JPH08134723A - Biodegradable conjugate fiber - Google Patents
Biodegradable conjugate fiberInfo
- Publication number
- JPH08134723A JPH08134723A JP27334394A JP27334394A JPH08134723A JP H08134723 A JPH08134723 A JP H08134723A JP 27334394 A JP27334394 A JP 27334394A JP 27334394 A JP27334394 A JP 27334394A JP H08134723 A JPH08134723 A JP H08134723A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- component
- dyeability
- biodegradable
- biodegradability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Biological Depolymerization Polymers (AREA)
- Multicomponent Fibers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、製糸性良く製造するこ
とができ、生分解性や染色性の度合いの異なる繊維とす
ることが可能な生分解性複合繊維に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable conjugate fiber which can be produced with good spinnability and can be made into fibers having different degrees of biodegradability and dyeability.
【0002】[0002]
【従来の技術】従来、溶融紡糸法によって生分解性繊維
を製造する場合、紡出されたフィラメントは冷却風吹き
付けによって冷却固化させ、その後延伸する方法が採用
されている。2. Description of the Related Art Conventionally, when a biodegradable fiber is produced by a melt spinning method, a method in which a spun filament is cooled and solidified by blowing a cooling air and then drawn is adopted.
【0003】しかし、生分解性に優れたポリマーは結晶
化温度が室温より低く、また、結晶化速度の遅いものが
多く、紡出糸条は、通常の冷却風吹き付けによる冷却だ
けでは冷却不足のために固化できず、ブロッキングが生
じていた。However, many polymers having excellent biodegradability have a crystallization temperature lower than room temperature and a slow crystallization rate, and the spun yarn is insufficiently cooled only by ordinary cooling air blowing. Therefore, it could not be solidified and blocking occurred.
【0004】この問題の解決策として、冷却風温を下げ
たり、冷却時間を長くしたり、冷却風速を増大させたり
することが考えられる。しかし、冷却風温を下げる方法
では、やはり十分な冷却ができず、冷却時間を長くする
には装置的な制約があり、冷却風速を増大させる方法で
は、糸揺れが生じて逆にフィラメント同士が密着すると
いう問題があった。As a solution to this problem, it is conceivable to lower the cooling air temperature, lengthen the cooling time, or increase the cooling air velocity. However, the method of lowering the cooling air temperature still fails to achieve sufficient cooling, and there is a device limitation in increasing the cooling time. There was a problem of close contact.
【0005】また、種々の生分解性ポリマーが提案され
ているが、用途に応じて生分解性や染色性の度合いの異
なる繊維が要望さている。Although various biodegradable polymers have been proposed, fibers having different degrees of biodegradability and dyeability are desired depending on the use.
【0006】[0006]
【発明が解決しようとする課題】本発明は、結晶化温度
が低く、結晶化速度の遅い生分解性ポリマーからなり、
製糸性良く製造することができ、生分解性や染色性の度
合いの異なる繊維を得ることが可能な生分解性複合繊維
を提供しようとするものである。DISCLOSURE OF THE INVENTION The present invention comprises a biodegradable polymer having a low crystallization temperature and a slow crystallization rate,
An object of the present invention is to provide a biodegradable conjugate fiber that can be produced with good spinnability and that can obtain fibers having different degrees of biodegradability and dyeability.
【0007】[0007]
【課題を解決するための手段】本発明は、上記の課題を
解決するもので、その要旨は、生分解性を有し、結晶化
速度の異なる成分A及び成分Bで構成された複合繊維で
あって、成分Aと成分Bとが繊維断面において交互に配
列され、そのいずれもが繊維軸方向に連続するとともに
繊維表面に露出していることを特徴とする交互配列型の
生分解性複合繊維にある。Means for Solving the Problems The present invention is to solve the above-mentioned problems, and the gist thereof is a composite fiber composed of component A and component B having biodegradability and different crystallization rates. The component A and the component B are alternately arranged in the fiber cross section, both of which are continuous in the fiber axis direction and are exposed on the fiber surface, and are alternately arrayed biodegradable conjugate fibers. It is in.
【0008】以下、本発明について詳細に説明する。The present invention will be described in detail below.
【0009】成分Aとしては、モル比 100/0 〜90/10
の範囲のポリブチレンサクシネート(PBS)とポリエ
チレンサクシネート(PES)、ポリブチレンアジペー
ト(PBA)又はポリブチレンセバケート(PBSe)
との共重合体が好ましく用いられる。As the component A, the molar ratio is 100/0 to 90/10.
Range of polybutylene succinate (PBS) and polyethylene succinate (PES), polybutylene adipate (PBA) or polybutylene sebacate (PBSe)
Copolymers with and are preferably used.
【0010】また、成分Bとしては、モル比85/15〜65
/35、好ましく85/15〜70/30の範囲のPBSとPE
S、PBA又はPBSeとの共重合体が好ましく用いら
れる。As the component B, the molar ratio is 85/15 to 65.
/ 35, preferably in the range 85/15 to 70/30 PBS and PE
A copolymer with S, PBA or PBSe is preferably used.
【0011】A成分のPBSの割合が上記範囲より少な
いと製糸性が劣り、成分BのPBSの割合が上記範囲よ
り多いと生分解性及び染色性に劣り、少ないと耐熱性及
び得られる繊維の糸質性能が劣ったものとなる。If the proportion of PBS as the component A is less than the above range, the spinnability is poor, and if the proportion of PBS as the component B is more than the above range, the biodegradability and dyeability are poor, and if it is too small, the heat resistance and the obtained fiber are low. The thread quality performance is inferior.
【0012】これらのポリマーは、数平均分子量が 200
00以上、好ましくは 30000以上のものが製糸性及び得ら
れる繊維の特性の点で望ましい。These polymers have a number average molecular weight of 200
A value of at least 00, preferably at least 30,000, is desirable in terms of spinnability and properties of the obtained fiber.
【0013】紡糸に供するポリマーには、炭酸カルシウ
ム、二酸化チタン、アルミナ、シリカ、タルク等の無機
系結晶核剤を0.01〜5重量%、好ましくは0.05〜2重量
%含有させることが望ましい。It is desirable that the polymer to be used for spinning contains 0.01 to 5% by weight, preferably 0.05 to 2% by weight, of an inorganic crystal nucleating agent such as calcium carbonate, titanium dioxide, alumina, silica and talc.
【0014】溶融紡糸温度は、用いるポリマーの融点及
び分子量によって異なるが、 150〜280 ℃とすることが
望ましい。紡糸温度が 150℃未満では溶融押し出しが困
難であり、 280℃を超えるとポリマーの分解が顕著とな
り、高強度の繊維を得ることが困難となる。The melt spinning temperature varies depending on the melting point and molecular weight of the polymer used, but it is preferably 150 to 280 ° C. If the spinning temperature is less than 150 ° C, melt extrusion is difficult, and if it exceeds 280 ° C, the polymer is remarkably decomposed, and it becomes difficult to obtain high-strength fibers.
【0015】成分Aと成分Bは繊維断面において交互に
配列され、そのいずれもが繊維軸方向に連続し、繊維表
面に露出していることが必要である。生分解性ポリマー
では、一般に、結晶性の良いポリマーは分解速度が遅
く、染色性が悪いという性質を有し、逆に、結晶性の低
いポリマーは染色性及び生分解性に優れた性質を有して
いる。成分Aのような結晶性の良いポリマーを単一型又
は芯鞘型の鞘部に用いると、繊維表面の全てがそれで覆
われるため、ブロッキングは防げるが、生分解性及び染
色性に劣る。しかし、成分Bのような結晶性の低いポリ
マーを用いると、ブロッキングが生じて製糸性が悪くな
る。そこで、両成分を繊維表面に露出させることによ
り、優れた製糸性と優れた生分解性及び染色性を有する
繊維が得ることが可能となる。It is necessary that the components A and B are alternately arranged in the fiber cross section, and that both are continuous in the fiber axis direction and are exposed on the fiber surface. Among biodegradable polymers, generally, a polymer with good crystallinity has a property of slow decomposition rate and poor dyeability, while a polymer with low crystallinity has properties of excellent dyeability and biodegradability. are doing. When a polymer having a good crystallinity such as the component A is used for a single-type or core-sheath type sheath, the entire fiber surface is covered with it, so blocking can be prevented, but biodegradability and dyeability are poor. However, when a polymer having low crystallinity such as the component B is used, blocking occurs and the spinnability deteriorates. Therefore, by exposing both components to the surface of the fiber, it becomes possible to obtain a fiber having excellent spinnability, biodegradability and dyeability.
【0016】成分Aと成分Bとの配列数の合計は12以上
であることが好ましい。配列数が少なくなると、1列の
繊維表面に占める面積が大きくなり、十分な冷却性能、
生分解性能及び染色性能が得られなくなる。また、配列
数を変えることによりこれらの性能の異なる繊維とする
ことが可能となる。The total number of arrangements of the component A and the component B is preferably 12 or more. When the number of arrays is small, the area occupied on the surface of one row of fibers is large, and sufficient cooling performance,
The biodegradability and dyeing performance cannot be obtained. Further, by changing the number of arrangements, it becomes possible to obtain fibers having different performances.
【0017】成分Aと成分Bとの複合重量比は1/1〜
3/1であることが好ましい。成分Aが上記の範囲より
多くなると、生分解性及び染色性に劣り、少なくなると
ブロッキングが生じやすく、製糸性が悪くなる。さら
に、この複合比を変えることにより、これらの性能の異
なる繊維とすることが可能となる。The composite weight ratio of component A and component B is from 1/1 to
It is preferably 3/1. When component A is more than the above range, biodegradability and dyeability are inferior, and when it is less, blocking is likely to occur and the spinnability is deteriorated. Furthermore, by changing the composite ratio, it becomes possible to obtain fibers having different performances.
【0018】溶融紡出された糸条は、紡糸口金直下に設
置された環状又は横型吹き付けにより冷却される。冷却
固化した糸条は、紡糸油剤を付与した後、 300〜3500m
/分の速度で引きとられ、一旦巻き取った後又は巻き取
ることなく連続して延伸される。紡糸油剤としては、通
常のポリエステル繊維用紡糸油剤を使用することができ
る。The melt-spun yarn is cooled by an annular or horizontal spraying installed directly below the spinneret. The yarn that has been solidified by cooling is 300 to 3500 m after applying the spinning oil.
The film is drawn at a speed of 1 / minute and is continuously drawn after being wound or without being wound. As the spinning oil agent, a conventional spinning oil agent for polyester fibers can be used.
【0019】延伸は、室温、あるいは熱ローラ等を用
い、1段又は多段階で行われる。高強度の繊維を得るに
は、多段階で延伸することが望ましく、第2段目の延伸
時に、熱ローラと延伸ローラの間で熱プレート又は熱オ
ーブンを使用してもよい。特に、寸法安定性が必要な場
合、延伸に引き続き定長熱処理又は弛緩熱処理を加える
ことが望ましい。このようにして、実用に耐え得る一定
の糸質性能、生分解性及び染色性を有する交互配列型複
合繊維を製造することができる。The stretching is carried out at room temperature or in a single stage or in multiple stages using a heat roller or the like. In order to obtain a high-strength fiber, it is desirable to draw in multiple stages, and a hot plate or a hot oven may be used between the heating roller and the drawing roller during the second drawing step. Particularly, when dimensional stability is required, it is desirable to add a constant length heat treatment or a relaxation heat treatment subsequent to the stretching. In this way, it is possible to manufacture an alternating array type conjugate fiber having a certain yarn quality performance, biodegradability and dyeability that can be practically used.
【0020】[0020]
【実施例】次に、本発明を実施例により具体的に説明す
る。なお、測定、評価法は次のとおりである。 引張強伸度 JIS L 1013に準じて測定を行った。 生分解性 7月から10月にかけての3カ月間、試料を土壌中に埋設
した後に取り出して強度を測定し、強度保持率が50%未
満のものを○、50%以上のものを△として評価した。 染色性 Resolin Blue (バイエル社製分散染料) を1%owf 使用
し、浴比1/100 、70℃で15分間染色し、PBS 100%
のものをコントロールとして比較し、良好なものを○、
あまり差がないものを△として評価した。EXAMPLES Next, the present invention will be specifically described by way of examples. The measurement and evaluation methods are as follows. Tensile strength and elongation Measured according to JIS L 1013. Biodegradability For 3 months from July to October, after burying the sample in the soil, take it out and measure the strength. If the strength retention rate is less than 50%, it is evaluated as ○, and if it is 50% or more, it is evaluated as △. did. Dyeability Resolin Blue (Disperse dye manufactured by Bayer) was used at 1% owf, dyed at 70 ° C for 15 minutes at a bath ratio of 1/100, and PBS 100%
Compared as a control, good ones ○,
Those with little difference were evaluated as Δ.
【0021】実施例1 成分Aとして数平均分子量が 40000のPBS、成分Bと
してモル比が80/20であるPBSとPESとの共重合体
に 0.1重量%の二酸化チタンを添加したものを用い、エ
クストルーダー型溶融紡糸機に供給し、紡糸温度 170℃
で、繊維断面において成分Aと成分Bとが放射状に交互
に配列された配列数12の繊維となる紡糸口金から溶融紡
出し、横型吹き付けにより冷却固化させ、水系エマルジ
ョン油剤を付与した後、 400m/分の速度で引き取り、
連続して第一段目延伸倍率 1.5倍、第二段目延伸倍率
2.7倍、総延伸倍率約 4.1で延伸を行い、 315d/36f
の交互配列型複合繊維を得た。Example 1 As the component A, PBS having a number average molecular weight of 40,000 was used, and as the component B, a copolymer of PBS and PES having a molar ratio of 80/20 was added with 0.1% by weight of titanium dioxide. Supplied to extruder type melt spinning machine, spinning temperature 170 ℃
Then, in the fiber cross section, the component A and the component B are melt-spun from a spinneret, which is a fiber having an array number of 12 alternately arranged in a radial pattern, cooled and solidified by horizontal spraying, and after adding an aqueous emulsion oil agent, 400 m / Pick up at the speed of a minute,
Continuous 1st stage draw ratio of 1.5 times, 2nd stage draw ratio
Stretching at 2.7 times and total stretching ratio of about 4.1, 315d / 36f
An alternating array type composite fiber was obtained.
【0022】実施例2〜4及び比較例1〜8 表1に示す条件で、実施例1と同様に製糸を行った。実
施例1〜4及び比較例1〜8で得られた複合繊維の特性
値を表1に示す。Examples 2 to 4 and Comparative Examples 1 to 8 Under the conditions shown in Table 1, yarn was produced in the same manner as in Example 1. Table 1 shows the characteristic values of the composite fibers obtained in Examples 1 to 4 and Comparative Examples 1 to 8.
【0023】[0023]
【表1】 [Table 1]
【0024】実施例1〜4では、フィラメント間にブロ
ッキングもなく、良好な特性を有する複合繊維が得られ
たが、比較例2〜5及び7〜8では、フィラメント間に
ブロッキングが生じ、比較例1及び6では、生分解性及
び染色性の劣ったものしか得られなかった。In Examples 1 to 4, there was no blocking between filaments, and composite fibers having good characteristics were obtained. In Comparative Examples 2 to 5 and 7 to 8, blocking occurred between filaments, and Comparative Examples In Nos. 1 and 6, only those having poor biodegradability and dyeability were obtained.
【0025】[0025]
【発明の効果】本発明によれば、製糸性良く製造するこ
とができ、生分解性及び染色性の度合いの異なる繊維と
することが可能な生分解性複合繊維が提供される。EFFECTS OF THE INVENTION According to the present invention, there is provided a biodegradable conjugate fiber which can be produced with good spinnability and can be made into fibers having different degrees of biodegradability and dyeability.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 健二 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 (72)発明者 村瀬 繁満 京都府宇治市宇治小桜23番地 ユニチカ株 式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Yamada 23, Uji Kozakura, Uji City, Kyoto Prefecture Unitika Research Institute, Central Research Laboratory (72) Inventor Shiritsu Murase, 23, Uji Kozakura, Uji City, Kyoto Unitika Stock Company Central Research In-house
Claims (3)
分A及び成分Bで構成された複合繊維であって、成分A
と成分Bとが繊維断面において交互に配列され、そのい
ずれもが繊維軸方向に連続するとともに繊維表面に露出
していることを特徴とする交互配列型の生分解性複合繊
維。1. A composite fiber comprising component A and component B which are biodegradable and have different crystallization rates, wherein component A
And the component B are alternately arranged in the fiber cross section, and both are continuous in the fiber axis direction and are exposed on the fiber surface, an alternating array type biodegradable conjugate fiber.
のポリブチレンサクシネートとポリエチレンサクシネー
ト、ポリブチレンアジペート又はポリブチレンセバケー
トとの共重合体であり、成分Bがモル比85/15〜65/35
の範囲のポリブチレンサクシネートとポリエチレンサク
シネート、ポリブチレンアジペート又はポリブチレンセ
バケートとの共重合体である請求項1記載の生分解性複
合繊維。2. Component A is a copolymer of polybutylene succinate and polyethylene succinate, polybutylene adipate or polybutylene sebacate in a molar ratio of 100/0 to 90/10, and component B is a molar ratio. 85/15 ~ 65/35
The biodegradable conjugate fiber according to claim 1, which is a copolymer of polybutylene succinate and polyethylene succinate, polybutylene adipate, or polybutylene sebacate in the range.
であり、成分Aと成分Bとの複合重量比が1/1〜3/
1である請求項1又は2記載の生分解性複合繊維。3. The total number of arrangements of the component A and the component B is 12 or more, and the composite weight ratio of the component A and the component B is 1/1 to 3 /.
The biodegradable conjugate fiber according to claim 1 or 2, which is 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27334394A JP3468883B2 (en) | 1994-11-08 | 1994-11-08 | Biodegradable composite fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27334394A JP3468883B2 (en) | 1994-11-08 | 1994-11-08 | Biodegradable composite fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08134723A true JPH08134723A (en) | 1996-05-28 |
JP3468883B2 JP3468883B2 (en) | 2003-11-17 |
Family
ID=17526580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27334394A Expired - Fee Related JP3468883B2 (en) | 1994-11-08 | 1994-11-08 | Biodegradable composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3468883B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5698322A (en) * | 1996-12-02 | 1997-12-16 | Kimberly-Clark Worldwide, Inc. | Multicomponent fiber |
US6194483B1 (en) | 1998-08-31 | 2001-02-27 | Kimberly-Clark Worldwide, Inc. | Disposable articles having biodegradable nonwovens with improved fluid management properties |
US6197860B1 (en) | 1998-08-31 | 2001-03-06 | Kimberly-Clark Worldwide, Inc. | Biodegradable nonwovens with improved fluid management properties |
US6201068B1 (en) | 1997-10-31 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Biodegradable polylactide nonwovens with improved fluid management properties |
US6207755B1 (en) | 1997-10-31 | 2001-03-27 | Kimberly-Clark Worldwide, Inc. | Biodegradable thermoplastic composition |
US6268434B1 (en) | 1997-10-31 | 2001-07-31 | Kimberly Clark Worldwide, Inc. | Biodegradable polylactide nonwovens with improved fluid management properties |
US6306782B1 (en) | 1997-12-22 | 2001-10-23 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent product having biodisintegratable nonwovens with improved fluid management properties |
US6309988B1 (en) | 1997-12-22 | 2001-10-30 | Kimberly-Clark Worldwide, Inc. | Biodisintegratable nonwovens with improved fluid management properties |
US6500897B2 (en) | 2000-12-29 | 2002-12-31 | Kimberly-Clark Worldwide, Inc. | Modified biodegradable compositions and a reactive-extrusion process to make the same |
US6544455B1 (en) | 1997-12-22 | 2003-04-08 | Kimberly-Clark Worldwide, Inc. | Methods for making a biodegradable thermoplastic composition |
US6552124B2 (en) | 2000-12-29 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Method of making a polymer blend composition by reactive extrusion |
US6579934B1 (en) | 2000-12-29 | 2003-06-17 | Kimberly-Clark Worldwide, Inc. | Reactive extrusion process for making modifiied biodegradable compositions |
US6890989B2 (en) | 2001-03-12 | 2005-05-10 | Kimberly-Clark Worldwide, Inc. | Water-responsive biodegradable polymer compositions and method of making same |
US7053151B2 (en) | 2000-12-29 | 2006-05-30 | Kimberly-Clark Worldwide, Inc. | Grafted biodegradable polymer blend compositions |
-
1994
- 1994-11-08 JP JP27334394A patent/JP3468883B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5698322A (en) * | 1996-12-02 | 1997-12-16 | Kimberly-Clark Worldwide, Inc. | Multicomponent fiber |
US6268434B1 (en) | 1997-10-31 | 2001-07-31 | Kimberly Clark Worldwide, Inc. | Biodegradable polylactide nonwovens with improved fluid management properties |
US6475418B1 (en) | 1997-10-31 | 2002-11-05 | Kimberly-Clark Worldwide, Inc. | Methods for making a thermoplastic composition and fibers including same |
US6201068B1 (en) | 1997-10-31 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Biodegradable polylactide nonwovens with improved fluid management properties |
US6207755B1 (en) | 1997-10-31 | 2001-03-27 | Kimberly-Clark Worldwide, Inc. | Biodegradable thermoplastic composition |
US6211294B1 (en) | 1997-10-31 | 2001-04-03 | Fu-Jya Tsai | Multicomponent fiber prepared from a thermoplastic composition |
US6306782B1 (en) | 1997-12-22 | 2001-10-23 | Kimberly-Clark Worldwide, Inc. | Disposable absorbent product having biodisintegratable nonwovens with improved fluid management properties |
US6309988B1 (en) | 1997-12-22 | 2001-10-30 | Kimberly-Clark Worldwide, Inc. | Biodisintegratable nonwovens with improved fluid management properties |
US6544455B1 (en) | 1997-12-22 | 2003-04-08 | Kimberly-Clark Worldwide, Inc. | Methods for making a biodegradable thermoplastic composition |
US6245831B1 (en) | 1998-08-31 | 2001-06-12 | Kimberly-Clark Worldwide, Inc. | Disposable articles having biodegradable nonwovens with improved fluid management properties |
US6197860B1 (en) | 1998-08-31 | 2001-03-06 | Kimberly-Clark Worldwide, Inc. | Biodegradable nonwovens with improved fluid management properties |
US6194483B1 (en) | 1998-08-31 | 2001-02-27 | Kimberly-Clark Worldwide, Inc. | Disposable articles having biodegradable nonwovens with improved fluid management properties |
US6500897B2 (en) | 2000-12-29 | 2002-12-31 | Kimberly-Clark Worldwide, Inc. | Modified biodegradable compositions and a reactive-extrusion process to make the same |
US6552124B2 (en) | 2000-12-29 | 2003-04-22 | Kimberly-Clark Worldwide, Inc. | Method of making a polymer blend composition by reactive extrusion |
US6579934B1 (en) | 2000-12-29 | 2003-06-17 | Kimberly-Clark Worldwide, Inc. | Reactive extrusion process for making modifiied biodegradable compositions |
US7053151B2 (en) | 2000-12-29 | 2006-05-30 | Kimberly-Clark Worldwide, Inc. | Grafted biodegradable polymer blend compositions |
US6890989B2 (en) | 2001-03-12 | 2005-05-10 | Kimberly-Clark Worldwide, Inc. | Water-responsive biodegradable polymer compositions and method of making same |
Also Published As
Publication number | Publication date |
---|---|
JP3468883B2 (en) | 2003-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6844063B2 (en) | Spontaneously degradable fibers and goods made thereof | |
JP3468883B2 (en) | Biodegradable composite fiber | |
JP5813747B2 (en) | Cationic dyeable polyester fiber and composite fiber | |
US20030096114A1 (en) | Method of fabricating a non-hollow fiber having a regular polygonal cross-section | |
US7615173B2 (en) | Process for preparing bicomponent fibers having latent crimp | |
JPH03185103A (en) | Conjugate fiber for artificial hair having thick single fiber and production thereof | |
JP3295359B2 (en) | Method for producing modified polyester fiber | |
US20040099984A1 (en) | Polyester bicomponent filament | |
JPS61194215A (en) | Production of polyamide monofilament | |
JP3318307B2 (en) | Method for producing polypropylene multifilament | |
JP3693552B2 (en) | Method for producing polyester fiber | |
JPH03185102A (en) | Conjugate fiber for artificial hair and production thereof | |
JP3502686B2 (en) | Biodegradable composite fiber | |
JP3043547B2 (en) | Method for producing polyester fiber | |
JP3359730B2 (en) | Polyester monofilament for industrial materials with improved wet heat durability and method for producing the same | |
JPH11302923A (en) | Production of polyester fiber | |
JPS5842286B2 (en) | Fine denim polyester fiber and its manufacturing method | |
JP2989365B2 (en) | Core-sheath type polyester composite fiber | |
JPS588121A (en) | Mixed spun fiber and its production | |
JP3488312B2 (en) | Biodegradable composite monofilament and its production method | |
JP2968441B2 (en) | Manufacturing method of polyetherester elastic yarn | |
JPS5813647B2 (en) | Manufacturing method of anti-building fiber | |
JPS6290315A (en) | Modified polyester fiber and production thereof | |
JPS633048B2 (en) | ||
JP2001032136A (en) | Polyester fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090905 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100905 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120905 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130905 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |