JPH0811097B2 - Manufacturing method of titanium thermos - Google Patents
Manufacturing method of titanium thermosInfo
- Publication number
- JPH0811097B2 JPH0811097B2 JP9741688A JP9741688A JPH0811097B2 JP H0811097 B2 JPH0811097 B2 JP H0811097B2 JP 9741688 A JP9741688 A JP 9741688A JP 9741688 A JP9741688 A JP 9741688A JP H0811097 B2 JPH0811097 B2 JP H0811097B2
- Authority
- JP
- Japan
- Prior art keywords
- bottle
- plating layer
- titanium
- manufacturing
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Thermally Insulated Containers For Foods (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、軽量で保温性能に優れたチタン製魔法瓶
を製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a titanium thermos bottle that is lightweight and has excellent heat retention performance.
〔従来の技術〕 現在、ステンレス鋼製魔法瓶が広く普及している。こ
のものは、保温性能が優れ、破損することがないが重量
が重く、持ち運びに不便である欠点がある。また、ステ
ンレス鋼は耐食性が不十分であり、塩分を含んだ食物や
飲物を収容する場合には腐食の恐れもある。[Prior Art] At present, stainless steel thermos bottles are widely used. This product has the advantages that it has excellent heat retention performance, is not damaged, but is heavy and is inconvenient to carry. In addition, stainless steel has insufficient corrosion resistance and may be corroded when accommodating salt-containing food or drink.
このような理由により、軽量、高強度、高耐食性のチ
タンまたはチタン合金からなる魔法瓶が提案されてい
る。For these reasons, a thermos bottle made of titanium or titanium alloy, which is lightweight, has high strength, and has high corrosion resistance, has been proposed.
このようなチタン製魔法瓶においては、ステンレス鋼
製魔法瓶と同様に保温性を高めるため、魔法瓶の内瓶ま
たは外瓶の真空断熱層に面する表面に輻射率の小さな金
属、たとえば銅または銀からなるメッキ層を形成し、輻
射による伝熱を低減する必要がある。In such a titanium thermos, in order to enhance the heat retention like a stainless steel thermos, the surface of the thermos inner or outer bottle facing the vacuum heat insulating layer is made of a metal with a low emissivity, such as copper or silver. It is necessary to form a plated layer to reduce heat transfer due to radiation.
しかしながら、魔法瓶の真空断熱層を形成する際に、
真空排気の促進、金属からの脱ガスのために加熱しなが
ら真空排気するが、チタンやチタン合金が化学活性に富
んだ金属であるため、この加熱の際に銅や銀からなるメ
ッキ層がチタンまたはチタン合金と反応して拡散合金化
し、このメッキ層が消失してしまい、保温性能を十分高
めることができない問題があった。However, when forming the vacuum insulation layer of the thermos,
Although vacuum evacuation is performed while heating to promote vacuum evacuation and degas from the metal, since the titanium and titanium alloys are metals with high chemical activity, the plating layer made of copper or silver is titanium during this heating. Alternatively, there is a problem that the heat insulation performance cannot be sufficiently enhanced because the plating layer disappears by reacting with the titanium alloy to form a diffusion alloy.
この発明では、銅または銀などの輻射率の低い金属か
らなる輻射メッキ層を形成する以前に、予めスズ、アン
チモン、アルミニウム、ジルコニウムなどからなるバリ
ヤメッキ層を形成することあるいはニッケル、鉄、銅、
コバルト、クロムなどからなる前処理メッキ層を形成し
加熱処理することをその解決手段とした。In the present invention, before forming a radiation plating layer made of a metal having a low emissivity such as copper or silver, tin, antimony, aluminum, forming a barrier plating layer made of zirconium in advance, nickel, iron, copper,
The solution was to form a pretreatment plated layer of cobalt, chromium, etc. and heat treatment.
輻射メッキ層とチタンまたはチタン合金との間に形成
されたバリヤメッキ層もしくは前処理メッキ層の存在に
よって真空封止時の加熱処理においても輻射メッキ層が
チタンまたはチタン合金とに拡散してゆくことが抑制さ
れる。The presence of the barrier plating layer or the pretreatment plating layer formed between the radiation plating layer and titanium or titanium alloy may cause the radiation plating layer to diffuse into titanium or titanium alloy even in the heat treatment during vacuum sealing. Suppressed.
以下、図面を参照して詳細に説明する。 Hereinafter, a detailed description will be given with reference to the drawings.
はじめに、請求項1に記載の発明の製法について述べ
る。First, the manufacturing method of the invention according to claim 1 will be described.
まず、チタンまたはチタン合金材を有底筒状に成形し
て、第1図に示すような内瓶1および外瓶を形成する。
外瓶2の底部には排気孔3が形成されている。ついで、
この内瓶1の外面および外瓶2の内面のいずれか一方も
しくは両方の全面または一部表面に、第2図に拡大して
示すようにバリヤメッキ層4を形成する。このバリヤメ
ッキ層4は、後述の真空排気時の加熱処理温度において
チタンまたはチタン合金に対する拡散速度の小さい金
属、すなわちスズ(Sn)、アンチモン(Sb)、アルミニ
ウム(Al)、ジルコニウム(Zr)からなる群から選択さ
れた金属からなるメッキ層であって、その厚さが0.1〜1
0μm程度のものである。バリヤメッキ層4は、通常の
電気メッキなどの方法によって形成される。First, titanium or a titanium alloy material is molded into a bottomed cylinder to form an inner bottle 1 and an outer bottle as shown in FIG.
An exhaust hole 3 is formed at the bottom of the outer bottle 2. Then,
A barrier plating layer 4 is formed on the entire surface or a partial surface of one or both of the outer surface of the inner bottle 1 and the inner surface of the outer bottle 2, as shown in an enlarged manner in FIG. This barrier plating layer 4 is a group consisting of a metal having a small diffusion rate with respect to titanium or a titanium alloy at a heat treatment temperature during vacuum exhaust described later, that is, tin (Sn), antimony (Sb), aluminum (Al), zirconium (Zr). A plating layer made of a metal selected from
It is about 0 μm. The barrier plating layer 4 is formed by a method such as normal electroplating.
ついで、第2図に示すようにこのバリヤメッキ層4の
表面に輻射メッキ層5を形成する。この輻射メッキ層5
は、少なくともチタンまたはチタン合金の輻射率よりも
低い輻射率を有する金属、すなわち銀(Ag)または銅
(Cu)からなる厚さが1〜30μmのものである。輻射メ
ッキ層5の形成方法としては銀からなるものでは化学メ
ッキ(無電解メッキ)が好ましく、銅からなるものでは
通常の電気メッキが用いられる。Then, as shown in FIG. 2, a radiation plating layer 5 is formed on the surface of the barrier plating layer 4. This radiation plating layer 5
Is a metal having at least an emissivity lower than that of titanium or a titanium alloy, that is, silver (Ag) or copper (Cu) and having a thickness of 1 to 30 μm. As the method for forming the radiation plating layer 5, chemical plating (electroless plating) is preferable for those made of silver, and ordinary electroplating is used for those made of copper.
次に、このような二層のメッキ層4,5が形成された内
瓶1と外瓶2とを第1図に示すようにそれらの口部で接
合し、二重構造とする。接合にはスポット溶接やTIG溶
接(アルゴン溶接)などの溶接手段が用いられる。Next, as shown in FIG. 1, the inner bottle 1 and the outer bottle 2 having such two-layered plated layers 4 and 5 are joined at their mouths to form a double structure. Welding means such as spot welding or TIG welding (argon welding) is used for joining.
つづいて、この二重構造の瓶の外瓶2の底部の排気孔
3の周辺に固形ロウ材を置き、この上にチタンなどから
なる封止板6を置いた状態で真空炉内に入れ、温度500
〜800℃で加熱しつつ真空排気を行い、内外瓶間を空隙
を真空するとともに固形ロウ材を溶融し、封止板6を外
瓶2にロウ付けして真空諷刺する。上記固形ロウ材とし
てはAg−Cu系、Cu−P系、Ag系、Al系のロウ材が適して
いる。真空排気時の加熱温度が500℃未満では内外瓶表
面に吸着されているガスや内部に吸蔵されているガス
(特に水素)を十分に放出させることができず、高い真
空度が得られない。また、800℃を越えるとバリヤメッ
キ層4のチタンまたはチタン合金への拡散が激しくな
り、バリヤメッキ層4が消失し、目的とする効果が得ら
れなくなる。Subsequently, a solid brazing material is placed around the exhaust hole 3 at the bottom of the outer bottle 2 of this double-structured bottle, and the solid brazing material 6 made of titanium or the like is placed on the solid brazing material in a vacuum furnace. Temperature 500
Vacuum evacuation is performed while heating at ˜800 ° C., the space between the inner and outer bottles is evacuated, the solid brazing material is melted, and the sealing plate 6 is brazed to the outer bottle 2 for vacuum puncturing. As the solid brazing material, Ag-Cu based, Cu-P based, Ag based, and Al based brazing materials are suitable. If the heating temperature during evacuation is less than 500 ° C, the gas adsorbed on the surface of the inner and outer bottles and the gas stored therein (especially hydrogen) cannot be sufficiently released, and a high degree of vacuum cannot be obtained. On the other hand, if the temperature exceeds 800 ° C., the diffusion of the barrier plating layer 4 into titanium or a titanium alloy becomes severe, the barrier plating layer 4 disappears, and the intended effect cannot be obtained.
このような製造方法によれば、真空排気時の加熱の
際、バリヤメッキ層4の一部がチタンまたはチタン合金
内に拡散するが、拡散速度が小さいため完全には拡散せ
ずに残り、このため輻射メッキ層5がチタンまたはチタ
ン合金中に拡散することが防止される。According to such a manufacturing method, at the time of heating during vacuum evacuation, a part of the barrier plating layer 4 diffuses into titanium or a titanium alloy, but since the diffusion rate is low, it does not completely diffuse and remains. The radiation plating layer 5 is prevented from diffusing into titanium or a titanium alloy.
次に、請求項1に記載の製造方法の他の例を説明す
る。Next, another example of the manufacturing method according to claim 1 will be described.
この例の製造方法は、第3図に示すように、内瓶1の
外面あるいは外瓶2の内面の全面または一部にニッケル
メッキ層7を形成し、この上にバリヤメッキ層4を形成
し、さらに輻射メッキ層5を形成したのち、先の例と同
様に口部を接合し、ついで真空炉で加熱しつつ真空排気
するものである。この例でのニッケルメッキ層7は、素
地のチタンまたはチタン合金とバリヤメッキ層4との密
着不良を防止するためのもので、その厚みは0.1〜20μ
m程度とされる。このニッケルメッキ層7の存在によ
り、バリヤメッキ層4および輻射メッキ層5の素地への
密着性が高まり、製造中にバリヤメッキ層4および輻射
メッキ層5が剥離することが防止される。ニッケルメッ
キ層7は真空排気時の加熱の際にバリヤメッキ層4およ
びチタンまたはチタン合金と完全に拡散してゆくが、バ
リヤメッキ層4の成分は濃く残るため、先の例と同様の
効果が得られる。In the manufacturing method of this example, as shown in FIG. 3, a nickel plating layer 7 is formed on the whole or a part of the outer surface of the inner bottle 1 or the inner surface of the outer bottle 2, and a barrier plating layer 4 is formed thereon. Further, after the radiation plating layer 5 is formed, the mouth portions are joined in the same manner as in the previous example, and then the material is evacuated while heating in a vacuum furnace. The nickel plating layer 7 in this example is for preventing poor adhesion between the titanium or titanium alloy of the base material and the barrier plating layer 4, and its thickness is 0.1 to 20 μm.
It is about m. The presence of the nickel plating layer 7 enhances the adhesion of the barrier plating layer 4 and the radiation plating layer 5 to the base material, and prevents the barrier plating layer 4 and the radiation plating layer 5 from peeling during manufacturing. The nickel plating layer 7 is completely diffused with the barrier plating layer 4 and titanium or titanium alloy during heating during vacuum exhaust, but the components of the barrier plating layer 4 remain thick, so that the same effect as the above example can be obtained. .
請求項2に記載の製造方法は、内瓶1の外面および外
瓶2の内面のいずれか一方もしくは両方の全面または一
部表面に、第4図に示すようにまず、前処理メッキ層8
を形成する。この前処理メッキ層8はチタンまたはチタ
ン合金に対する拡散率の大きな金属、すなわちニッケル
(Ni)、鉄(Fe)、銅(Cu)、コバルト(Co)、クロム
(Cr)からなる群から選ばれた1種の金属からなる厚さ
が0.1〜20μmのものである。前処理メッキ層8の形成
には、通常の電気メッキの他に必要に応じ化学メッキな
どの方法が採用できる。According to the manufacturing method of claim 2, as shown in FIG. 4, first, the pretreatment plating layer 8 is formed on the entire surface or a partial surface of either or both of the outer surface of the inner bottle 1 and the inner surface of the outer bottle 2.
To form. The pretreatment plated layer 8 is selected from the group consisting of metals having a large diffusivity with respect to titanium or titanium alloy, that is, nickel (Ni), iron (Fe), copper (Cu), cobalt (Co), and chromium (Cr). The thickness of one metal is 0.1 to 20 μm. In order to form the pretreatment plated layer 8, a method such as chemical plating can be adopted as necessary in addition to the usual electroplating.
ついで、この前処理メッキ層8を形成した内瓶1また
は外瓶2を真空加熱炉に入れ、真空下(約10-3トール程
度で十分である。)で、温度400〜800℃で5〜60分間加
熱し、前処理メッキ層8を素地のチタンまたはチタン合
金中に拡散せしめ、拡散合金層を形成する。この加熱処
理時の温度が400℃未満では、前処理メッキ層8の拡散
が十分に行われず、また800℃を超えると拡散が進行し
すぎて表面の拡散合金層がうすくなり、所期の目的を達
し得ない。Then, the inner bottle 1 or the outer bottle 2 on which the pretreatment plated layer 8 is formed is placed in a vacuum heating furnace, and under vacuum (about 10 −3 Torr is sufficient) at a temperature of 400 to 800 ° C. By heating for 60 minutes, the pretreatment plated layer 8 is diffused in titanium or titanium alloy of the base material to form a diffusion alloy layer. If the temperature during this heat treatment is less than 400 ° C, the pretreatment plated layer 8 will not sufficiently diffuse, and if it exceeds 800 ° C, the diffusion will proceed too much and the diffusion alloy layer on the surface will be thin, resulting in the intended purpose. Cannot be reached.
ついで、この加熱処理の終了した内瓶1または外瓶2
の拡散合金層上に先の例と同様の銀または銅からなる輻
射メッキ層5を形成したのち、内瓶1と外瓶2とをそれ
らの口部で接合して二重構造とし、さらに真空加熱炉に
て真空排気するとともに500〜800℃で加熱し、外瓶2を
封止板6で封止する。ここでの加熱温度が500℃未満で
は表面吸着ガスや吸蔵ガスを十分に脱ガスすることがで
きず、800℃を超えると拡散合金層が存在しても輻射メ
ッキ層5の拡散が大きくなり、消失の危険性がある。Then, the inner bottle 1 or the outer bottle 2 after this heat treatment is completed.
After forming the radiation plating layer 5 made of silver or copper similar to the above example on the diffusion alloy layer of No. 1, the inner bottle 1 and the outer bottle 2 are joined at their mouths to form a double structure, and further vacuum The outer bottle 2 is sealed with a sealing plate 6 while being evacuated in a heating furnace and heated at 500 to 800 ° C. If the heating temperature here is less than 500 ° C, the surface adsorbed gas or the occluded gas cannot be sufficiently degassed, and if it exceeds 800 ° C, the diffusion of the radiation plating layer 5 increases even if the diffusion alloy layer exists. There is a risk of loss.
この製造方法にあっては、予め前処理メッキ層8を形
成し、これを加熱処理して拡散合金層を形成し、ついで
輻射メッキ層5を形成してたいるので真空封止の際の加
熱時に輻射メッキ層5が素地のチタンまたはチタン合金
へ拡散してゆくことが拡散合金層の存在によって抑制さ
れる。In this manufacturing method, the pretreatment plating layer 8 is formed in advance, the heat treatment is performed to form the diffusion alloy layer, and then the radiation plating layer 5 is formed. Occasionally, the radiation plating layer 5 is prevented from diffusing into titanium or a titanium alloy of the base material by the presence of the diffusion alloy layer.
次に、請求項2に記載の製造方法の他の例を示す。こ
の例の製造方法は、第5図に示すように前処理メッキ層
8を形成し、これを加熱処理して拡散合金層を形成した
のち、この上にニッケルメッキ層9を形成し、さらに輻
射メッキ層5を形成するものである。ここでのニッケル
メッキ層9は輻射メッキ層5と素地のチタンまたはチタ
ン合金の拡散合金層との密着性を高めるためのものであ
り、その厚みは0.1〜20μm程度とされる。このニッケ
ルメッキ層9は後工程の真空封止の際の加熱において、
その一部がチタンまたはチタン合金に拡散してゆくが、
前処理メッキ層9が拡散した拡散合金層の存在により、
その程度は微かであり、拡散合金層ともども輻射メッキ
層5の拡散を防止する。Next, another example of the manufacturing method according to claim 2 will be described. In the manufacturing method of this example, as shown in FIG. 5, a pretreatment plated layer 8 is formed, and this is heat treated to form a diffusion alloy layer, then a nickel plated layer 9 is formed thereon, and radiation is further applied. The plating layer 5 is formed. The nickel plating layer 9 is used to enhance the adhesion between the radiation plating layer 5 and the base titanium or titanium alloy diffusion alloy layer, and has a thickness of about 0.1 to 20 μm. This nickel plating layer 9 is heated during vacuum sealing in a later step,
Part of it diffuses into titanium or titanium alloy,
Due to the presence of the diffusion alloy layer in which the pretreatment plating layer 9 is diffused,
The degree is slight and prevents diffusion of the radiation plating layer 5 together with the diffusion alloy layer.
なお、真空封止の例として真空炉内での封止板による
封止を採用して説明したが、チップ管による大気中での
封止でもよいことは勿論である。It should be noted that, as the example of the vacuum sealing, the sealing by the sealing plate in the vacuum furnace was adopted and explained, but it is needless to say that the sealing by the chip tube in the atmosphere may be performed.
以上説明したように、請求項1に記載の発明は、チタ
ンまたはチタン合金からなる内瓶と外瓶とをその口部で
接合して二重構造とし、これら内瓶と外瓶との間の空隙
を真空排気してなるチタン製魔法瓶を製造する際に、上
記内瓶および外瓶のいずれか一方もしくは両方の上記空
隙に面する表面の一部または全部に、スズ、アンチモ
ン、アルミニウム、ジルコニウムからなる群より選ばれ
た1種の金属からなるバリヤメッキ層を形成し、ついで
このバリヤメッキ層上に銀、銅のいずれかからなる輻射
メッキ層を形成し、500〜800℃の温度で外瓶と内瓶との
空隙を真空排気し封止するものであり、また請求項2に
記載の発明は、チタンまたはチタン合金からなる内瓶と
外瓶とをその口部で接合して二重構造とし、これら内瓶
と外瓶との間の空隙を真空排気してなるチタン製魔法瓶
を製造する際に、上記内瓶および外瓶のいずれか一方も
しくは両方の上記空隙に面する表面の一部または全部
に、ニッケル、鉄、銅、コバルト、クロムからなる群よ
り選ばれた1種の金属からなる前処理メッキ層を形成
し、ついでこれを加熱処理したのち、銀、銅のいずれか
からなる輻射メッキ層を形成し、500〜800℃の温度で外
瓶と内瓶との空隙を真空排気し封止するものである。よ
って、内瓶と外瓶との真空封止の際の加熱によって輻射
メッキ層がチタンまたはチタン合金中に拡散して消失す
ることが、バリヤメッキ層または前処理メッキ層からの
拡散合金層によって防止される。このため、この製造方
法によれば輻射メッキ層を有する保温性の優れたチタン
製魔法瓶を製造することができる。As described above, the invention according to claim 1 has a double structure in which an inner bottle and an outer bottle made of titanium or a titanium alloy are joined at their mouths to form a double structure, and between the inner bottle and the outer bottle. When manufacturing a titanium thermos by evacuating the void, a part or all of the surface facing the void of one or both of the inner bottle and the outer bottle, tin, antimony, aluminum, zirconium Form a barrier plating layer consisting of one kind of metal selected from the group, and then form a radiation plating layer consisting of either silver or copper on this barrier plating layer, and at the temperature of 500-800 ℃ The gap between the bottle and the bottle is evacuated and sealed, and the invention according to claim 2 has a double structure in which an inner bottle and an outer bottle made of titanium or a titanium alloy are joined at their mouths. Make sure that the space between these inner and outer bottles is true. When manufacturing a vacuumed titanium thermos bottle, nickel or iron, copper, cobalt or chromium is formed on a part or all of the surface of the inner bottle and / or outer bottle facing the void. Form a pretreatment plating layer consisting of one kind of metal selected from the group, then heat-treat this, and then form a radiation plating layer consisting of either silver or copper, and apply it at a temperature of 500-800 ℃ The space between the bottle and the inner bottle is evacuated and sealed. Therefore, it is prevented by the diffusion alloy layer from the barrier plating layer or the pretreatment plating layer that the radiation plating layer is diffused and disappears in titanium or titanium alloy due to heating during vacuum sealing of the inner bottle and the outer bottle. It Therefore, according to this manufacturing method, it is possible to manufacture a titanium thermos bottle having a radiation plating layer and excellent in heat retention.
第1図はこの発明に係わるチタン製魔法瓶の一例を示す
概略断面図、第2図ないし第5図はいずれもこの発明の
製造方法における各メッキ層の配置状態を示す概略断面
図である。 1……内瓶、 2……外瓶、 4……バリヤメッキ層、 5……輻射メッキ層、 8……前処理メッキ層。FIG. 1 is a schematic cross-sectional view showing an example of a titanium thermos bottle according to the present invention, and FIGS. 2 to 5 are schematic cross-sectional views showing the arrangement state of each plating layer in the manufacturing method of the present invention. 1 ... inner bottle, 2 ... outer bottle, 4 ... barrier plating layer, 5 ... radiation plating layer, 8 ... pretreatment plating layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋田 章司 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 (72)発明者 土屋 茂 東京都港区西新橋1丁目16番7号 日本酸 素株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Hida 1-16-7 Nishishimbashi, Minato-ku, Tokyo Within Nihon Oxygen Co., Ltd. (72) Inventor Shigeru Tsuchiya 1-16-7 Nishishinbashi, Minato-ku, Tokyo No. Japan Oxide Co., Ltd.
Claims (2)
瓶とをその口部で接合して二重構造とし、これら内瓶と
外瓶との間の空隙を真空排気してなるチタン製魔法瓶を
製造する際に、 上記内瓶および外瓶のいずれか一方もしくは両方の上記
空隙に面する表面の一部または全部に、スズ、アンチモ
ン、アルミニウム、ジルコニウムからなる群より選ばれ
た1種の金属からなるバリヤメッキ層を形成し、ついで
このバリヤメッキ層上に銀、銅のいずれかからなる輻射
メッキ層を形成し、500〜800℃の温度で外瓶と内瓶との
空隙を真空排気し封止することを特徴とするチタン製魔
法瓶の製造方法。1. A titanium thermos bottle in which an inner bottle and an outer bottle made of titanium or a titanium alloy are joined at their mouths to form a double structure, and the space between the inner bottle and the outer bottle is evacuated. When manufacturing, one or more metals selected from the group consisting of tin, antimony, aluminum and zirconium on a part or all of the surface of the inner bottle and / or outer bottle facing the voids. A barrier plating layer consisting of, and then forming a radiation plating layer consisting of either silver or copper on this barrier plating layer, and evacuating and sealing the gap between the outer and inner bottles at a temperature of 500 to 800 ° C. A method for manufacturing a titanium thermos, characterized by comprising:
瓶とをその口部で接合して二重構造とし、これら内瓶と
外瓶との間の空隙を真空排気してなるチタン製魔法瓶を
製造する際に、 上記内瓶および外瓶のいずれか一方もしくは両方の上記
空隙に面する表面の一部または全部に、ニッケル、鉄、
銅、コバルト、クロムからなる群より選ばれた1種の金
属からなる前処理メッキ層を形成し、ついでこれを加熱
処理したのち、銀、銅のいずれかからなる輻射メッキ層
を形成し、500〜800℃の温度で外瓶と内瓶との空隙を真
空排気し封止することを特徴とするチタン製魔法瓶の製
造方法。2. A titanium thermos bottle in which an inner bottle and an outer bottle made of titanium or a titanium alloy are joined at their mouths to form a double structure, and the space between the inner bottle and the outer bottle is evacuated. When manufacturing, a part or all of the surface of the inner bottle and the outer bottle facing one or both of the voids, nickel, iron,
A pretreatment plating layer made of one kind of metal selected from the group consisting of copper, cobalt and chromium is formed, and then this is heat treated, and then a radiation plating layer made of either silver or copper is formed. A method for manufacturing a titanium thermos bottle, characterized in that the space between the outer bottle and the inner bottle is evacuated and sealed at a temperature of up to 800 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9741688A JPH0811097B2 (en) | 1988-04-20 | 1988-04-20 | Manufacturing method of titanium thermos |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9741688A JPH0811097B2 (en) | 1988-04-20 | 1988-04-20 | Manufacturing method of titanium thermos |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01268520A JPH01268520A (en) | 1989-10-26 |
JPH0811097B2 true JPH0811097B2 (en) | 1996-02-07 |
Family
ID=14191862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9741688A Expired - Fee Related JPH0811097B2 (en) | 1988-04-20 | 1988-04-20 | Manufacturing method of titanium thermos |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0811097B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0392064U (en) * | 1989-12-29 | 1991-09-19 | ||
JPH04114614A (en) * | 1990-09-05 | 1992-04-15 | Odashima Kibutsu Seisakusho:Kk | Manufacture of metallic vacuum heat-insulating double vacuum bottle |
JP5589262B2 (en) * | 2008-04-17 | 2014-09-17 | 新日鐵住金株式会社 | Insulated steel plate and metal vacuum double container |
AU2015100381A4 (en) | 2015-03-25 | 2015-04-30 | Sports Creative Limited | A sports and/or mixing bottle |
US11613420B2 (en) | 2015-03-25 | 2023-03-28 | Shakesphere Products Limited | Tumbler bottle |
USD1005783S1 (en) | 2018-07-09 | 2023-11-28 | Shakesphere Products Limited | Tumbler bottle |
USD892555S1 (en) | 2018-07-09 | 2020-08-11 | Richard Beardsell | Tumbler bottle |
-
1988
- 1988-04-20 JP JP9741688A patent/JPH0811097B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01268520A (en) | 1989-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07504945A (en) | Method for joining sputter target backing plate assemblies and assemblies produced thereby | |
GB2134832A (en) | Method of etablishing a bond between titanium and an iron-nickel alloy | |
JPH0367985B2 (en) | ||
JPH0811097B2 (en) | Manufacturing method of titanium thermos | |
US5102747A (en) | High temperature-resistant composite | |
US3090118A (en) | Method of making a cooking vessel | |
US5664723A (en) | Brazing technology | |
JP2702549B2 (en) | Manufacturing method of titanium thermos | |
JP3197835B2 (en) | Composite joint of beryllium, copper alloy and stainless steel and composite joint method | |
JP2702547B2 (en) | Manufacturing method of titanium thermos | |
JP2818430B2 (en) | Manufacturing method of metal thermos | |
JP2009269047A (en) | Method of sealing vacuum structure | |
JP2695377B2 (en) | Composite member of beryllium thin plate and copper member, and joining method of beryllium thin plate and copper member | |
JPH0440607Y2 (en) | ||
JP3629578B2 (en) | Ti-based material and Cu-based bonding method | |
US5380598A (en) | Solder joint | |
KR100461465B1 (en) | METHOD FOR MANUFACTURING MULTILAYERED CLAD PALATE INCLUDING A Cu PLATE | |
JPH10194860A (en) | Brazing filler metal | |
JPH0736804B2 (en) | Manufacturing method of metal thermos | |
JPH07148078A (en) | Vacuum heat insulating vessel made of synthetic resin and its manufacture | |
JPS61253166A (en) | Production of vacuum vessel | |
JPH01297022A (en) | Metallic vacuum double structure body and manufacture | |
JPH0338943B2 (en) | ||
JP2001225176A (en) | Producing method for hip joined body of beryllium and copper alloy and hip joined body | |
JPS61127861A (en) | Gold target for sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |