[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08112505A - Inclined settling device - Google Patents

Inclined settling device

Info

Publication number
JPH08112505A
JPH08112505A JP27591694A JP27591694A JPH08112505A JP H08112505 A JPH08112505 A JP H08112505A JP 27591694 A JP27591694 A JP 27591694A JP 27591694 A JP27591694 A JP 27591694A JP H08112505 A JPH08112505 A JP H08112505A
Authority
JP
Japan
Prior art keywords
settling
water
flow
treated
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27591694A
Other languages
Japanese (ja)
Inventor
Toru Sekiya
透 関谷
Kazuyuki Wakabayashi
和幸 若林
Fumiharu Aoki
史春 青木
Hidetoshi Takami
英俊 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP27591694A priority Critical patent/JPH08112505A/en
Publication of JPH08112505A publication Critical patent/JPH08112505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PURPOSE: To lessen the influence that the change in the water temp. of water to be treated exerts on the quality of treated water and to prevent a flow passage from being clogged by suspended matter. CONSTITUTION: This downflow inclined settling device 16 is used as, for example, a part of a flocculating and settling device 10. A treating vessel 14 adjacent to a stirring vessel 12 is divided by a partition wall 34 to a settling vessel 36 and a reserving vessel 38. Both of the settling vessel and the reserving vessel communicate with each other via the lower opening of the partition wall. The inclined settling device is installed at the settling vessel and is provided with a flow passage former 40 and a distributing pipe 42. This flow passage former is provided with inclined flow passages over the entire part of the settling vessel in the position of the prescribed height from the bottom of the settling vessel and is composed of an assembly of corrugated forming plates or moldings. The suspended matter is settled and separated in the process that the water to be treated passes through the distributing pipe from the stirring vessel and flows downward from above in the flow passage former.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被処理液中の懸濁物を
沈降させて、被処理液を清浄化する傾斜沈降装置に関
し、更に詳細には、原水を清浄化して上水又は工業用水
を供給する浄水処理に用いられる凝集沈殿装置、一般産
業用水の用水処理に用いられる凝集沈殿装置、及び一般
産業排水の排水処理に用いられる凝集沈殿装置等で使用
できる傾斜沈降装置、更には傾斜沈降装置を備えた沈殿
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inclined settling apparatus for cleaning a liquid to be treated by causing a suspension in the liquid to be treated to settle. Coagulation sedimentation device used for water purification that supplies water, coagulation sedimentation device used for water treatment of general industrial water, and coagulation sedimentation device used for wastewater treatment of general industrial wastewater, etc. The present invention relates to a sedimentation device provided with a sedimentation device.

【0002】[0002]

【従来の技術】凝集沈殿処理は、各種の水処理装置にお
いて広く採用されている代表的な水の清澄化処理であっ
て、被処理水中に凝集剤を加えて凝集反応を行わせるこ
とにより、浮遊している懸濁物質を沈降分離できる凝集
フロックに生成させ、次いで凝集フロックを沈降分離さ
せて、懸濁した被処理水から清澄な処理水を得ると言う
処理である。被処理水中から凝集フロックを効率良く沈
降分離するには、被処理水が乱れの無い静かで均一な層
流状態で流れることが必要である。そのために、種々の
沈降装置が使用されているが、傾斜沈降装置は、凝集沈
殿装置等で多数使用されている沈降装置の一つの形式で
あって、被処理水の流れを均一な層流状態に整流して懸
濁物の沈降を容易にすると共に装置の単位容積当たりの
沈降面積を増大させ、容積効率を高めることができる。
2. Description of the Related Art Coagulation sedimentation treatment is a clarification treatment of water that is widely adopted in various water treatment apparatuses, and a coagulation reaction is performed by adding a coagulant to water to be treated. This is a process in which floating suspended matter is formed into flocs capable of settling and separating, and then flocs are settling and separating to obtain clear treated water from suspended treated water. In order to efficiently settle and separate coagulated flocs from the water to be treated, it is necessary for the water to be treated to flow in a turbulent and uniform laminar flow state without disturbance. For that purpose, various settling devices are used, but the inclined settling device is one type of settling device that is widely used in coagulating settling devices, and the flow of the water to be treated is in a uniform laminar flow state. The volumetric efficiency can be improved by rectifying the suspension to facilitate the sedimentation of the suspension and increase the sedimentation area per unit volume of the apparatus.

【0003】ところで、従来、実用化されている、或い
は提案されている傾斜沈降装置は、被処理水を水平に流
す水平流傾斜沈降装置か、又は被処理水を下から上に向
かって流す上向流傾斜沈降装置のいずれかである。水平
流傾斜沈降装置は、処理槽(図示せず)内に、例えば図
7(a)に示すように、傾斜させた多数の沈降案内板F
を離隔して相互に平行に設置し、その沈降案内板Fの間
に被処理水を水平に流すようにしたものである。被処理
水は、処理槽の前部から流入し、水平に流れて後部から
流出する。上向流傾斜沈降装置は、処理槽(図示せず)
内に、例えば図7(b)に示すようにハニカム状の多数
の中空部を有するように成形された成形体Gを傾斜させ
て設置し、成形体の各中空部を下から上に向かって被処
理水を上向流で流すようにしたものである。被処理水
は、処理槽前部の下部から流入し、上向きに流れて後部
の上部から流出する。
By the way, the inclined settling device which has been put to practical use or proposed has been a horizontal flow inclined settling device for flowing the water to be treated horizontally, or an upward flow of the treated water from bottom to top. Either of the countercurrent inclined settling devices. The horizontal flow inclined settling device is provided with a large number of inclined settling guide plates F in a processing tank (not shown), as shown in FIG. 7A, for example.
Are installed in parallel to each other and the water to be treated is allowed to flow horizontally between the settling guide plates F. The water to be treated flows in from the front part of the treatment tank, flows horizontally, and flows out from the rear part. Upflow inclined settling device is a processing tank (not shown)
For example, as shown in FIG. 7 (b), a molded body G molded so as to have a number of honeycomb-shaped hollow portions is installed in an inclined manner, and each hollow portion of the molded body is moved from the bottom to the top. The water to be treated is made to flow upward. The water to be treated flows in from the lower part of the front part of the treatment tank, flows upward, and flows out from the upper part of the rear part.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の傾斜沈
降装置では、その沈降分離性能が流入する被処理水の水
温の変化により著しく影響を受けるために、凝集フロッ
ク等の懸濁物の沈降分離が不完全になって、処理水の水
質が悪化すると言う問題があった。被処理水の水温変化
が水質に与える影響は、特に被処理水の温度上昇時に大
きく、例えば水温が1時間当たり0.5°C 程度上昇し
ても、処理水の水質が悪化することが多かった。一方、
水温下降時は、その影響は比較的少ない。流入する被処
理水を加熱したり、冷却したりして、被処理水の水温を
厳密に調整して水温変動による処理水の水質悪化を防止
することも一つの方法であるが、加熱及び冷却コストを
考えると、この方法は、経済的に引き合わず、実用的で
ない。特に、大量の水を処理する装置、例えば浄水場等
の上水又は工業用水の供給装置では、加熱、冷却による
被処理水の温度調整は事実上不可能である。
However, in the conventional inclined settling apparatus, the settling separation performance thereof is significantly affected by the change in the temperature of the inflowing treated water, so that the settling separation of the suspended flocs or the like is performed. However, there was a problem that the quality of treated water deteriorated due to incompleteness. The influence of the water temperature change of the treated water on the water quality is particularly large when the temperature of the treated water rises. For example, even if the water temperature rises by 0.5 ° C per hour, the water quality of the treated water often deteriorates. It was on the other hand,
When the water temperature drops, the effect is relatively small. One of the methods is to heat or cool the inflowing treated water to strictly control the water temperature of the treated water to prevent deterioration of the quality of the treated water due to fluctuations in water temperature. Considering cost, this method is not economically viable and impractical. In particular, in a device for treating a large amount of water, for example, a clean water or industrial water supply device such as a water purification plant, it is practically impossible to adjust the temperature of the water to be treated by heating and cooling.

【0005】また、従来の傾斜沈降装置、特に上向流傾
斜沈降装置では、沈降した凝集フロックが堆積して流路
を閉塞する傾向が強く、流路を形成する沈降案内板や成
形体の洗浄がしばしば必要になり、傾斜沈降装置の作業
効率が悪いと言う問題もあった。
Further, in the conventional inclined settling apparatus, particularly in the upward flow inclined settling apparatus, there is a strong tendency for sedimented flocculation flocs to accumulate and block the flow path, and the settling guide plate and the molded body forming the flow path are washed. Was often required, and there was a problem that the work efficiency of the inclined settling device was poor.

【0006】以上の状況に照らして、本発明の目的は、
被処理水の水温変化が装置の沈降分離性能に与える影響
が小さく、かつ流路が堆積懸濁物により閉塞されること
のない傾斜沈降装置を提供することである。
In view of the above situation, the object of the present invention is to
It is an object of the present invention to provide an inclined settling device in which a change in the water temperature of the water to be treated has little influence on the settling separation performance of the device, and the flow path is not blocked by the sedimented suspension.

【0007】[0007]

【課題を解決するための手段】本発明者は、傾斜沈降装
置の沈降分離機構を研究し、従来の傾斜沈降装置の問題
を次のように解析した。水の密度は水温により変化する
ので、従来の傾斜沈降装置では、流入する被処理水の水
温が変化すると、傾斜沈降装置を収容した処理槽内の水
温の分布が不均一になって、冷水塊が生じ、処理槽内の
一部分に滞留する。そのために、処理槽内の水の流路面
積が減少して偏流が傾斜沈降装置内に生じ、傾斜沈降装
置の機能が阻害される。
The present inventor has studied the sedimentation separation mechanism of an inclined settling apparatus and analyzed the problems of the conventional inclined settling apparatus as follows. Since the density of water changes depending on the water temperature, when the water temperature of the inflowing treated water changes in the conventional inclined settling device, the water temperature distribution in the treatment tank containing the inclined settling device becomes uneven, and Occurs and stays in a part of the processing tank. Therefore, the flow passage area of the water in the treatment tank is reduced, and a nonuniform flow occurs in the inclined settling device, which hinders the function of the inclined settling device.

【0008】例えば、水平流傾斜沈降装置では、流入す
る被処理水の水温が上昇する場合、先に流入した被処理
水は、その密度が後から流入する被処理水より大きいの
で、水平流傾斜沈降装置を収容している処理槽の中底部
に徐々に下降し、図8(a)に示すように、密度の大き
い冷水塊となって処理槽の中底部に停滞する。そのた
め、処理槽内の水の流路が一部閉塞されたのと同じ結果
になって、後から流入した被処理水は、偏流状態で傾斜
沈降装置の水面付近を早い流速で通過する。よって、被
処理水中の懸濁物を沈降させるための沈降時間が短くな
って、沈降分離が不完全になる。
For example, in a horizontal flow gradient settler, when the temperature of the inflowing treated water rises, the density of the inflowing treated water is larger than that of the inflowing treated water, so that the horizontal flow inclination It gradually descends to the inner bottom of the treatment tank accommodating the settling device, and as shown in FIG. 8A, it becomes a lump of cold water having a high density and stays at the inner bottom of the treatment tank. Therefore, the same result as when the flow path of the water in the treatment tank is partially blocked is obtained, and the water to be treated that has flowed in later passes near the water surface of the inclined settling device at a high flow velocity in a non-uniform flow state. Therefore, the sedimentation time for sedimenting the suspension in the water to be treated becomes short, and sedimentation separation becomes incomplete.

【0009】また、上向流傾斜装置においても同様で、
流入する被処理水の水温が上昇する場合、先に流入した
被処理水は、上述のように、上向流傾斜沈降装置を収容
している処理槽の中底部に徐々に降下し、図8(b)に
示すように、密度の大きい冷水塊となって処理槽の中底
部に停滞する。そのため、処理槽の底部に流入した被処
理水は、傾斜沈降装置の中間部及び後半部に進むことな
く入口部を短絡して上昇し、被処理水の流路面積が減少
する結果、被処理水の流速が速くなって、沈降時間が短
くなり、沈降分離が不完全となる。
The same applies to the upflow tilting device,
When the water temperature of the inflowing treated water rises, the inflowing treated water gradually descends to the middle bottom of the treatment tank accommodating the upflow inclined settling apparatus, as shown in FIG. As shown in (b), cold water lumps having a high density are accumulated in the middle bottom of the processing tank. Therefore, the water to be treated that has flowed into the bottom of the treatment tank rises by short-circuiting the inlet without advancing to the middle part and the second half of the inclined settling device, resulting in a decrease in the flow area of the water to be treated. Higher water flow rates result in shorter settling times and incomplete settling separation.

【0010】本発明者は、被処理水の水温変化による処
理水の水質の悪化を防止するには、処理槽内の水温の分
布が不均一にならないようにすること、特に処理槽内で
冷水塊ができないようにすることであると考え、水処理
分野での常識に逆らって、従来の技術思想と全く異なる
下向流の傾斜沈降装置に着眼し、本発明を完成するに至
った。
The inventor of the present invention, in order to prevent the deterioration of the quality of the treated water due to the change in the temperature of the water to be treated, prevent the water temperature distribution in the treatment tank from becoming non-uniform, especially in the treatment tank. It was thought that it was to prevent lumps from occurring, and in contrast to the common sense in the water treatment field, the present invention was completed by focusing on a downward flow inclined settling device which is completely different from the conventional technical idea.

【0011】以上の知見に基づき、上記目的を達成する
ために、本発明に係る下向流傾斜沈降装置は、それぞれ
内側に流路を形成するように複数個の筒体を相互に隣接
させた形状の成形体からなる流路形成体又は対向する板
状部材間に流路を形成するように配置された複数枚の板
状部材からなる流路形成体を、流路が水平面に対して傾
斜するように配置し、流路内を上から下に向かって流れ
るように被処理液を案内しつつ被処理液中の懸濁物を沈
降させるようにしたことを特徴としている。
Based on the above findings, in order to achieve the above-mentioned object, the downward flow inclined settling apparatus according to the present invention has a plurality of cylindrical bodies adjacent to each other so as to form a flow path inside. A flow channel forming body made of a shaped body or a flow channel forming body made of a plurality of plate-shaped members arranged so as to form a flow channel between opposing plate-shaped members is used. It is characterized in that the suspension in the liquid to be treated is settled while guiding the liquid to be treated so as to flow from the upper side to the lower side in the flow path.

【0012】本発明で流路形成体として使用する成形体
の流路の断面形状は、多角形、円形に限らず任意の形状
で良く、またその断面積は流路に沿って変化しても良
い。同様に、板状部材の断面形状も限定はなく、平板で
も波型板でも良く、また、その波型の形状も任意の形状
で良い。更に、板状部材間に形成される流路の流路面積
も流路に沿って変化しても良い。流路の傾斜角度は、特
に限定が無いが、経験則から水平面に対して60°前後
傾斜しているのが好適である。
The cross-sectional shape of the flow path of the molded body used as the flow path forming body in the present invention is not limited to polygonal or circular shape, and may be any shape, and its cross-sectional area may change along the flow path. good. Similarly, the cross-sectional shape of the plate member is not limited, and may be a flat plate or a corrugated plate, and the corrugated shape may be any shape. Furthermore, the flow passage area of the flow passage formed between the plate-shaped members may also change along the flow passage. The inclination angle of the flow channel is not particularly limited, but it is preferable that it is inclined about 60 ° with respect to the horizontal plane based on an empirical rule.

【0013】本発明で処理する被処理液は、その性状に
特に限定はなく、また凝集剤は必ずしも添加されていな
くても良い。被処理液が流路に沿って上から下に向かっ
て流れるようにするには、例えば流路形成体の上方に被
処理液の分配管を配置し、そこから被処理液を流下さ
せ、流路形成体内を通過させた後、処理槽の下部から次
の処理工程に送るようにする。
The liquid to be treated in the present invention is not particularly limited in its properties, and the aggregating agent may not necessarily be added. In order to allow the liquid to be processed to flow from the top to the bottom along the flow path, for example, a distribution pipe for the liquid to be processed is arranged above the flow path forming body, and the liquid to be processed is allowed to flow down from there. After passing through the passage forming body, the lower part of the processing tank is sent to the next processing step.

【0014】本発明に係る別の傾斜沈降装置は、被処理
液を順次流すように直列に配置した複数個の傾斜沈降装
置を備え、少なくとも1個の傾斜沈降装置は、下向流傾
斜沈降装置であり、残りの傾斜沈降装置は流路に沿って
下から上に向かって被処理液を流すようにした上向流傾
斜沈降装置であることを特徴とする複合型傾斜沈降装置
である。
Another inclined settling apparatus according to the present invention comprises a plurality of inclined settling apparatuses arranged in series so that the liquid to be treated is sequentially flowed, and at least one inclined settling apparatus is a downward flow inclined settling apparatus. The remaining inclined settling apparatus is a composite type inclined settling apparatus characterized in that it is an upward flow inclined settling apparatus in which the liquid to be treated is made to flow from bottom to top along the flow path.

【0015】下向流傾斜沈降装置と上向流傾斜沈降装置
の配置順序は、下向流を先にしてもまたは上向流を先に
しても良いが、好適には下向流傾斜沈降装置による沈降
分離を先に行うほうが良い。第1の理由には、下向流傾
斜沈降装置では、流路形成体からの排泥滑落方向が被処
理水の流れ方向と同じであるから、沈降した排泥が落下
し易い。よって、排泥し易い下向流傾斜沈降装置で、先
ず懸濁物の大部分を沈降させるのが好ましいからであ
る。第2には、密度流による偏流は、水温が上昇する過
程で発生し易く、そのためには水温上昇時でも沈降分離
性能に影響を受け難い下向流傾斜沈降装置を先に設置し
た方が懸濁物の除去率が良い。水温が低下する場合に
は、対流により、温度が均一になり易く、偏流の発生に
よる沈降分離障害は起こり難いからである。
The downward flow inclined settling device and the upward flow inclined settling device may be arranged in either a downward flow or an upward flow, preferably a downward flow inclined settling device. It is better to carry out sedimentation separation by. The first reason is that, in the downward flow inclined settling device, the sludge sludge sliding direction from the flow path forming body is the same as the flow direction of the water to be treated, and thus the settled sludge easily falls. Therefore, it is preferable to settle most of the suspended matter first with a downward flow inclined settling device that facilitates sludge discharge. Secondly, the uneven flow due to the density flow is likely to occur in the process of increasing the water temperature. Therefore, it is better to install the down-flow inclined settling device which is not easily affected by the sedimentation separation performance even when the water temperature rises. Good removal rate of suspended matter. This is because when the water temperature decreases, the temperature is likely to be uniform due to convection, and sedimentation separation failure due to the occurrence of uneven flow is unlikely to occur.

【0016】[0016]

【作用】請求項1の発明に係る傾斜沈降装置では、被処
理水が上から下に向かって流れるので、被処理水の水温
が変化しても、従来の傾斜沈降装置で生じていた冷水塊
が発生しない、従って偏流が発生しないので、沈降分離
性能が維持され、処理水の水質悪化を招かない。また、
傾斜沈降装置の流路形成体内に堆積した懸濁物の自重に
よる落下と水流の流れ方向とが同じであるから、流路か
らの排泥が円滑に行われ、過剰な堆積や排泥異常による
流路の閉塞が発生しない。
In the inclined settling apparatus according to the first aspect of the present invention, since the water to be treated flows from the top to the bottom, even if the temperature of the water to be treated changes, the cold water mass produced in the conventional inclined settling apparatus. Does not occur, and therefore, a non-uniform flow does not occur, the sedimentation separation performance is maintained, and the water quality of the treated water does not deteriorate. Also,
The flow direction of the suspended sedimentation device drops due to its own weight and the flow direction of the water flow is the same, so the sludge is discharged smoothly from the flow path, and due to excessive accumulation and abnormal drainage. The flow path is not blocked.

【0017】更に、説明すると、被処理水の水温が上昇
して、被処理水の密度が、先に流入した被処理水の密度
より小さくなったとしても、高低差による上から下への
押し出し力が大きいので、被処理水は流路内を押出し形
で順次流れ下る。そのため、冷水塊が、従って偏流が処
理槽内に発生しないので、傾斜沈降装置の沈降分離性能
が低下することもない。また、被処理水の水温が低下す
る場合、後に流入した被処理水の密度が先に流入した被
処理水の密度より大きくなって、被処理水の下降流が促
進され、下降流が処理槽の底部の密度の小さい処理水を
処理槽下部から外部に押し出す。また、下降した被処理
水は先に流入した密度が小さい被処理水を押し上げて、
循環混合流を生じさせるので、相互に熱交換が行われ、
水温変化が均一化され、偏流を生じさせる冷水塊が生じ
ない。
Further, to explain, even if the temperature of the water to be treated rises and the density of the water to be treated becomes smaller than the density of the water to be treated that has flowed in earlier, the water is extruded from the top to the bottom due to the difference in height. Since the force is large, the water to be treated flows downward in the flow channel in an extruded form. Therefore, cold water lumps, and hence, non-uniform flow, do not occur in the treatment tank, so that the sedimentation separation performance of the inclined sedimentation apparatus does not deteriorate. Further, when the temperature of the treated water decreases, the density of the treated water that flows in later becomes higher than the density of the treated water that flows in first, and the downward flow of the treated water is promoted, and the downward flow is the treatment tank. The treated water with a low density at the bottom of the is pushed out from the lower part of the treatment tank. In addition, the treated water that has descended pushes up the treated water that has flowed in earlier and has a low density,
It creates a circulating mixed flow, so heat exchange occurs between them,
The change in water temperature is made uniform, and no cold water mass that causes uneven flow is generated.

【0018】請求項2の発明に係る複合型傾斜沈降装置
では、水温が急激に下降する場合でも、上向流傾斜沈降
装置において、均一な上向流が維持され、良好な沈降分
離が行われるので、処理水の水質が維持できる。下向流
傾斜沈降装置を前段に設置しているので、排泥作用が比
較的難しい上向流傾斜沈降装置での懸濁物の堆積負荷が
減少し円滑な運転が行われる。
In the combined gradient settling apparatus according to the second aspect of the present invention, even when the water temperature sharply drops, a uniform upward flow is maintained in the upward flow inclined settling apparatus, and good sedimentation is performed. Therefore, the quality of treated water can be maintained. Since the down-flow inclined settling device is installed in the previous stage, the sedimentation load of suspended matter in the up-flow inclined settling device, which is relatively difficult to remove sludge, is reduced and smooth operation is performed.

【0019】[0019]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。実施例1 図1は、本発明に係る下向流傾斜沈降装置を備えた凝集
沈殿装置の実施例1の構成を示す模式的縦断面図であ
る。本実施例の凝集沈殿装置10は、被処理水に凝集剤
を投入して凝集フロックを生成させ、次いで凝集フロッ
クを沈降分離して、被処理水から清浄な処理水、例えば
原水から上水を得る装置であって、方形箱型の攪拌槽1
2と、攪拌槽12に隣接する同じく方形箱型の処理槽1
4と、処理槽14内に設けられた下向流傾斜沈降装置
(以下、簡単に傾斜沈降装置と略称する)16と、排泥
装置18とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to the accompanying drawings. Example 1 FIG. 1 is a schematic vertical cross-sectional view showing the configuration of Example 1 of a coagulating sedimentation apparatus equipped with a downward flow inclined sedimentation apparatus according to the present invention. The coagulation-sedimentation apparatus 10 of the present embodiment introduces a coagulant into treated water to generate coagulated flocs, and then sediments and separates the coagulated flocs to remove clean treated water from the treated water, for example, clean water from raw water. A device for obtaining a rectangular box type stirring tank 1
2 and a rectangular box type processing tank 1 adjacent to the stirring tank 12
4, a downward flow inclined settling device (hereinafter simply referred to as an inclined settling device) 16 provided in the treatment tank 14, and a sludge discharging device 18.

【0020】攪拌槽12は、凝集混和槽20と、隔壁2
4により隔てられて隣接する緩速攪拌槽22とからな
り、凝集混和槽20と緩速攪拌槽22とは、隔壁24の
下部開口を介して連通している。また、凝集混和槽20
には急速攪拌機26が、緩速攪拌槽22には緩速攪拌機
28がそれぞれ設けてある。緩速攪拌槽22は槽壁23
により隔てられて処理槽14に隣接している。処理槽1
4は、緩速攪拌槽22に隣接した沈降槽36と溜め槽3
8とに隔壁34により分割されていて、沈降槽36と溜
め槽38の双方は、隔壁34の下部開口を介して連通し
ている。被処理水の流入口30は、凝集混和槽20の隔
壁24に対向する槽壁に設けてあり、処理水の流出口3
2は、溜め槽38の隔壁34に対向する槽壁に設けてあ
って、流出口32の高さにより凝集沈殿装置10の水面
の位置が規定される。
The stirring tank 12 comprises a coagulation / mixing tank 20 and a partition wall 2.
The slow mixing tank 22 and the slow mixing tank 22 are separated from each other and are adjacent to each other. The coagulation and mixing tank 20 and the slow mixing tank 22 communicate with each other through a lower opening of the partition wall 24. In addition, the aggregating and mixing tank 20
Is provided with a rapid stirrer 26, and the slow stirring tank 22 is provided with a slow stirrer 28. The slow stirring tank 22 is a tank wall 23
It is adjacent to the processing tank 14 by being separated by. Processing tank 1
4 is a settling tank 36 adjacent to the slow stirring tank 22 and a reservoir tank 3
8 is divided by a partition wall 34, and both the settling tank 36 and the reservoir tank 38 communicate with each other through the lower opening of the partition wall 34. The treated water inflow port 30 is provided on the tank wall facing the partition wall 24 of the coagulation and mixing tank 20, and the treated water outflow port 3 is provided.
2 is provided on the tank wall facing the partition wall 34 of the reservoir tank 38, and the height of the outlet 32 defines the position of the water surface of the coagulation-sedimentation apparatus 10.

【0021】傾斜沈降装置16は、沈降槽36に設けら
れ、流路形成体40と、管状の分配管42とを備えてい
る。流路形成体40は、沈降槽36の底から所定の高さ
の位置に設けてあって、槽壁23から隔壁34まで沈降
槽36の全面にわたり延在する。流路形成体40は、図
2(a)に示すような断面台形の波型成形板40aを上
下に離隔してかつ相互に平行になるように多数配置して
なる集合体により、又は流路に直交する方向の断面で見
て中空部が図2(b)に示すハニカム状になるように形
成された成形体40bにより構成されている。図2
(a)に示す波型成形板40aに変えて平板を多数配置
しても良い。流路形成体40は、流路が水平面に対して
約60°下方に傾斜するように配設されている。尚、本
実施例では、流路形成体40を、その流路が図面におい
て左上から右下に下り傾斜となるように配置してある
が、これとは逆向きに、流路が右上から左下に下り傾斜
となるように配置してもよい。
The inclined settling device 16 is provided in the settling tank 36, and is provided with a flow path forming body 40 and a tubular distribution pipe 42. The flow path forming body 40 is provided at a predetermined height from the bottom of the settling tank 36, and extends over the entire surface of the settling tank 36 from the tank wall 23 to the partition wall 34. The flow path forming body 40 is formed by an aggregate of a plurality of trapezoidal shaped corrugated plates 40a having a trapezoidal cross section as shown in FIG. The hollow body is formed of a molded body 40b formed in a honeycomb shape as shown in FIG. Figure 2
A large number of flat plates may be arranged instead of the corrugated plate 40a shown in FIG. The flow path forming body 40 is arranged so that the flow path is inclined downward by about 60 ° with respect to the horizontal plane. In the present embodiment, the flow passage forming body 40 is arranged so that the flow passage is inclined downward from the upper left to the lower right in the drawing, but in the opposite direction, the flow passage is formed from the upper right to the lower left. You may arrange | position so that it may become a downward slope.

【0022】分配管42は、一方の端部で緩速攪拌槽2
2に連通し、他方の端部で閉止されたパイプで形成さ
れ、流路形成体40の上方に位置し、かつ沈降槽36の
中央を槽壁23から隔壁34に向かって延びている。更
に、パイプの両側には多数の細孔44が長手方向にほぼ
等間隔で設けられている。
The distribution pipe 42 is provided at one end with the slow stirring tank 2
It is formed by a pipe that communicates with 2, and is closed at the other end, is located above the flow path forming body 40, and extends from the tank wall 23 toward the partition wall 34 at the center of the settling tank 36. Further, a large number of pores 44 are provided on both sides of the pipe at substantially equal intervals in the longitudinal direction.

【0023】排泥装置18は、常用の構成であって、最
低部に向かって四方から傾斜するように形成された排泥
ホッパ46と、排泥ホッパ46の最低部に設けられた開
閉弁付き排泥管48とからなり、排泥ホッパ46は、処
理槽14の底板上に数カ所設けられている。
The mud discharge device 18 has a conventional structure and is provided with a sludge hopper 46 formed so as to incline from four sides toward the lowest portion, and an on-off valve provided at the lowest portion of the sludge hopper 46. A sludge discharge pipe 48 and a sludge discharge hopper 46 are provided at several locations on the bottom plate of the processing tank 14.

【0024】以下に、本実施例の凝集沈殿装置10を構
成する各装置の機能を説明する。被処理水は、流入口3
0から凝集混和槽20に流入し、そこで凝集剤が投入さ
れた後、急速攪拌機26により攪拌混和される。次い
で、被処理水は、隔壁24の下部開口を経由して緩速攪
拌槽22に流入し、そこで緩速攪拌機28により緩やか
に攪拌されつつ凝集反応を行って凝集フロックを生成す
る。凝集フロックを懸濁させた被処理水は、緩速攪拌槽
22から下向流傾斜沈降装置16に流入して処理され
る。先ず、被処理水は、分配管42に流入し、更に細孔
44を介して流路形成体40に入り、流路形成体40を
下向流で通過しつつ凝集フロックを沈降させる。清浄化
された処理水は、隔壁34の下部開口を経由して溜め槽
38に入り、次いで流出口32より外部に流出する。
The function of each device constituting the coagulating sedimentation device 10 of this embodiment will be described below. The water to be treated has an inlet 3
From 0, it flows into the coagulation / mixing tank 20, where the coagulant is charged, and then the mixture is agitated and mixed by the rapid agitator 26. Next, the water to be treated flows into the slow-speed stirring tank 22 through the lower opening of the partition wall 24, where it undergoes a flocculation reaction while being gently stirred by the slow-speed stirrer 28 to generate floc flocs. The water to be treated in which the flocs of flocculation are suspended flows from the slow stirring tank 22 into the downward flow inclined settling device 16 for treatment. First, the water to be treated flows into the distribution pipe 42, further enters the flow channel forming body 40 through the pores 44, and passes through the flow channel forming body 40 in a downward flow to settle the floc. The purified treated water enters the reservoir tank 38 through the lower opening of the partition wall 34, and then flows out from the outlet 32.

【0025】被処理水中の凝集フロックは、被処理水が
傾斜沈降装置16の流路形成体40を通過する間に、沈
降して流路形成体40の壁面に付着し、その付着堆積量
が多くなると、自重と被処理水の押し出し力の相乗効果
により壁面を滑り落ち、沈降槽38の底部の排泥ホッパ
46に凝集沈殿汚泥として堆積する。排泥ホッパ46に
貯留された汚泥は、随時、排泥管48を開放して槽外に
取り出される。尚、溜め槽38で沈降した汚泥は、同じ
く溜め槽38底部の排泥ホッパ46に堆積し、同様に排
出される。
Agglomerated flocs in the water to be treated settle down and adhere to the wall surface of the flow passage forming body 40 while the water to be treated passes through the flow passage forming body 40 of the inclined settling device 16. When the amount of water increases, the wall surface slides down due to the synergistic effect of its own weight and the pushing force of the water to be treated, and it accumulates in the sludge discharge hopper 46 at the bottom of the sedimentation tank 38 as coagulated sediment sludge. The sludge stored in the sludge hopper 46 is taken out of the tank by opening the sludge pipe 48 at any time. The sludge settled in the storage tank 38 is also deposited on the sludge hopper 46 at the bottom of the storage tank 38, and is similarly discharged.

【0026】実施例2 図3は本発明に係る複合型傾斜沈降装置を備えた凝集沈
殿装置の構成を示す模式的縦断面図である。図3に示す
装置及び部品のうち、図1に示すものと同じ機能を有す
るものには同じ符号を付し、その説明を省略する。本実
施例の凝集沈殿装置50は、実施例1同様に、被処理水
に凝集剤を投入して凝集フロックを生成し、次いで凝集
フロックを沈降分離して、被処理水から清浄な処理水を
得る装置であって、方形箱型の攪拌槽12と、攪拌槽1
2に隣接する同じく方形箱型の処理槽14と、処理槽1
4内にそれぞれ設けられた下向流傾斜沈降装置16及び
上向流傾斜沈降装置52と、排泥装置18とを備えてい
る。
Embodiment 2 FIG. 3 is a schematic longitudinal sectional view showing the structure of a coagulating sedimentation apparatus equipped with a composite type inclined sedimentation apparatus according to the present invention. Of the devices and parts shown in FIG. 3, those having the same functions as those shown in FIG. 1 are designated by the same reference numerals, and their description will be omitted. Similar to the first embodiment, the flocculation-sedimentation apparatus 50 of the present embodiment introduces a flocculant into the water to be treated to generate flocs of flocs, and then sediments and separates the flocs of flocculation to obtain clean treated water from the water to be treated. A device for obtaining the same, which is a rectangular box-shaped stirring tank 12 and a stirring tank 1.
The same rectangular box type processing tank 14 adjacent to 2 and the processing tank 1
4, a downward flow inclined settling device 16 and an upward flow inclined settling device 52, respectively, and a sludge discharge device 18 are provided.

【0027】処理槽14は、第1隔壁54及び第2隔壁
56によって第1沈降槽58と第2沈降槽60と溜め槽
38とに順次直列に分割され、第1沈降槽58は槽壁2
3により隔てられて緩速攪拌槽22に隣接している。第
1沈降槽58と第2沈降槽60とは、第1隔壁54の下
部開口を介して連通している。被処理水の流入口30
は、凝集混和槽20の槽壁23に対向する槽壁に設けて
あり、処理水の流出口32は、溜め槽38の第2隔壁5
6に対向する槽壁に設けてあって、流出口32の高さに
より凝集沈殿装置50の水面の位置が規定される。攪拌
槽12及び第1沈降槽58に設けられた下向流傾斜沈降
装置16の構成は、実施例1のそれぞれの構成と実質的
に同じである。
The processing tank 14 is divided into a first settling tank 58, a second settling tank 60 and a reservoir tank 38 in series in series by a first partition 54 and a second partition 56, and the first settling tank 58 is a tank wall 2.
It is separated by 3 and is adjacent to the slow stirring tank 22. The first settling tank 58 and the second settling tank 60 communicate with each other through a lower opening of the first partition wall 54. Inlet 30 for treated water
Is provided on the tank wall facing the tank wall 23 of the coagulation and mixing tank 20, and the treated water outlet 32 is the second partition wall 5 of the reservoir tank 38.
It is provided on the tank wall facing 6 and the position of the water surface of the coagulating sedimentation device 50 is defined by the height of the outlet 32. The configurations of the downward flow inclined settling device 16 provided in the stirring tank 12 and the first settling tank 58 are substantially the same as those of the first embodiment.

【0028】上向流傾斜沈降装置52は、第2沈降槽6
0に設けてあって、流路形成体62と、管状の集水管6
4とを備えている。流路形成体62は、第1隔壁54か
ら第2隔壁56まで第2沈降槽60の全面にわたり延在
する。流路形成体62は、下向流傾斜沈降装置16の流
路形成体40と同様に、図2(a)に示す断面台形の波
型成形板40aを組み合わせたもの、又は図2(b)に
示す成形体40bで構成され、傾斜沈降装置16の流路
形成体40と同じ高さで、かつ流路の傾斜が第1隔壁5
4を対称面として対称になるように、即ち各々の流路が
逆向きとなるように配置されている。尚、下向流の流路
形成体40と上向流の流路形成体62とを、各々の流路
が相互に同じ向きとなるように配置してもよい。集水管
64は、一方の端部で溜め槽38に連通し、他方の端部
で閉止されたパイプで形成され、流路形成体62の上方
に位置し、かつ第2沈降槽60の中央を第1隔壁54近
傍から第2隔壁56に向かって延びている。更に、パイ
プの両側には多数の細孔64が長手方向にほぼ等間隔で
設けられている。
The upward flow inclined settling device 52 is used for the second settling tank 6
No. 0, the flow path forming body 62 and the tubular water collecting pipe 6
4 and. The flow path forming body 62 extends from the first partition wall 54 to the second partition wall 56 over the entire surface of the second settling tank 60. The flow channel forming body 62 is a combination of the corrugated plate 40a having a trapezoidal cross section shown in FIG. 2A, or the flow channel forming body 62 of FIG. Of the first partition wall 5 having the same height as the flow path forming body 40 of the inclined settling device 16 and the inclination of the flow path.
4 are arranged symmetrically with respect to each other, that is, the flow paths are arranged in opposite directions. The downward flow channel forming body 40 and the upward flow channel forming body 62 may be arranged so that the respective flow channels have the same direction. The water collection pipe 64 is formed by a pipe that communicates with the reservoir tank 38 at one end and is closed at the other end, is located above the flow path forming body 62, and is located at the center of the second sedimentation tank 60. It extends from the vicinity of the first partition 54 toward the second partition 56. Further, a large number of pores 64 are provided on both sides of the pipe at substantially equal intervals in the longitudinal direction.

【0029】排泥装置18は、実施例1と同じ構成であ
って、第1沈降槽58及び第2沈降槽60の底部に設け
てある。
The sludge discharge device 18 has the same structure as that of the first embodiment, and is provided at the bottom of the first settling tank 58 and the second settling tank 60.

【0030】以下に、本実施例の凝集沈殿装置50を構
成する各装置の機能を説明する。被処理水は、流入口3
0から攪拌槽12に、更に下向流傾斜沈降装置16に流
入して、実施例1と同様に処理されて、第1沈降槽58
から第1隔壁54の下部開口を経由して第2沈降槽60
の下部に流入する。第2沈降槽60に流入した被処理水
は、上向流傾斜沈降装置52に入り、流路形成体62を
上向流で通過しつつ下向流傾斜沈降装置16で残留した
凝集フロックを沈降させる。清浄化された処理水は、細
孔66を介して集水管64に流入し、次いで溜め槽38
を経て流出口32より外部に流出する。実施例2の構成
によれば、下向流傾斜沈降装置16と上向流傾斜沈降装
置52とを組み合わせることにより、被処理水の急激な
水温変化に対しても、処理水の水質の変動を最小限にす
ることができる。尚、本例においては、溜め槽38は必
ずしも必要ではなく、集水管64の一端を流出口32に
直結し、集水管64に流入した処理水を直接流出口32
から外部に流出させるようにしてもよい。
The function of each device constituting the coagulating sedimentation device 50 of this embodiment will be described below. The water to be treated is the inflow port 3
From 0 to the agitation tank 12, further into the downward flow inclined settling device 16, treated in the same manner as in Example 1, the first settling tank 58.
From the second settling tank 60 through the lower opening of the first partition 54.
Flows into the bottom of. The water to be treated that has flowed into the second settling tank 60 enters the upward flow inclined settling device 52, passes through the flow path forming body 62 in the upward flow, and settles the floc flocs remaining in the downward flow inclined settling device 16. Let The purified treated water flows into the water collection pipe 64 through the pores 66, and then the reservoir tank 38.
Through the outlet 32 to the outside. According to the configuration of the second embodiment, by combining the downward flow inclined settling device 16 and the upward flow inclined settling device 52, fluctuations in the water quality of the treated water can be achieved even when the water temperature of the treated water changes rapidly. Can be minimized. In addition, in this example, the reservoir tank 38 is not always necessary, and one end of the water collecting pipe 64 is directly connected to the outflow port 32, and the treated water flowing into the water collecting pipe 64 is directly discharged to the outflow port 32.
You may make it flow out from the outside.

【0031】実施例3 図4は複合型傾斜沈降装置を備えた凝集沈殿装置の実施
例2の改変例の構成を示し、図4(a)、(b)及び
(c)はそれぞれその平面図、図4(a)の線X−X′
での断面図、及び図4(a)の線Y−Y′での断面図で
ある。図4に示す装置及び部品のうち、図1及び図3に
示すものと同じ機能を有するものには同じ符号を付し、
その説明を省略する。尚、図5、図6及び図8について
も同様である。本実施例の凝集沈殿装置70は、図4に
示すように、攪拌槽12と、処理槽14と、処理槽14
にそれぞれ設けられた、下向流傾斜沈降装置16及び下
向流傾斜沈降装置16の両側にその長手方向に沿って2
個配置された上向流傾斜沈降装置52A、Bと、排泥装
置18とを備えていて、各々の装置の構成は実施例2と
実質的に同様である。
Embodiment 3 FIG. 4 shows the configuration of a modified example of Embodiment 2 of the flocculation-sedimentation apparatus equipped with the composite type inclined sedimentation apparatus, and FIGS. 4 (a), 4 (b) and 4 (c) are plan views thereof, respectively. , Line XX ′ in FIG.
4 is a sectional view taken along line YY 'in FIG. 4A. Of the devices and parts shown in FIG. 4, those having the same functions as those shown in FIGS. 1 and 3 are designated by the same reference numerals,
The description is omitted. The same applies to FIGS. 5, 6 and 8. As shown in FIG. 4, the coagulation-sedimentation apparatus 70 of this embodiment includes a stirring tank 12, a processing tank 14, and a processing tank 14.
2 on both sides of the downward flow inclined settling device 16 and the downward flow inclined settling device 16 provided along the longitudinal direction thereof.
Upward-flow inclined settling devices 52A and B arranged individually and a sludge discharging device 18 are provided, and the configuration of each device is substantially the same as that of the second embodiment.

【0032】処理槽14は、相互に平行な2枚の第1隔
壁72A、Bと第1隔壁72に直交する第2隔壁74と
により、第1沈降槽76と、第1沈降槽76の長手方向
に沿ってその両側に配置された2個の第2沈降槽78
A、Bと、溜め槽38とに分割されている。2個の第2
沈降槽78A、Bは、それぞれ第1隔壁72A、Bの下
部開口を介して第1沈降槽76と連通している。第1沈
降槽76には下向流傾斜沈降装置16が、第2沈降槽7
8A、Bにはそれぞれ上向流傾斜沈降装置52A、Bが
収容されている。下向流傾斜沈降装置16の流路形成体
40の向きと上向流傾斜沈降装置52A、Bの流路形成
体62A、Bの向きは、相互に同じ向きでも、また逆の
向きでもよい。図4中、30は被処理水の流入口を、3
2は処理水の流出口を、40、62A、Bは流路形成体
を、42は分配管を、64A、Bは集水管を、及びLは
水面を示す。
The processing tank 14 includes two first partition walls 72A and 72B which are parallel to each other and a second partition wall 74 which is orthogonal to the first partition wall 72. Two second settling tanks 78 arranged on both sides in the direction
It is divided into A and B and a reservoir 38. Two second
The settling tanks 78A and 78B communicate with the first settling tank 76 through the lower openings of the first partition walls 72A and 72B, respectively. In the first settling tank 76, the downward flow inclined settling device 16 is installed in the second settling tank 7
Upflow inclined settling devices 52A and B are housed in 8A and B, respectively. The direction of the flow path forming body 40 of the downward flow inclined settling apparatus 16 and the direction of the flow path forming bodies 62A, B of the upward flow inclined settling apparatus 52A, B may be the same direction or opposite directions. In FIG. 4, reference numeral 30 denotes an inlet for the water to be treated.
2 is an outlet of treated water, 40, 62A and B are flow path forming bodies, 42 is a distribution pipe, 64A and B are water collecting pipes, and L is a water surface.

【0033】実施例3では、被処理水が下向流傾斜沈降
装置16から上向流傾斜沈降装置52A、Bに分かれて
流入し、そこでそれぞれ処理された後、溜め槽38で合
流し流出口32から流出する。本実施例では、上向流傾
斜沈降装置52が下向流傾斜沈降装置16の長手方向に
沿ってその両側に配置されているので、被処理水が、下
向流傾斜沈降装置16から上向流傾斜沈降装置52A、
Bに流入する際、第1隔壁72に沿ってその全長にわた
り均等な分布でかつ均一な流速で流入するので、上向流
傾斜沈降装置52での沈降分離が一層効率良く行われ
る。尚、本例においても、前記実施例2の場合と同様に
溜め槽38は必ずしも必要ではなく、集水管64A、B
に流入した処理水を直接流出口32から流出させるよう
にしてもよい。
In the third embodiment, the water to be treated flows separately from the downward flow inclined settling device 16 into the upward flow inclined settling devices 52A and 52B, and after being treated therein respectively, it joins in the reservoir tank 38 and the outlet. Outflow from 32. In the present embodiment, the upward flow inclined settling device 52 is arranged on both sides of the downward flow inclined settling device 16 in the longitudinal direction, so that the water to be treated is directed upward from the downward flow inclined settling device 16. Flow tilt settling device 52A,
When flowing into B, it flows along the first partition wall 72 over its entire length with a uniform distribution and a uniform flow velocity, so that the sedimentation separation in the upward flow inclined sedimentation device 52 is performed more efficiently. Also in this example, as in the case of the second embodiment, the reservoir tank 38 is not always necessary, and the water collecting pipes 64A, 64B are not necessary.
The treated water that has flowed into the outlet may be directly discharged from the outlet 32.

【0034】実施例4 実施例4は、実施例3の改変例であって、図5(a)は
その平面図、図5(b)は図5(a)の線X−X′での
断面図である。本実施例の凝集沈殿装置80は、円筒形
攪拌槽12と、円筒形壁82により隔てられて同心状に
配置された円筒形処理槽14とを備え、更に、攪拌槽1
2は第1円筒形隔壁84により凝集混和槽20と緩速攪
拌槽22とに分割され、処理槽14は第2円筒形隔壁8
6により第1沈降槽76と第2沈降槽78とに分割され
ている。
Example 4 Example 4 is a modification of Example 3, in which FIG. 5 (a) is its plan view and FIG. 5 (b) is taken along line XX 'in FIG. 5 (a). FIG. The coagulation-sedimentation apparatus 80 of the present embodiment includes a cylindrical stirring tank 12 and a cylindrical processing tank 14 which are concentrically arranged with a cylindrical wall 82 therebetween.
2 is divided into a coagulation and mixing tank 20 and a slow stirring tank 22 by a first cylindrical partition wall 84, and the processing tank 14 is a second cylindrical partition wall 8
It is divided by 6 into a first settling tank 76 and a second settling tank 78.

【0035】凝集混和槽20と緩速攪拌槽22とは第1
円筒形隔壁84の下部開口を介して連通しており、第1
沈降槽76と第2沈降槽78とは第2円筒形隔壁86の
下部開口を介して連通している。第1沈降槽76には筒
状に形成された下向流傾斜沈降装置16が、第2沈降槽
78には同じく筒状に形成された上向流傾斜沈降装置5
2が、それぞれ流路が沈降槽の円周方向を向くように設
置されている。本実施例では、分配管に変えて被処理水
が緩速攪拌槽22から円筒形壁82をオーバフローして
下向流傾斜沈降装置16に流入するようになっており、
更に集水管に変えて円形樋88が第2沈降槽78の外側
槽壁に沿って設けてあり、処理水は第2沈降槽78から
円形樋88を経て外部に流出する。
The coagulation and mixing tank 20 and the slow stirring tank 22 are the first
It communicates through the lower opening of the cylindrical partition 84, and
The settling tank 76 and the second settling tank 78 communicate with each other through a lower opening of the second cylindrical partition wall 86. The first settling tank 76 has a cylindrical downward flow inclined settling device 16, and the second settling tank 78 has a cylindrical upward flow inclined settling device 5 as well.
2 are installed so that the flow paths face the circumferential direction of the sedimentation tank. In the present embodiment, instead of the distribution pipe, the water to be treated overflows the slow stirring tank 22 over the cylindrical wall 82 and flows into the downward flow inclined settling device 16.
Further, a circular gutter 88 is provided along the outer tank wall of the second settling tank 78 in place of the water collecting pipe, and the treated water flows out from the second settling tank 78 to the outside through the circular gutter 88.

【0036】本実施例の構成によれば、凝集沈殿装置を
コンパクトにでき、その所要敷地面積を小さくすること
ができる。
According to the configuration of this embodiment, the coagulating sedimentation apparatus can be made compact and the required site area can be reduced.

【0037】実施例5 実施例5は、実施例4の円筒形凝集沈殿装置を方形の凝
集沈殿装置90に改変した例であって、平面形状の差異
を除いて実施例4の構成と同じである。図6(a)はそ
の平面図、図6(b)は図6(a)の線X−X′での断
面図である。
Example 5 Example 5 is an example in which the cylindrical flocculation-sedimentation apparatus of Example 4 is modified into a rectangular flocculation-sedimentation apparatus 90, which is the same as the configuration of Example 4 except for the difference in plane shape. is there. 6 (a) is a plan view thereof, and FIG. 6 (b) is a sectional view taken along line XX 'of FIG. 6 (a).

【0038】実施例6 実施例6は、実施例4の円筒形凝集沈殿装置を改変した
例であって、図9(a)はその平面図、図9(b)は図
9(a)の線X−X′での断面図である。実施例4と異
なるところは、次の点である。本実施例の凝集沈殿装置
100では、円筒形処理槽14は、槽全体が円筒形隔壁
120により同心状の第1沈降槽122と第2沈降槽1
24とに分割されている。凝集剤の添加と混合に関して
は、凝集混和槽20に変えて、管内混合器(ラインミキ
サー)102が被処理水の導入管104に、筒状の流入
ガイド106が緩速攪拌槽22内にそれぞれ設けられ、
導入管104の出口は流入ガイド106の入口を臨む位
置にある。また、緩速攪拌槽22が、有底円筒で形成さ
れ、第1沈降槽122の上部に同心状に配置されてい
る。被処理水は、管内混合器102の上流側の導入管1
04内で凝集剤を添加され、管内混合器102で混合さ
れた後、流入ガイド106を通り、その下部から緩速攪
拌槽22に入る。
Example 6 Example 6 is an example in which the cylindrical flocculation-sedimentation apparatus of Example 4 is modified. FIG. 9 (a) is its plan view and FIG. 9 (b) is that of FIG. 9 (a). It is sectional drawing in line XX '. The difference from Example 4 is the following point. In the coagulation-sedimentation apparatus 100 of the present embodiment, the cylindrical processing tank 14 has a first partition tank 122 and a second precipitation tank 1 which are concentric with each other by a cylindrical partition wall 120.
It is divided into 24 and. Regarding addition and mixing of the coagulant, instead of the coagulation and mixing tank 20, the in-pipe mixer (line mixer) 102 is placed in the treated water introducing pipe 104, and the tubular inflow guide 106 is placed in the slow stirring tank 22. Is provided,
The outlet of the introduction pipe 104 is located at a position facing the inlet of the inflow guide 106. In addition, the slow stirring tank 22 is formed as a bottomed cylinder, and is arranged concentrically above the first settling tank 122. The water to be treated is introduced through the introduction pipe 1 on the upstream side of the in-pipe mixer 102.
After the coagulant is added in 04 and mixed in the in-pipe mixer 102, it passes through the inflow guide 106 and enters the slow stirring tank 22 from its lower part.

【0039】実施例3とは異なり、第1沈降槽122に
設置された下向流傾斜沈降装置16は、上から下向きに
第1沈降槽122の内方に向かう流路を有し、第2沈降
槽124に設置された上向流傾斜沈降装置52は、下か
ら上向きに第2沈降槽124の内方に向かう流路を形成
している。また、本実施例では、処理槽14の底部が、
その中心を最深部とするコーン状に形成され、その最深
部に排泥口108が設けてある。また、実施例3の排泥
装置18に変えて、別の形式の掻寄式排泥装置110が
設けられている。それは、処理槽14の底部に合致する
底辺を有する枠体112と、この枠体112に取り付け
られた掻寄羽根113とを備え、枠体112を回転軸1
14によりその周りに回転させて、処理槽14の底部に
沈積した汚泥を掻寄羽根113によって中央に掻き寄
せ、排泥口108から排泥する。回転軸114は、下向
流傾斜沈降装置16、緩速攪拌槽22を貫通し、流入ガ
イド106の中央を延びるガイド管116内を通り、上
部の回転装置118に連結されている。本実施例は、設
置面積が実施例3と同じ傾斜沈降装置を実施例3の処理
槽より直径の小さな処理槽内に配設することができるの
で、実施例3に比べて沈殿装置をコンパクトに構成する
ことができる。
Unlike the third embodiment, the downward-flowing inclined settling device 16 installed in the first settling tank 122 has a flow path from the upper side to the lower side toward the inside of the first settling tank 122. The upward flow inclined settling device 52 installed in the settling tank 124 forms a flow path from the bottom to the upper side toward the inside of the second settling tank 124. In addition, in this embodiment, the bottom of the processing tank 14 is
It is formed in a cone shape having the center as the deepest portion, and the mud discharge port 108 is provided at the deepest portion. Further, in place of the sludge discharge device 18 of the third embodiment, another type of the scraping type sludge discharge device 110 is provided. It comprises a frame body 112 having a bottom side that matches the bottom of the processing tank 14, and a scraping blade 113 attached to the frame body 112.
It is rotated around it by 14, and the sludge deposited on the bottom of the treatment tank 14 is scraped to the center by the scraping blade 113 and discharged from the mud discharge port 108. The rotating shaft 114 passes through the downward flow inclined settling device 16 and the slow stirring tank 22, passes through a guide pipe 116 extending through the center of the inflow guide 106, and is connected to an upper rotating device 118. In this embodiment, since the inclined settling device having the same installation area as that of the third embodiment can be installed in the processing tank having a smaller diameter than the processing tank of the third embodiment, the precipitation apparatus can be made compact as compared with the third embodiment. Can be configured.

【0040】試験結果 実施例1及び実施例2に示した構成の凝集沈殿装置を使
用して、被処理水の清浄化試験を行い、その評価を行っ
た。水平流傾斜沈降装置又は上向流傾斜沈降装置を設け
た従来の凝集沈殿装置では、1時間当たり約0.5℃の
温度上昇が被処理水に生じた場合、密度差による偏流が
発生して沈降分離機能が低下し、そのため処理水の水質
が悪化した。一方、実施例1の下向流傾斜沈降装置のみ
を設けた凝集沈殿装置では、1時間当たり約5℃の温度
上昇が被処理水に生じた場合でも、処理水の水質が悪化
しないことが確認できた。また、下向流傾斜沈降装置と
上向流傾斜沈降装置の双方を備えた実施例2の凝集沈殿
装置では、1時間当たり約8℃の温度上昇が被処理水に
生じた場合でも、処理水の水質が悪化しないことが確認
できた。よって、本実施例1の下向流傾斜沈降装置及び
実施例2の複合型傾斜沈降装置は、被処理水の水温が大
幅に上昇しても、その沈降分離性能を維持できることが
実証された。また、従来の凝集沈殿装置では流路形成体
に凝集フロックが堆積して流路の閉塞等の支障が発生し
たが、実施例1では、凝集フロックが、その自重作用と
被処理水の押し出し作用との相乗効果により、沈積した
流路から沈降槽の底部に円滑に落下し、また実施例2の
凝集沈殿装置では、下向流傾斜沈降装置で大部分の凝集
フロックが沈降するので、上向流傾斜沈降装置では、沈
降する凝集フロックの量が少なくなり、流路の閉塞は発
生しなかった。
Test Results Using the coagulation-sedimentation apparatus having the construction shown in Examples 1 and 2, a cleaning test of the water to be treated was conducted and evaluated. In a conventional coagulating sedimentation device provided with a horizontal flow inclined settling device or an upward flow inclined settling device, when a temperature rise of about 0.5 ° C. per hour occurs in the water to be treated, a drift due to a difference in density occurs. The sedimentation and separation function deteriorated, and the quality of the treated water deteriorated. On the other hand, in the coagulation-sedimentation apparatus provided only with the downward flow inclined sedimentation apparatus of Example 1, it was confirmed that the quality of the treated water does not deteriorate even when the temperature of the treated water rises by about 5 ° C. per hour. did it. Further, in the coagulating sedimentation apparatus of Example 2 equipped with both the downward flow inclined sedimentation apparatus and the upward flow inclined sedimentation apparatus, the treated water is treated even if the temperature rise of about 8 ° C. per hour occurs in the treated water. It was confirmed that the water quality in the area did not deteriorate. Therefore, it was demonstrated that the downward flow inclined settling apparatus of Example 1 and the composite type inclined settling apparatus of Example 2 can maintain the settling separation performance even when the temperature of the water to be treated is significantly increased. Further, in the conventional coagulation-sedimentation apparatus, coagulation flocs were accumulated on the flow path forming body and troubles such as blockage of the flow path occurred, but in Example 1, the coagulation flocs have their own weight action and the action of pushing out the water to be treated. By the synergistic effect with the above, it smoothly drops from the deposited flow channel to the bottom of the settling tank, and in the coagulation-sedimentation device of Example 2, most of the coagulation flocs settle in the downward flow inclined sedimentation device. In the flow gradient settler, the amount of aggregated flocs that settled was small, and the flow path was not blocked.

【0041】[0041]

【発明の効果】以上の説明で明らかなように、本発明の
構成によれば、下向流傾斜沈降装置、又は下向流傾斜沈
降装置と上向流傾斜沈降装置を組み合わせた複合型傾斜
沈降装置は、従来の水平流傾斜沈降装置及び上向流傾斜
沈降装置に比し、被処理水の水温が変動した場合でも、
安定した良好な沈降分離性能を発揮して、処理水の水質
を所定の水質に維持し、また、常時、円滑な排泥を行う
ことができる。よって、本発明に係る下向流傾斜沈降装
置又は複合型傾斜沈降装置を設けた沈殿装置は、被処理
水の水温が変化しても清澄な処理水を得ることができ、
しかも排泥が円滑に行われるので、長期にわたり安定し
た運転ができる。
As is apparent from the above description, according to the structure of the present invention, a downward flow inclined settling device or a composite type inclined settling device in which a downward flow inclined settling device and an upward flow inclined settling device are combined. Compared to the conventional horizontal flow inclined settling device and upward flow inclined settling device, the device is
Stable and good sedimentation performance is exhibited, the quality of treated water is maintained at a predetermined level, and smooth sludge can be discharged at all times. Therefore, the settling device provided with the downward flow inclined settling device or the composite type inclined settling device according to the present invention can obtain clear treated water even if the temperature of the water to be treated changes.
Moreover, since the sludge is discharged smoothly, stable operation can be performed for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る下向流傾斜沈降装置を備えた凝集
沈殿装置の実施例1の構成を示す模式的縦断面図であ
る。
FIG. 1 is a schematic vertical cross-sectional view showing the configuration of Example 1 of a coagulating sedimentation apparatus equipped with a downward-flowing inclined sedimentation apparatus according to the present invention.

【図2】図2(a)及び図2(b)はそれぞれ台形波型
成形板及び成形体の斜視図である。
2 (a) and 2 (b) are perspective views of a trapezoidal corrugated plate and a molded body, respectively.

【図3】本発明に係る複合型傾斜沈降装置を備えた凝集
沈殿装置の実施例2の構成を示す模式的縦断面図であ
る。
FIG. 3 is a schematic vertical cross-sectional view showing the configuration of Example 2 of the flocculation-sedimentation apparatus including the composite type inclined sedimentation apparatus according to the present invention.

【図4】図4(a)、(b)及び(c)はそれぞれ実施
例3の平面図、図4(a)の線X−X′での断面図、及
び図4(a)の線Y−Y′での断面図である。
4 (a), (b) and (c) are a plan view of Example 3, a cross-sectional view taken along line XX 'of FIG. 4 (a), and a line of FIG. 4 (a). It is sectional drawing in YY '.

【図5】図5(a)は実施例4の平面図、図5(b)は
図5(a)の線X−X′での断面図である。
5 (a) is a plan view of the fourth embodiment, and FIG. 5 (b) is a cross-sectional view taken along line XX 'of FIG. 5 (a).

【図6】図6(a)は実施例5の平面図、図6(b)は
図6(a)の線X−X′での断面図である。
6 (a) is a plan view of the fifth embodiment, and FIG. 6 (b) is a sectional view taken along line XX 'of FIG. 6 (a).

【図7】図7(a)及び図7(b)はそれぞれ従来の傾
斜沈降装置で使用されていた沈降案内板の斜視図であ
る。
FIG. 7 (a) and FIG. 7 (b) are perspective views of a settling guide plate used in a conventional inclined settling device.

【図8】図8(a)及び図8(b)はそれぞれ従来の傾
斜沈降装置で処理槽内に冷水塊及び偏流が生じていた状
態を説明する図である。
8 (a) and 8 (b) are diagrams for explaining a state in which a cold water mass and a drift are generated in a processing tank in a conventional inclined settling apparatus.

【図9】図9(a)は実施例6の平面図、図9(b)は
図9(a)の線X−X′での断面図である。
9 (a) is a plan view of the sixth embodiment, and FIG. 9 (b) is a sectional view taken along line XX 'in FIG. 9 (a).

【符号の説明】[Explanation of symbols]

10 凝集沈殿装置の実施例1 12 攪拌槽 14 処理槽 16 下向流傾斜沈降装置 18 排泥装置 20 凝集混和槽 22 緩速攪拌槽 23 槽壁 24、34 隔壁 26 急速攪拌機 28 緩速攪拌機 30 流入口 32 流出口 36 沈降槽 38 溜め槽 40 流路形成体 40a 台形波型成形板 40b 成形体 42 分配管 44 細孔 46 排泥ホッパ 48 排泥管 50 凝集沈殿装置の実施例2 52 上向流傾斜沈降装置 54 第1隔壁 56 第2隔壁 58 第1沈降槽 60 第2沈降槽 62 流路形成体 64 集水管 66 細孔 70 凝集沈殿装置の実施例3 72 第1隔壁 74 第2隔壁 76 第1沈降槽 78 第2沈降槽 80 凝集沈殿装置の実施例4 82 円筒形壁 84 第1円筒形隔壁 86 第2円筒形隔壁 88 円形樋 90 凝集沈殿装置の実施例5 100 凝集沈殿装置の実施例6 102 管内混合器 104 導入管 106 流入ガイド 108 排泥口 110 掻寄式排泥装置 112 枠体 113 掻寄羽根 114 回転軸 116 ガイド管 118 回転装置 120 円筒形隔壁 122 第1沈降槽 124 第2沈降槽 10 Example 1 of Coagulation-sedimentation apparatus 12 Stirring tank 14 Treatment tank 16 Down-flow inclined sedimentation apparatus 18 Sludge removal device 20 Coagulation-mixing tank 22 Slow stirring tank 23 Tank wall 24, 34 Partition wall 26 Rapid stirrer 28 Slow stirrer 30 Flow Inlet 32 Outlet 36 Settling tank 38 Reservoir tank 40 Flow path forming body 40a Trapezoidal corrugated forming plate 40b Forming body 42 Minute piping 44 Pore 46 Waste mud hopper 48 Waste mud pipe 50 Coagulation-sedimentation apparatus Example 2 52 Upflow Inclined settling device 54 First partition 56 Second partition 58 First settling tank 60 Second settling tank 62 Flow path forming body 64 Water collecting pipe 66 Pore 70 Example of coagulating sedimentation device 72 First partition 74 74 Second partition 76 1 Settling tank 78 Second settling tank 80 Example 4 of coagulating sedimentation apparatus 82 Cylindrical wall 84 First cylindrical partition wall 86 Second cylindrical partition wall 88 Circular gutter 90 Example 5 of coagulating sedimentation apparatus Example 6 of coagulation-sedimentation apparatus 102 In-pipe mixer 104 Inlet pipe 106 Inflow guide 108 Drainage port 110 Scratch-type sludge discharge device 112 Frame 113 Scraping blade 114 Rotating shaft 116 Guide pipe 118 Rotating device 120 Cylindrical partition 122 122 1 settling tank 124 second settling tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高見 英俊 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hidetoshi Takami 5-5-16 Hongo, Bunkyo-ku, Tokyo Inside Organo Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ内側に流路を形成するように複
数個の筒体を相互に隣接させた形状の成形体からなる流
路形成体又は対向する板状部材間に流路を形成するよう
に配置された複数枚の板状部材からなる流路形成体を、
流路が水平面に対して傾斜するように配置し、流路内を
上から下に向かって流れるように被処理液を案内しつつ
被処理液中の懸濁物を沈降させるようにしたことを特徴
とする下向流傾斜沈降装置。
1. A flow path forming body comprising a molded body having a shape in which a plurality of cylinders are adjacent to each other so as to form a flow path inside thereof, or a flow path is formed between facing plate-like members. A flow path forming member composed of a plurality of plate-shaped members arranged in
The flow path is arranged so as to be inclined with respect to the horizontal plane, and the suspension in the liquid to be treated is allowed to settle while guiding the liquid to be treated so that the liquid flows in the flow channel from top to bottom. A downward-flowing inclined settling device.
【請求項2】 被処理液を順次流すように直列に配置し
た複数個の傾斜沈降装置を備え、少なくとも1個の傾斜
沈降装置は、下向流傾斜沈降装置であり、残りの傾斜沈
降装置は流路に沿って下から上に向かって被処理液を流
すようにした上向流傾斜沈降装置であることを特徴とす
る複合型傾斜沈降装置。
2. A plurality of inclined settling devices arranged in series so as to sequentially flow the liquid to be treated, wherein at least one inclined settling device is a downward flow inclined settling device, and the remaining inclined settling devices are A composite-type inclined settling apparatus, which is an upward flow inclined settling apparatus configured to flow a liquid to be treated from below to above along a flow path.
【請求項3】 請求項1に記載の下向流傾斜沈降装置又
は請求項2に記載の複合型傾斜沈降装置のいずれかを備
えたことを特徴とする沈殿装置。
3. A settling apparatus comprising either the downflow tilted settling apparatus according to claim 1 or the composite type tilted settling apparatus according to claim 2.
JP27591694A 1994-10-14 1994-10-14 Inclined settling device Pending JPH08112505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27591694A JPH08112505A (en) 1994-10-14 1994-10-14 Inclined settling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27591694A JPH08112505A (en) 1994-10-14 1994-10-14 Inclined settling device

Publications (1)

Publication Number Publication Date
JPH08112505A true JPH08112505A (en) 1996-05-07

Family

ID=17562216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27591694A Pending JPH08112505A (en) 1994-10-14 1994-10-14 Inclined settling device

Country Status (1)

Country Link
JP (1) JPH08112505A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300109A (en) * 1998-04-20 1999-11-02 Miura Co Ltd Flocculating and settling treatment device
JP2000317217A (en) * 1999-05-13 2000-11-21 Japan Organo Co Ltd Flocculating and settling device
JP2001120909A (en) * 1999-10-21 2001-05-08 Japan Organo Co Ltd Flocculating and settling device
JP2002085907A (en) * 2000-09-14 2002-03-26 Japan Organo Co Ltd Flocculating and settling apparatus
JP2013043140A (en) * 2011-08-25 2013-03-04 Institute Of National Colleges Of Technology Japan Inclined separation device and separation method using the inclined separation device
CN109475791A (en) * 2016-07-06 2019-03-15 格雷迪安特公司 Solids treatment and correlation technique in water treatment system
JP2021003692A (en) * 2019-06-27 2021-01-14 株式会社日立製作所 Gradient sedimentation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300109A (en) * 1998-04-20 1999-11-02 Miura Co Ltd Flocculating and settling treatment device
JP2000317217A (en) * 1999-05-13 2000-11-21 Japan Organo Co Ltd Flocculating and settling device
JP2001120909A (en) * 1999-10-21 2001-05-08 Japan Organo Co Ltd Flocculating and settling device
JP2002085907A (en) * 2000-09-14 2002-03-26 Japan Organo Co Ltd Flocculating and settling apparatus
JP2013043140A (en) * 2011-08-25 2013-03-04 Institute Of National Colleges Of Technology Japan Inclined separation device and separation method using the inclined separation device
CN109475791A (en) * 2016-07-06 2019-03-15 格雷迪安特公司 Solids treatment and correlation technique in water treatment system
JP2021003692A (en) * 2019-06-27 2021-01-14 株式会社日立製作所 Gradient sedimentation device

Similar Documents

Publication Publication Date Title
US4136012A (en) Compact apparatus for the purification of waste water by a physical chemical treatment
JP2634230B2 (en) Method and apparatus for treating liquid by settling using fine sand
US5730864A (en) Installation for treating an untreated flow by simple sedimentation after ballasting with fine sand
US5840195A (en) Method and installation for treating an untreated flow by simple sedimentation after ballasting with fine sand
US4120796A (en) Vertical flow inclined plate clarifier
US20070175804A1 (en) Coagulation-sedimentation apparatus
JPH08112505A (en) Inclined settling device
US4199451A (en) Split flow water treatment plant
CN100404098C (en) Sedimentation tank
JP2002058914A (en) Solid-liquid separator
US6428698B1 (en) Coagulation precipitator
US4725367A (en) Buoyant filter media
JP2005046786A (en) Flocculation and sedimentation apparatus
CN1051940C (en) Clarifier
JP2012228634A (en) Regenerated water production device
CN213803385U (en) High-efficient sediment and denitrification sewage treatment system
EP1637205A1 (en) Flocculaing settling device
Prasad Sedimentation in Water and Used Water Purification
JP4336059B2 (en) Solid-liquid separator for waste water
JP2003019403A (en) Jet stirring type solid-liquid separation apparatus
CN112321077A (en) High-efficient sediment and denitrification sewage treatment system
JP2003340206A (en) Jet stream stirring solid-liquid separation apparatus and flocculation and sedimentation treatment apparatus
KR20050005063A (en) A Novel Sedimentation Tank
CN221093848U (en) Oil separation and reaction precipitation integrated equipment
CN113634018B (en) High-density sedimentation tank