低コストで作製可能な固体電解質型燃料
電池及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid oxide fuel cell which has high performance and high reliability even at low temperature and can be produced at low cost, and a method for producing the same.

【0002】[0002]

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃焼性化学物質やそれを含有する燃料を活物質に
用い、該化学物質や燃料の酸化反応を電気化学的に行わ
せ、酸化過程におけるエネルギー変化を直接的に電気エ
ネルギーに変換させる電池であって、高いエネルギー交
換効率を期待しうるものである。中でも特に高い効率を
期待しうるものとして、近年、第一世代のリン酸型、第
二世代の溶融炭酸塩型に続く第三世代の固体電解質型燃
料電池、中でも集積度の高い平板型のものが注目されて
いる。
2. Description of the Related Art A fuel cell uses a combustible chemical substance such as hydrogen, carbon monoxide, or hydrocarbon or a fuel containing the same as an active material and causes an oxidation reaction of the chemical substance or the fuel to be performed electrochemically. A battery that directly converts the energy change in the oxidation process into electric energy, and is expected to have high energy exchange efficiency. Among them, particularly high efficiency can be expected in recent years as a third generation solid oxide fuel cell following the first generation phosphoric acid type and the second generation molten carbonate type, and among them, the highly integrated flat plate type Is attracting attention.

【0003】[0003]

【発明が解決しようとする課題】従来の固体電解質型燃
料電池は、電解質としてジルコニア系の酸化物を用いて
いるが、これは1000℃付近で初めて充分なイオン伝
導度を持つため、運転温度を1000℃付近の高温にせ
ざるを得ない。一方燃料電池の理論効率は運転温度が高
くなるほど小さくなり、また材料の面でも高温であるほ
ど高価な材料が必要となる。つまり、固体電解質型燃料
電池には性能・コストの両面から実効ある運転温度の低
下の実現が強く要望されている。本発明の目的は、この
ような事情の下、従来より低温で運転可能な固体電解質
型燃料電池を提供することにある。
A conventional solid oxide fuel cell uses a zirconia-based oxide as an electrolyte, but since this has a sufficient ionic conductivity at around 1000 ° C., the operating temperature is There is no choice but to raise the temperature to around 1000 ° C. On the other hand, the theoretical efficiency of the fuel cell becomes smaller as the operating temperature becomes higher, and in terms of materials, the higher the temperature, the more expensive the material becomes. In other words, solid electrolyte fuel cells are strongly demanded to achieve an effective reduction in operating temperature in terms of both performance and cost. Under such circumstances, an object of the present invention is to provide a solid oxide fuel cell that can be operated at a lower temperature than before.

【0004】[0004]

【課題を解決するための手段】本発明者らは、低温で運
転しうる固体電解質型燃料電池を開発するために鋭意研
究を重ねた結果、電解質材料として酸化セリウム系酸化
物を、さらにアノード電極支持体として所定耐熱金属の
多孔質体をそれぞれ採択することにより、その目的を達
成しうることを見出し、この知見に基づいて本発明をな
すに至った。
The inventors of the present invention have conducted extensive studies to develop a solid oxide fuel cell that can be operated at low temperatures, and as a result, have found that cerium oxide-based oxide as an electrolyte material and further anode electrode It has been found that the object can be achieved by adopting a porous body of a predetermined heat resistant metal as a support, and the present invention has been completed based on this finding.

【0005】すなわち、本発明は、(1)単電池構造と
して、鉄基合金、ニッケル基合金及びコバルト基合金の
中から選ばれた少なくとも1種の耐熱合金を含有する耐
熱金属からなる多孔質材を含有するアノード電極支持体
及びアノード電極で構成されるアノード、酸化セリウム
系電解質及びカソードが順に積層された構造を有するこ
とを特徴とする固体電解質型燃料電池、及び(2)鉄基
合金、ニッケル基合金及びコバルト基合金の中から選ば
れた少なくとも1種の耐熱合金を含有する耐熱金属から
なる多孔質材を含有するアノード電極支持体にアノード
電極を固着してアノードを形成し、次いでこのアノード
上に順次酸化セリウム系電解質及びカソードを積層する
か、あるいはこのようにして得た単電池をセパレータを
介在させて積層することを特徴とする固体電解質型燃料
電池の製造方法を提供するものである。
That is, the present invention provides (1) a porous material made of a heat-resistant metal containing at least one heat-resistant alloy selected from an iron-based alloy, a nickel-based alloy and a cobalt-based alloy as a unit cell structure. And a solid electrolyte fuel cell having a structure in which an anode composed of an anode electrode support and an anode electrode, a cerium oxide-based electrolyte, and a cathode are sequentially laminated, and (2) an iron-based alloy, nickel An anode electrode is fixed to an anode electrode support containing a porous material made of a refractory metal containing at least one refractory alloy selected from a base alloy and a cobalt base alloy to form an anode, and then this anode A cerium oxide-based electrolyte and a cathode are laminated in this order, or the cells thus obtained are laminated with a separator interposed. It is intended to provide a method of manufacturing a solid oxide fuel cell according to claim.

【0006】本発明の好ましい態様としては、(3)前
記耐熱金属がフェライト系ステンレス鋼である前記
(1)項記載の固体電解質型燃料電池、(4)アノード
電極支持体が前記耐熱金属の多孔質材からなるベース、
及びその上に積層された、該多孔質材とアノード電極材
料の混合物からなる表層部で構成される前記(1)項又
は(3)項記載の固体電解質型燃料電池、(5)酸化セ
リウム系酸化物がセリアに5〜30モル%の希土類酸化
物をドープさせたものである前記(1)項、(3)項又
は(4)項記載の固体電解質型燃料電池、(6)前記
(1)項、(3)項又は(4)項記載の単電池構造を有
し、前記(1)項記載の耐熱金属からなるセパレータを
用いて単電池を積層して成る固体電解質型燃料電池、
(7)耐熱金属がフェライト系ステンレス鋼である前記
(6)項記載の固体電解質型燃料電池、が挙げられる。
In a preferred aspect of the present invention, (3) the solid electrolyte fuel cell according to the above item (1), wherein the refractory metal is ferritic stainless steel, and (4) the anode electrode support is porous of the refractory metal. Base made of quality material,
And a solid oxide fuel cell according to the above (1) or (3), which is composed of a surface layer portion formed of a mixture of the porous material and an anode electrode material, and (5) cerium oxide-based The oxide is ceria doped with 5 to 30 mol% of a rare earth oxide, and the solid oxide fuel cell according to item (1), (3) or (4), (6) above (1). ), (3) or (4), the unit cell structure, wherein a solid electrolyte fuel cell is formed by stacking the unit cells using the separator made of the refractory metal according to (1) above.
(7) The solid oxide fuel cell according to the item (6), wherein the refractory metal is ferritic stainless steel.

【0007】本発明に用いられるアノードは前記耐熱金
属からなる多孔質材を含有するアノード電極支持体とア
ノード電極からなり、アノード電極支持体としては、例
えば該多孔質材単独からなるものや、該多孔質材単独か
らなるベースと該多孔質材とアノード電極材料からなる
表層部とで構成される複合体などが挙げられる。このよ
うなアノードにおいては、アノード電極支持体により強
度が保持され、アノード電極により電気化学反応が行わ
れる。
The anode used in the present invention comprises an anode electrode support containing a porous material made of the above refractory metal and an anode electrode. Examples of the anode electrode support include those made of the porous material alone, Examples thereof include a composite composed of a base made of a porous material alone and a surface layer made of the porous material and an anode electrode material. In such an anode, the strength is maintained by the anode electrode support, and the electrochemical reaction is performed by the anode electrode.

【0008】アノード電極支持体は、通常10〜90
%、好ましくは30〜70%の相対密度を持ち、通常1
0〜500μm、好ましくは50〜200μmの孔径の
ガス通気孔を有し、その厚さは素材、相対密度、ガス通
気孔の孔径等により変動するが、通常0.1〜5mm、
好ましくは0.5〜2mmの範囲で選ばれる。その素材
となる多孔質金属は、粉末冶金法を用いれば容易に作製
でき、多孔度や孔径の制御も容易にできる。
The anode electrode support is usually 10-90.
%, Preferably 30-70% relative density, usually 1
The gas vent has a pore size of 0 to 500 μm, preferably 50 to 200 μm, and its thickness varies depending on the material, the relative density, the pore size of the gas vent, etc., but is usually 0.1 to 5 mm.
It is preferably selected in the range of 0.5 to 2 mm. The porous metal as the material can be easily produced by using the powder metallurgy method, and the porosity and the pore size can be easily controlled.

【0009】本発明においてアノード電極支持体に用い
られる多孔質材の素材である耐熱金属は鉄基合金、ニッ
ケル基合金及びコバルト基合金の中から選ばれた少なく
とも1種の耐熱合金を含有するものであり、このような
ものとしては前記耐熱合金のみのものや、該合金にさら
にNi,Co及びFeの中から選ばれた少なくとも1種
の金属を含むものなどが例示される。前記鉄基合金とし
ては、Fe‐Cr系合金、Fe‐Ni‐Cr系合金、F
e‐Cr‐Ni系合金、Fe‐Cr‐Ni‐Co系合金
などが挙げられ、その中でもフェライト系ステンレス
鋼、特にFeを主成分とし、5〜30%のCrを含み、
場合により10%以下のSi、Mn、Al、Ti、Mo
を含む組成の合金、例えばSUS430、SUH409
Lなどが、酸化セリウム系電解質を用いた場合の運転温
度である600℃付近で充分な耐食性を持ち、しかもよ
り高温向けのNi、Co基耐熱合金よりずっと安価であ
り、熱膨張係数も12×10-6/K-1程度と酸化セリウ
ム系電解質とほぼ一致するので、好ましい。これら耐熱
合金は単独で用いてもよいし、また2種以上を組み合わ
せて用いてもよい。代表的な市販品としては、その他、
INCOLOY Alloy 800,800H
(T),802、INCO Alloy 330などが
ある。
In the present invention, the refractory metal which is the material of the porous material used for the anode electrode support contains at least one refractory alloy selected from iron-based alloys, nickel-based alloys and cobalt-based alloys. Examples of such a material include the heat-resistant alloy only and the alloy further containing at least one metal selected from Ni, Co and Fe. As the iron-based alloy, Fe-Cr alloy, Fe-Ni-Cr alloy, F
e-Cr-Ni-based alloys, Fe-Cr-Ni-Co-based alloys, and the like. Among them, ferritic stainless steel, particularly Fe as a main component, containing 5 to 30% of Cr,
10% or less of Si, Mn, Al, Ti, Mo in some cases
Alloys with a composition including, for example, SUS430, SUH409
L, etc. have sufficient corrosion resistance near the operating temperature of 600 ° C. when a cerium oxide-based electrolyte is used, and are much cheaper than Ni- and Co-based heat-resistant alloys for higher temperatures, and have a thermal expansion coefficient of 12 ×. It is preferable because it is approximately 10 −6 / K −1, which is almost the same as that of the cerium oxide-based electrolyte. These heat-resistant alloys may be used alone or in combination of two or more. Other typical products on the market are:
INCOLOY Alloy 800, 800H
(T), 802, and INCO Alloy 330.

【0010】また、ニッケル基合金としては、Ni‐C
r系合金、Ni‐Cr‐Fe系合金、Ni‐Cr‐Mo
系合金、Ni‐Cr‐Mo‐Co系合金、その他Ni‐
Cr‐Mo‐Fe系合金などを挙げることができ、その
中でも特にNi‐Cr系合金が好ましい。これらは単独
で用いてもよいし、また2種以上を組み合わせて用いて
もよい。その代表的な市販品としては、INCONEL
Alloy 600,601,617,625,69
0、X‐750,751、NIMONIC Alloy
75,80A,90、INCO Alloy HX,
UHMなどがある。
The nickel-base alloy is Ni-C.
r-based alloy, Ni-Cr-Fe-based alloy, Ni-Cr-Mo
Alloys, Ni-Cr-Mo-Co alloys, other Ni-
Examples thereof include Cr-Mo-Fe based alloys, and among them, Ni-Cr based alloys are particularly preferable. These may be used alone or in combination of two or more. A typical commercially available product is INCONEL
Alloy 600, 601, 617, 625, 69
0, X-750, 751, NIMONIC Alloy
75, 80A, 90, INCO Alloy HX,
UHM etc.

【0011】また、コバルト基合金としては、Co‐C
r系合金、Co‐Cr‐Fe系合金、Co‐Cr‐W系
合金、Co‐Cr‐Ni‐W系合金などが挙げられ、そ
の中でも特にCo‐Cr系合金が好ましい。これらは単
独で用いてもよいし、また2種以上を組み合わせて用い
てもよい。その代表的な市販品としては、ヘインズアロ
イNo.25、ヘインズアロイNo.188、三菱ステ
ライトNo.6B、UMC050などがある。
The cobalt-based alloy is Co-C.
Examples include r-based alloys, Co-Cr-Fe-based alloys, Co-Cr-W-based alloys, Co-Cr-Ni-W-based alloys, and among these, Co-Cr-based alloys are particularly preferable. These may be used alone or in combination of two or more. A typical commercially available product is Haines Alloy No. 25, Haines Alloy No. 188, Mitsubishi Stellite No. 6B, UMC050, etc.

【0012】本発明において用いられるアノード電極は
充分なガス透過性と電気化学活性を有するものであれば
特に制限はなく、固体電解質型燃料電池において通常用
いられるNi/ZrO2などを挙げることができ、その
厚さは通常5〜200μm、好ましくは20〜100μ
mの範囲で選ばれる。
The anode electrode used in the present invention is not particularly limited as long as it has sufficient gas permeability and electrochemical activity, and examples thereof include Ni / ZrO 2 which is usually used in a solid oxide fuel cell. , Its thickness is usually 5 to 200 μm, preferably 20 to 100 μm
It is selected in the range of m.

【0013】本発明において用いられる酸化セリウム系
電解質としては、酸化セリウム、あるいは金属酸化物、
中でも希土類酸化物や、CaO、MgOなどのアルカリ
土類金属酸化物、特にSm23,La23、Y23及び
Gd23の中から選ばれた1種以上の酸化物からなるド
ーパントを5〜30モル%ドープした酸化セリウムが挙
げられる。これら酸化セリウム単独あるいはドーパント
含有酸化セリウムにおいて、酸化セリウムとしては、セ
リア(CeO2)が好ましい。ドーパント含有酸化セリ
ウムとしては、Sm23やGd23をドーパントとして
10〜20モル%ドープしたセリアが好ましい。これら
の酸化セリウム系電解質は、良好な導電率を有し、前記
耐熱金属に対する熱膨張特性の差異も許容しうる範囲に
あり、中でもSm23又はGd23ドーパント含有セリ
アは600℃において5×10-3〜5×10-2Ω-1cm
-1の良好な導電率と、フェライト系ステンレス鋼とほぼ
一致した12×10-6/K-1程度の熱膨張率を有する。
電解質は、厚さを10μm程度と薄くするのが、600
℃付近の低温でも、ジルコニア系電解質を用いた燃料電
池の1000℃付近の性能と同等以上の性能を発揮しう
るので、好ましい。
As the cerium oxide-based electrolyte used in the present invention, cerium oxide or a metal oxide,
Among them, rare earth oxides and alkaline earth metal oxides such as CaO and MgO, particularly one or more oxides selected from Sm 2 O 3 , La 2 O 3 , Y 2 O 3 and Gd 2 O 3 . Cerium oxide doped with a dopant consisting of 5 to 30 mol% is mentioned. In the cerium oxide alone or the cerium oxide containing the dopant, ceria (CeO 2 ) is preferable as the cerium oxide. As the dopant-containing cerium oxide, ceria doped with 10 to 20 mol% of Sm 2 O 3 or Gd 2 O 3 as a dopant is preferable. These cerium oxide-based electrolytes, has good electrical conductivity, the range of differences also acceptable thermal expansion characteristics to said refractory metal, among others Sm 2 O 3 or Gd 2 O 3 dopant content ceria in 600 ° C. 5 × 10 -3 to 5 × 10 -2 Ω -1 cm
It has a good electrical conductivity of -1 and a coefficient of thermal expansion of about 12 × 10 -6 / K -1, which is almost the same as that of ferritic stainless steel.
As for the electrolyte, it is recommended to reduce the thickness to about 10 μm.
It is preferable because even at a low temperature of around 0 ° C, the performance of the fuel cell using the zirconia-based electrolyte can be equal to or higher than that at around 1000 ° C.

【0014】本発明において用いられるカソードとして
は充分なガス透過性と電気化学活性があれば特に制限は
なく、固体電解質型燃料電池で通常用いられているLa
1-xSrxMnO3、La1-xSrxCoO3、La1-xSrx
FeO3などを挙げることができる。
The cathode used in the present invention is not particularly limited as long as it has sufficient gas permeability and electrochemical activity, and it is usually used in a solid oxide fuel cell.
1-x Sr x MnO 3 , La 1-x Sr x CoO 3 , La 1-x Sr x
FeO 3 and the like can be mentioned.

【0015】本発明の燃料電池として、単電池間にセパ
レータを介在させたスタック型を採択する場合には、セ
パレータ材として前記耐熱金属、好ましくは鉄基合金を
含有する耐熱金属、中でもフェライト系ステンレス鋼、
特にそのバルク体を用いるのが、単電池との整合性に優
れるので好ましい。
When the fuel cell of the present invention adopts a stack type in which a separator is interposed between the unit cells, the above-mentioned heat-resistant metal, preferably a heat-resistant metal containing an iron-based alloy, as a separator material, in particular ferritic stainless steel. steel,
In particular, it is preferable to use the bulk body because it is excellent in compatibility with the unit cell.

【0016】本発明の固体電解質型燃料電池は、前記ア
ノード電極支持体にアノード電極を固着してアノードを
形成し、次いでこのアノード上に順次酸化セリウム系電
解質及びカソードを積層するか、あるいはこのようにし
て得た単電池をセパレータを介在させて積層することに
より、製造することができる。
In the solid oxide fuel cell of the present invention, an anode electrode is fixed to the anode electrode support to form an anode, and then a cerium oxide-based electrolyte and a cathode are sequentially laminated on the anode, or It is possible to manufacture by stacking the single cells obtained in the above with a separator interposed.

【0017】アノードの構造としては、例えば、図1の
ようにアノード電極支持基板上にアノード電極を積層し
た構造、図2のようにアノード電極支持基板間にアノー
ド電極を形成した構造、図3のようにアノード電極支持
ベース上に該ベース材料とアノード電極材料の混合物か
らなる複合体を積層してアノード電極支持体を形成し、
その上にアノード電極を積層し、アノード電極とアノー
ド電極支持ベースとの間に所定複合体を介在させて組成
的に傾斜構造をもたせた構造などが挙げられる。図1の
ような構造にする場合には、アノード電極支持基板上
に、ドクターブレード、スクリーン印刷、溶射などの方
法でアノード電極を作製すればよい。図2のような構造
にする場合には、ディップコート法などでアノード電極
を作製すればよい。図3のような構造にする場合には、
一体焼結などの方法で作製すればよい。
The structure of the anode is, for example, a structure in which an anode electrode is laminated on an anode electrode supporting substrate as shown in FIG. 1, a structure in which an anode electrode is formed between anode electrode supporting substrates as shown in FIG. 2, and a structure shown in FIG. To form an anode electrode support by laminating a composite comprising a mixture of the base material and the anode electrode material on the anode electrode support base,
There may be mentioned a structure in which an anode electrode is laminated thereon, and a predetermined composite is interposed between the anode electrode and the anode electrode supporting base to give a compositionally graded structure. In the case of the structure shown in FIG. 1, the anode electrode may be formed on the anode electrode supporting substrate by a method such as doctor blade, screen printing or thermal spraying. When the structure shown in FIG. 2 is used, the anode electrode may be manufactured by a dip coating method or the like. When the structure shown in FIG. 3 is used,
It may be manufactured by a method such as integral sintering.

【0018】次に、このようにして作製されたアノード
上に酸化セリウム系電解質を積層する。積層法として
は、好適には製膜法が用いられ、中でも、ガスを通さな
いように充分に緻密で、かつ抵抗が小さくなるように、
20μm以下望ましくは10μm以下の膜厚とすること
が求められるため、CVD法,EB法,イオンプレーテ
ィング法、スラリー法、有機金属化合物の塗布/焼成に
よる方法などが有利である。これらの中で特に好ましい
方法は、有機金属化合物を有機溶媒に溶解した溶液を、
スピンコート、ディッピングなどで塗布し、焼成する方
法である。
Next, a cerium oxide-based electrolyte is laminated on the anode thus manufactured. As the laminating method, a film forming method is preferably used, and above all, it is sufficiently dense so as not to pass gas and has a small resistance.
Since the film thickness is required to be 20 μm or less, preferably 10 μm or less, the CVD method, the EB method, the ion plating method, the slurry method, the method of coating / baking an organometallic compound, etc. are advantageous. Of these, a particularly preferred method is to prepare a solution of an organometallic compound in an organic solvent,
It is a method of applying by spin coating, dipping, etc. and baking.

【0019】さらに、酸化セリウム系電解質上にカソー
ドを積層する。積層法としては、好適には製膜法、中で
もスクリーン印刷法、ドクターブレード法、溶射法など
が用いられる。
Further, a cathode is laminated on the cerium oxide type electrolyte. As the laminating method, a film forming method is preferably used, among which a screen printing method, a doctor blade method, a thermal spraying method and the like are used.

【0020】このように積層後、図4に示すように、側
面にシール処理を施すのが好ましい。4つある側面のう
ち向かい合う2面ごとを組にし、一方の組の2面はカソ
ードと電解質を、他方の組の2面はアノードと電解質を
シールする。シール材としては特に制限はないが、例え
ばガラス、セラミックスなどが用いられる。以上のよう
にして、単電池が作製される。
After stacking as described above, it is preferable to apply a sealing treatment to the side surface as shown in FIG. Of the four side surfaces, two facing surfaces are made into a set, two surfaces of one set seal the cathode and the electrolyte, and two surfaces of the other set seal the anode and the electrolyte. The sealing material is not particularly limited, but for example, glass, ceramics, etc. are used. The unit cell is manufactured as described above.

【0021】また、このようにして作製された単電池を
所要複数個用意し、各単電池間にセパレータを介在させ
て所要段数積層することによりスタック型電池本体が作
製される。また、積層法・マニホールドの形式などは平
板型燃料電池で通常用いられるものであればよく、特に
制限されず、例えば、図5に示すようなスタック型電池
本体の積層様式や図6に示すような電池本体に配設した
円筒型マニホールドなどが挙げられる。
Further, a stack type battery main body is manufactured by preparing a required plurality of unit cells thus manufactured and stacking a required number of layers with a separator interposed between the unit cells. Further, the stacking method / manifold type, etc. may be any one commonly used in a flat plate type fuel cell, and is not particularly limited. For example, as shown in FIG. Examples include a cylindrical manifold arranged in a battery body.

【0022】[0022]

【実施例】次に、実施例によって本発明をさらに詳細に
説明する。以下のようにして単電池からなる固体電解質
型燃料電池を作製した。先ず、厚さ1〜5mmのSUS
430やSUH409Lのようなフェライト系ステンレ
ス鋼製のアノード電極支持基板上に、Ni/ZrO2
ーメットをスクリーン印刷法により100μm厚に成膜
してアノード電極を形成させ、アノードを作製した。次
いで、このアノード上に、Sm23を20モル%ドープ
したセリアを固体電解質として5μm厚に成膜した。そ
の方法は、上記の組成になるように調製した有機Sm化
合物、有機Ce化合物及びメタノールからなる溶液をス
ピンコート法にて塗布し、これを1000℃で2時間焼
成することによった。さらにこの固体電解質上にLa
0.8Sr0.2MnO3をスクリーン印刷法により100μ
m厚に成膜してカソードを作製した。
EXAMPLES Next, the present invention will be described in more detail by way of examples. A solid oxide fuel cell comprising a single cell was produced as follows. First, SUS with a thickness of 1-5 mm
Ni / ZrO 2 cermet was formed into a 100 μm thick film by a screen printing method on an anode electrode supporting substrate made of ferritic stainless steel such as 430 or SUH409L to form an anode electrode, thereby producing an anode. Then, on this anode, ceria doped with 20 mol% of Sm 2 O 3 was used as a solid electrolyte to form a film having a thickness of 5 μm. The method was such that a solution containing an organic Sm compound, an organic Ce compound and methanol prepared so as to have the above composition was applied by a spin coating method and baked at 1000 ° C. for 2 hours. Furthermore, La is deposited on this solid electrolyte.
0.8 Sr 0.2 MnO 3 100μ by screen printing
A m-thick film was formed to form a cathode.

【0023】[0023]

【発明の効果】本発明の固体電解質型燃料電池は、酸化
セリウム系電解質及び所定耐熱金属多孔質材からなるア
ノード電極支持体を用いているので、600℃程度の低
温運転でも、従来の1000℃付近の高温運転を要する
固体電解質燃料電池と同等の性能、さらに加圧運転すれ
ばそれ以上の性能を示し、しかもコストダウンが可能に
なり、特にスタック型のものは、単電池を無理なく組み
立て、また積層することができ、さらにアノード電極支
持体及びセパレータをフェライト系ステンレス鋼製とす
ることにより、電解質と熱膨張特性を整合させることが
可能となり、一層良好な電池性能を発揮しうる。
EFFECTS OF THE INVENTION Since the solid oxide fuel cell of the present invention uses the anode electrode support made of the cerium oxide type electrolyte and the predetermined heat-resistant metal porous material, the conventional 1000 ° C. even at a low temperature operation of about 600 ° C. Performance equivalent to that of solid electrolyte fuel cells that require high-temperature operation in the vicinity, and even higher performance when pressurized operation is possible, and further cost reduction is possible. Further, they can be laminated, and when the anode electrode support and the separator are made of ferritic stainless steel, it is possible to match the thermal expansion characteristics with the electrolyte, and further excellent battery performance can be exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アノードの1例の概略図。FIG. 1 is a schematic view of an example of an anode.

【図2】 アノードの別の例の概略図。FIG. 2 is a schematic diagram of another example of an anode.

【図3】 アノードのさらに別の例の概略図。FIG. 3 is a schematic diagram of yet another example of an anode.

【図4】 単電池のシール状態の説明図。FIG. 4 is an explanatory view of a sealed state of a unit cell.

【図5】 電池本体の積層様式を示す展開概略図。FIG. 5 is a development schematic diagram showing a stacking mode of a battery body.

【図6】 電池本体に配設した円筒型マニホールドの概
略図。
FIG. 6 is a schematic view of a cylindrical manifold arranged in the battery body.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単電池構造として、鉄基合金、ニッケル
基合金及びコバルト基合金の中から選ばれた少なくとも
1種の耐熱合金を含有する耐熱金属からなる多孔質材を
含有するアノード電極支持体及びアノード電極で構成さ
れるアノード、酸化セリウム系電解質及びカソードが順
に積層された構造を有することを特徴とする固体電解質
型燃料電池。
1. An anode electrode support containing, as a unit cell structure, a porous material made of a heat-resistant metal containing at least one heat-resistant alloy selected from an iron-based alloy, a nickel-based alloy and a cobalt-based alloy. And a solid oxide fuel cell having a structure in which an anode composed of an anode electrode, a cerium oxide-based electrolyte, and a cathode are sequentially stacked.
【請求項2】 鉄基合金、ニッケル基合金及びコバルト
基合金の中から選ばれた少なくとも1種の耐熱合金を含
有する耐熱金属からなる多孔質材を含有するアノード電
極支持体にアノード電極を固着してアノードを形成し、
次いでこのアノード上に順次酸化セリウム系電解質及び
カソードを積層するか、あるいはこのようにして得た単
電池をセパレータを介在させて積層することを特徴とす
る固体電解質型燃料電池の製造方法。
2. An anode electrode is fixed to an anode electrode support containing a porous material made of a heat-resistant metal containing at least one heat-resistant alloy selected from iron-based alloys, nickel-based alloys and cobalt-based alloys. To form the anode,
Next, a method for producing a solid oxide fuel cell, characterized in that a cerium oxide-based electrolyte and a cathode are successively laminated on this anode, or the single cells thus obtained are laminated with a separator interposed.
JP6272354A 1994-11-07 1994-11-07 Solid electrolyte fuel cell Pending JPH08138690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6272354A JPH08138690A (en) 1994-11-07 1994-11-07 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6272354A JPH08138690A (en) 1994-11-07 1994-11-07 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH08138690A true JPH08138690A (en) 1996-05-31

Family

ID=17512715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6272354A Pending JPH08138690A (en) 1994-11-07 1994-11-07 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH08138690A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243966A (en) * 2000-02-02 2001-09-07 Haldor Topsoe As Solid oxide fuel cell
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
JP2005019041A (en) * 2003-06-24 2005-01-20 Chiba Inst Of Technology Battery using solid electrolyte layer and hydrogen permeable metal film, fuel battery, and its manufacturing method
JP2005072011A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp Current collector supported fuel cell
JP2005071948A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Hybrid porous tube, and manufacturing method of same
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2006518807A (en) * 2003-01-24 2006-08-17 ウニヴェルズィテート デス ザールランデス Method for producing metal molded body having ceramic layer, metal molded body and use thereof
EP1255318A3 (en) * 2001-05-01 2007-07-25 Nissan Motor Co., Ltd. Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
JP2007323957A (en) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd Solid oxide fuel cell, and its manufacturing method
JP2007329132A (en) * 2007-07-20 2007-12-20 National Institute Of Advanced Industrial & Technology Hybrid porous tube
JP2009134980A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2009134981A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2013033617A (en) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
KR101359123B1 (en) * 2012-08-14 2014-02-06 주식회사 포스코 Unit cell for solid oxide fuel cell and method for manufacturing the same
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell
WO2015068223A1 (en) * 2013-11-06 2015-05-14 日産自動車株式会社 Collector, method for producing collector, solid electrolyte fuel cell electrode with collector, solid electrolyte fuel cell solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JP2016115506A (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Metal support SOFC
JP2016154158A (en) * 2016-06-01 2016-08-25 大日本印刷株式会社 Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
WO2019159276A1 (en) * 2018-02-15 2019-08-22 日産自動車株式会社 Metal-supported cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243966A (en) * 2000-02-02 2001-09-07 Haldor Topsoe As Solid oxide fuel cell
JP2003522384A (en) * 2000-02-04 2003-07-22 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド Method for producing an assembly comprising an electrolyte supported on an anode and a ceramic battery comprising such an assembly
EP1255318A3 (en) * 2001-05-01 2007-07-25 Nissan Motor Co., Ltd. Unit cell for solid oxide electrolyte type fuel cell and related manufacturing method
JP4662916B2 (en) * 2003-01-24 2011-03-30 ウニヴェルズィテート デス ザールランデス Method for producing metal molded body having ceramic layer, metal molded body and use thereof
JP2006518807A (en) * 2003-01-24 2006-08-17 ウニヴェルズィテート デス ザールランデス Method for producing metal molded body having ceramic layer, metal molded body and use thereof
JP2005019041A (en) * 2003-06-24 2005-01-20 Chiba Inst Of Technology Battery using solid electrolyte layer and hydrogen permeable metal film, fuel battery, and its manufacturing method
JP2005072011A (en) * 2003-08-26 2005-03-17 Hewlett-Packard Development Co Lp Current collector supported fuel cell
JP2005071948A (en) * 2003-08-28 2005-03-17 National Institute Of Advanced Industrial & Technology Hybrid porous tube, and manufacturing method of same
JP2005158324A (en) * 2003-11-21 2005-06-16 Honda Motor Co Ltd Fuel cell
JP2007323957A (en) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd Solid oxide fuel cell, and its manufacturing method
JP2007329132A (en) * 2007-07-20 2007-12-20 National Institute Of Advanced Industrial & Technology Hybrid porous tube
JP2009134980A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2009134981A (en) * 2007-11-30 2009-06-18 Dainippon Printing Co Ltd Manufacturing method of solid oxide fuel cell
JP2013033617A (en) * 2011-08-01 2013-02-14 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
KR101359123B1 (en) * 2012-08-14 2014-02-06 주식회사 포스코 Unit cell for solid oxide fuel cell and method for manufacturing the same
WO2015045682A1 (en) * 2013-09-25 2015-04-02 株式会社デンソー Fuel-cell anode and fuel cell
JP2015065013A (en) * 2013-09-25 2015-04-09 株式会社日本自動車部品総合研究所 Anode for fuel cell and single fuel cell
WO2015068223A1 (en) * 2013-11-06 2015-05-14 日産自動車株式会社 Collector, method for producing collector, solid electrolyte fuel cell electrode with collector, solid electrolyte fuel cell solid electrolyte fuel cell, and solid electrolyte fuel cell stack structure
JPWO2015068223A1 (en) * 2013-11-06 2017-03-09 日産自動車株式会社 Current collector and method for producing current collector, electrode for solid oxide fuel cell with current collector, solid oxide fuel cell single cell, solid oxide fuel cell stack structure
JP2016115506A (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Metal support SOFC
JP2016154158A (en) * 2016-06-01 2016-08-25 大日本印刷株式会社 Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
WO2019159276A1 (en) * 2018-02-15 2019-08-22 日産自動車株式会社 Metal-supported cell

Similar Documents

Publication Publication Date Title
Krishnan Recent developments in metal‐supported solid oxide fuel cells
JPH08138690A (en) Solid electrolyte fuel cell
US5496655A (en) Catalytic bipolar interconnection plate for use in a fuel cell
Tucker Progress in metal-supported solid oxide fuel cells: A review
US6794075B2 (en) Fuel cells
CN101682043B (en) A method of producing a multilayer barrier structure for a solid oxide fuel cell
US6326096B1 (en) Solid oxide fuel cell interconnector
DK2462644T3 (en) Electrochemical cell with metal substrate and process for its preparation
US8007954B2 (en) Use of sulfur-containing fuels for direct oxidation fuel cells
JP4027836B2 (en) Method for producing solid oxide fuel cell
US7709124B2 (en) Direct hydrocarbon fuel cells
CA2429104C (en) The use of sulfur-containing fuels for direct oxidation fuel cells
JP5353160B2 (en) Method for producing solid oxide fuel cell
JP2013501330A5 (en)
CN102292859A (en) Heat-resistant alloy, alloy member for fuel cell, fuel cell stack device, fuel cell module, and fuel cell device
CA2445599A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
WO2005011019A2 (en) Solid oxide fuel cell interconnect with catalytic coating
JP2000501879A (en) Electrode substrate for fuel cell
JP2010113955A (en) Interconnector for solid oxide fuel cell, manufacturing method thereof, and solid oxide fuel cell
JP2007113114A (en) Electrochemical cell structures and method of making the same
JP2002334706A (en) Cell element layer base and cell plate for solid electrolyte type fuel cell
JP2013077450A (en) Metal support type solid oxide fuel battery cell, and solid oxide fuel battery using the same
JP2004146131A (en) Sealing structure and sealing method of solid oxide fuel cell
JP2006107936A (en) Interconnector for planar solid oxide fuel cell
JP5233143B2 (en) Solid oxide fuel cell