[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH08117598A - Catalyst for high-molecular solid electrolytic type fuel cell - Google Patents

Catalyst for high-molecular solid electrolytic type fuel cell

Info

Publication number
JPH08117598A
JPH08117598A JP6279865A JP27986594A JPH08117598A JP H08117598 A JPH08117598 A JP H08117598A JP 6279865 A JP6279865 A JP 6279865A JP 27986594 A JP27986594 A JP 27986594A JP H08117598 A JPH08117598 A JP H08117598A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
carbon black
fuel cell
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6279865A
Other languages
Japanese (ja)
Inventor
Yumi Yamamoto
夕美 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Original Assignee
Tanaka Kikinzoku Kogyo KK
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Stonehart Associates Inc filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP6279865A priority Critical patent/JPH08117598A/en
Publication of JPH08117598A publication Critical patent/JPH08117598A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: To provide an electrode catalyst for polymer solid electrolytic type fuel cell achieving high activation by properly selecting a physical property of a carrier in stead of selecting expensive catalyst metal to improve activation although an influence of solid property of the carrier to the activation has not always been considered with respect to a conventional electrode catalyst for polymer solid electrolytic type fuel cell. CONSTITUTION: An electrode catalyst for polymer solid electrolytic type fuel cell uses a hard graphic carbon black having a relative surface area of 250-350 m<2> /g, a particle size of 150-350 Å, a catalyst carrier amount of 20-55 wt.% based on the carrier, or an easy graphic carbon black having a relative surface area of 900-1,500 m<2> /g, a particle size of 200-400 Å, of a catalyst carrier amount of 20-55 wt.% based on the carrier. By using the black carbon having physical properties in this range, a higher activation electrode catalyst for polymer solid electric type fuel cell than by using the conventional carbon black is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子固体電解質型燃
料電池の電極として使用される難グラファイト性又は易
グラファイト性カーボンブラック担体に白金又は白金合
金を担持した燃料電池用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell catalyst in which platinum or a platinum alloy is supported on a non-graphitizable or graphitizable carbon black carrier used as an electrode of a polymer electrolyte fuel cell.

【0002】[0002]

【従来技術及び問題点】電気化学セル、例えば高分子固
体電解質型燃料電池はリン酸型燃料電池と比較してコン
パクトで高い電流密度を取り出せることから電気自動
車、宇宙船用の電源として注目されている。又この分野
の開発においても種々の電極構造や触媒作製方法、シス
テム構成等に関する提案がなされている。従来の高分子
固体電解質型燃料電池の電極構造は、例えばカソード用
集電体/カソード/高分子固体電解質(イオン交換膜)
/アノード/アノード用集電体の5層サンドイッチ構造
となっている。
2. Description of the Related Art Electrochemical cells, such as polymer electrolyte fuel cells, are attracting attention as a power source for electric vehicles and spacecraft because they are more compact and have higher current densities than phosphoric acid fuel cells. . Also, in the development of this field, various electrode structures, catalyst production methods, system configurations, etc. have been proposed. The electrode structure of the conventional solid polymer electrolyte fuel cell is, for example, a collector for cathode / cathode / solid polymer electrolyte (ion exchange membrane)
/ Anode / Anode current collector has a five-layer sandwich structure.

【0003】この燃料電池用の電極つまりアノード及び
カソードを作製するに当たり特に留意すべきことは、供
給される燃料に含まれる一酸化炭素による電極の被毒防
止と、単位触媒金属量当たりの活性を高めることであ
る。従来から前記被毒回避及び高活性化のため、担持触
媒金属を選択し単味又は合金として担持することが鋭意
試みられ、高性能の燃料電池用触媒及び電極が実用化さ
れている。
In producing the electrodes for the fuel cell, that is, the anode and the cathode, particular attention should be paid to the prevention of poisoning of the electrodes by carbon monoxide contained in the supplied fuel and the activity per unit amount of catalytic metal. It is to raise. Conventionally, in order to avoid the poisoning and increase the activation, it has been earnestly attempted to select a supported catalyst metal and support it as a plain or alloy, and a high-performance fuel cell catalyst and electrode have been put into practical use.

【0004】一方燃料電池用触媒を構成する他の成分で
あるカーボン担体は活性に対する寄与はないかあるいは
極めて少ないと考えられ、該カーボン担体の改良につい
ては殆ど考慮されていないのが実情である。本出願人は
このような実情に鑑み、カーボン担体の各種物性を検討
し、一定範囲の見掛け密度が活性に良好な影響を及ぼす
ことを明らかにした(特開平6−103984号公報)。又担
体の主要な物性である比表面積については、大きい方が
粒径が細かい触媒粒子が得られるという認識はあった
が、より以上の考察は行なわれていない。
On the other hand, the carbon carrier, which is another component of the fuel cell catalyst, is considered to have little or no contribution to the activity, and the fact is that little consideration is given to the improvement of the carbon carrier. In view of such circumstances, the applicant of the present invention examined various physical properties of the carbon support and found that a certain range of apparent density had a good effect on the activity (JP-A-6-103984). Regarding the specific surface area, which is the main physical property of the carrier, it was recognized that the larger the specific surface area, the smaller the particle size of the catalyst particles obtained, but no further consideration has been made.

【0005】[0005]

【発明の目的】本発明者は、カーボン担体の物性のうち
前述の見掛け比重以外にも活性を高めることのできる物
性があることを見出して本発明を成すに至ったものであ
り、本発明は、従来のカーボンブラック担体と異なった
物性を有するカーボンブラック担体を使用することによ
り、更に高活性の高分子固体電解質型燃料電池用触媒を
提供することを目的とする。
SUMMARY OF THE INVENTION The present inventors have completed the present invention by discovering that among the physical properties of carbon carriers, there are physical properties other than the above-mentioned apparent specific gravity that can enhance the activity. Another object of the present invention is to provide a catalyst for a polymer solid oxide fuel cell having a higher activity by using a carbon black carrier having physical properties different from those of conventional carbon black carriers.

【0006】[0006]

【問題点を解決するための手段】本発明に係わる高分子
固体電解質型燃料電池用触媒は、担体が難グラファイト
性カーボンブラックである場合にはその比表面積を250
〜350 m2 /g、粒径を150 〜350 Å、前記担体に対す
る触媒担持量を20〜55重量%とし、担体が易グラファイ
ト性カーボンブラックである場合にはその比表面積を90
0 〜1500m2 /g、粒径を200 〜400 Å、前記担体に対
する触媒担持量を20〜55重量%とした触媒である。
The polymer solid oxide fuel cell catalyst according to the present invention has a specific surface area of 250 when the carrier is a non-graphitizable carbon black.
˜350 m 2 / g, particle size 150˜350 Å, catalyst loading on the carrier is 20˜55% by weight, and the specific surface area is 90 when the carrier is graphitizable carbon black.
The catalyst has a particle size of 0 to 1500 m 2 / g, a particle size of 200 to 400 Å, and a catalyst loading amount of 20 to 55% by weight relative to the carrier.

【0007】以下、本発明の詳細について説明する。カ
ーボンブラックにはいくつかの種類があり、その中に難
グラファイト性カーボンブラックと易グラファイト性カ
ーボンブラックがある。前者のカーボンブラックはアセ
チレン系であり、燃焼しても容易にはグラファイト化し
ない性質を有し、後者のカーボンブラックはファーネス
系であり燃焼により比較的容易にグラファイト化する性
質を有している。従来からこれらのカーボンブラックは
燃料電池用電極触媒の担体として使用されているが、該
カーボンブラックの物性の触媒活性に対する寄与は殆ど
考慮されなかった。
The details of the present invention will be described below. There are several types of carbon black, among which there are non-graphitizable carbon black and easily graphitizable carbon black. The former carbon black is an acetylene type and has a property that it is not easily graphitized when burned, and the latter carbon black is a furnace type and has a property that it is graphitized relatively easily by burning. Conventionally, these carbon blacks have been used as a carrier for an electrode catalyst for a fuel cell, but the contribution of the physical properties of the carbon black to the catalytic activity was hardly considered.

【0008】本発明者は、従来は高分子固体電解質型燃
料電池用電極触媒の担体としては使用されていなかった
物性のカーボンブラックを種々検討したところ、ある一
定範囲の物性を有するカーボンブラックを担体として使
用することにより、高分子固体電解質型燃料電池として
の性能が著しく向上することを見出した。つまり難グラ
ファイト性カーボンブラックの場合、カーボンブラック
担体の比表面積(BET法により測定した比表面積)が
250 〜350 m2 /g、粒径が150〜350 Åで、白金又は
白金合金担持量が前記担体に対し20〜55重量%の範囲で
あり、易グラファイト性の場合、カーボンブラック担体
の比表面積が900 〜1500m2 /g、粒径が150 〜350 Å
で、白金又は白金合金担持量が前記担体に対し20〜55重
量%の範囲において高活性が得られる。なお白金合金を
使用する場合の合金形成金属は、活性の向上及び一酸化
炭素被毒防止を考慮して、パラジウム、ロジウム等の貴
金属や、スズ等の卑金属から選択する。
The present inventor has made various studies on carbon black having physical properties which have not been conventionally used as a carrier for an electrode catalyst for a polymer electrolyte fuel cell. As a result, carbon black having a certain range of physical properties was used as a carrier. It has been found that the performance as a polymer electrolyte fuel cell is remarkably improved by using it as. That is, in the case of non-graphitizable carbon black, the specific surface area of the carbon black carrier (specific surface area measured by the BET method) is
250 to 350 m 2 / g, particle size of 150 to 350 Å, platinum or platinum alloy loading amount in the range of 20 to 55% by weight with respect to the carrier, and in the case of graphitizing property, specific surface area of carbon black carrier Is 900-1500 m 2 / g, particle size is 150-350 Å
High activity can be obtained when the amount of platinum or platinum alloy supported is within the range of 20 to 55% by weight based on the carrier. In the case of using a platinum alloy, the alloy forming metal is selected from noble metals such as palladium and rhodium and base metals such as tin in consideration of improvement of activity and prevention of carbon monoxide poisoning.

【0009】カーボンブラック担体の比表面積とその粒
径はある程度の相関関係があり、一方が増加すると他方
は減少する傾向にあるが、両カーボンブラックは前述の
範囲内の比表面積及び粒径で前述の白金又は白金合金を
担持すると、最適な粒径の担体上に最適粒径の触媒粒子
が担持され、最良の活性が得られる。最適の、換言する
と最高活性の触媒粒子の粒径は20〜37Å程度であり、こ
の範囲未満であると活性が低下し易く、この範囲を超え
ると触媒粒子全体の比表面積の低下が大きく活性の低下
に繋がる。
The specific surface area of the carbon black carrier and the particle size thereof have a certain degree of correlation, and when one increases, the other tends to decrease, but both carbon blacks have the specific surface area and particle size within the above range. When the platinum or platinum alloy is loaded, the catalyst particles having the optimal particle size are loaded on the carrier having the optimal particle size, and the best activity is obtained. The optimal, in other words, the particle size of the catalyst particles with the highest activity is about 20 to 37 Å. If it is less than this range, the activity tends to decrease, and if it exceeds this range, the specific surface area of the entire catalyst particles decreases greatly Leads to a decline.

【0010】又前記カーボンブラック担体の粒径が大き
くなるとその比表面積が小さくなって、該担体に担持さ
れる触媒粒子の数が少なくなり該触媒粒子の粒径が大き
くなって前記範囲に入り難くなり活性が低下しやすい。
逆に担体の粒径が小さくなると比表面積が大きくなり、
該担体に担持される触媒粒子の数が多くなり該触媒粒子
の粒径が小さくなり活性が高くなる。単位担体量当たり
の白金又は白金合金の触媒担持量は20〜55%とし、この
値を超えると粒径が大きくかつ不均一になり、一方この
値未満では粒径が小さく活性も低くなり、前述の触媒粒
子の粒径範囲に入らなくなる。
When the particle size of the carbon black carrier becomes large, the specific surface area becomes small, the number of catalyst particles supported on the carrier becomes small, and the particle size of the catalyst particles becomes large, so that it is difficult to enter the above range. Activity tends to decrease.
Conversely, when the particle size of the carrier becomes smaller, the specific surface area becomes larger,
The number of catalyst particles supported on the carrier increases, the particle size of the catalyst particles decreases, and the activity increases. The catalyst loading amount of platinum or platinum alloy per unit carrier amount is 20 to 55%, and if it exceeds this value, the particle size becomes large and non-uniform, while if it is less than this value, the particle size becomes small and the activity becomes low. It does not fall within the particle size range of the catalyst particles.

【0011】これら以外で触媒活性に影響を与える物性
として、層間距離(Co/2)とDBP吸油量及び熱処
理温度がある。層間距離は、炭素原子から成る隣接する
格子層間の距離であり、この距離が小さ過ぎるとカーボ
ンブラックの耐食性が失われ触媒粒子の粒径が大きくな
るため、3.4 以上に維持することが望ましい。又DBP
吸油量は、カーボンブラック担体に油を浸み込ませたと
きに該担体が吸収する油の量であり、この値が大きいほ
どカーボンブラック内の空間が大きいことを示し、従っ
てこの値が小さいとガス透過性が劣り、この値が大き過
ぎると電解質が多量に必要となる。従ってこのDBP吸
油量は200 〜650 ミリリットル/100 g−カーボンブラ
ックとすることが好ましい。
Other physical properties that affect the catalytic activity include interlayer distance (Co / 2), DBP oil absorption and heat treatment temperature. The interlayer distance is the distance between the adjacent lattice layers composed of carbon atoms. If this distance is too small, the corrosion resistance of carbon black is lost and the particle size of the catalyst particles increases, so it is desirable to maintain at least 3.4. Also DBP
The oil absorption amount is the amount of oil that the carbon black carrier absorbs when it is impregnated with the carrier, and the larger this value is, the larger the space in the carbon black is. Gas permeability is poor, and if this value is too large, a large amount of electrolyte is required. Therefore, the DBP oil absorption is preferably 200 to 650 ml / 100 g-carbon black.

【0012】又熱処理温度は生ずる触媒粒子の凝集度に
影響を及ぼし、温度が高いと凝集が進んで粒径が大きく
なり過ぎ、低過ぎると粒径が過度に小さくなるため、前
記熱処理温度は400 〜750 ℃とすることが望ましい。こ
のようにして前記カーボンブラック担体上に白金等の触
媒粒子を担持させて作製された高分子固体電解質型燃料
電池用触媒は、通常該触媒に対し30〜60重量%、好まし
くは45〜55重量%のナフィオン(デュポン社製)等のイ
オン交換樹脂とともにカーボンペーパ等の多孔質の集電
体上に担持させると、ガス透過性に優れ活性の最も高い
高分子固体電解質型燃料電池用電極を構成することがで
きる。
Further, the heat treatment temperature influences the degree of agglomeration of the resulting catalyst particles. If the temperature is high, the agglomeration proceeds and the particle size becomes too large, and if it is too low, the particle size becomes excessively small. It is desirable to set the temperature to ~ 750 ° C. In this way, the catalyst for polymer solid oxide fuel cells produced by supporting the catalyst particles such as platinum on the carbon black carrier is usually 30 to 60% by weight, preferably 45 to 55% by weight with respect to the catalyst. % Nafion (manufactured by DuPont) and other ion-exchange resins are supported on a porous current collector such as carbon paper to form a solid polymer electrolyte fuel cell electrode with the highest gas permeability and high activity. can do.

【0013】[0013]

【実施例】次に本発明に係わる燃料電池用触媒に関する
実施例を説明するが、本実施例は本発明を限定するもの
ではない。
EXAMPLES Examples of the fuel cell catalyst according to the present invention will be described below, but the present examples are not intended to limit the present invention.

【実施例1】カーボンブラック担体の比表面積が1475m
2 /g、カーボンブラック粒径が150 Å、層間距離(C
o/2)が3.56ÅでDBP吸油量が330 ミリリットル/
100gであるキャボット株式会社製易グラファイト性カ
ーボンブラックBP−2000を塩化白金酸水溶液(白金濃
度:7g/リットル)に懸濁させ、85〜90℃の加熱下で
30分攪拌した後、室温まで冷却した。
[Example 1] Specific surface area of carbon black carrier is 1475 m
2 / g, carbon black particle size 150Å, interlayer distance (C
o / 2) is 3.56Å and DBP oil absorption is 330 ml /
100 g of Cabot Corporation's easily graphitizable carbon black BP-2000 was suspended in a chloroplatinic acid aqueous solution (platinum concentration: 7 g / liter) and heated at 85 to 90 ° C.
After stirring for 30 minutes, it was cooled to room temperature.

【0014】還元剤チオ硫酸ナトリウム(Na2 2
3 )10ミリリットルを一度に添加し、更に5分後に65ミ
リリットルを添加し、ホモジナイザで10分間強く攪拌
し、濾過及び乾燥を行なった。その後、水素50重量%を
含む窒素雰囲気中450 ℃で熱処理を行なった(白金担持
量:40重量%)。更に市販のイオン交換樹脂分散液(ナ
フィオン溶液)に浸漬し、超音波ホモジナイザを使用し
て分散させてペーストを生成した(ナフィオン量:カー
ボンブラック担体に対して50重量%)。このペーストを
ポリテトラフルオロエチレン(PTFE)で撥水化処理
したカーボンペーパ上に展開して、燃料電池用カソード
とした。このカソードの白金粒径を測定したところ、26
Åであった。
Reducing agent sodium thiosulfate (Na 2 S 2 O
3 ) 10 ml was added at once, and after 5 minutes, 65 ml was added, and the mixture was vigorously stirred for 10 minutes with a homogenizer, filtered and dried. Then, heat treatment was performed at 450 ° C. in a nitrogen atmosphere containing 50% by weight of hydrogen (platinum loading: 40% by weight). Further, it was dipped in a commercially available ion exchange resin dispersion (Nafion solution) and dispersed using an ultrasonic homogenizer to produce a paste (amount of Nafion: 50% by weight based on the carbon black carrier). This paste was spread on a carbon paper which was treated to be water repellent with polytetrafluoroethylene (PTFE), and used as a cathode for a fuel cell. The platinum particle size of this cathode was measured and found to be 26
Was Å.

【0015】前述のBP−2000の代わりに、カーボンブ
ラック担体の比表面積が300 m2 /g、カーボンブラッ
ク粒径が300 Å、層間距離(Co/2)が3.59ÅでDB
P吸油量が390 ミリリットル/100 gである電気化学工
業株式会社製難グラファイト性カーボンブラックAB−
12を使用して同様に電極を作製し、これをアノードと
し、前記カソード及び該アノードをデュポン社製イオン
交換膜であるナフィオン膜を挟んで一体化し、燃料電池
を構成した。この燃料電池を60℃で作動させ、0.9 V及
び0.7 Vにおける電流密度を測定したところ、それぞれ
95mA/cm2 及び910 mA/cm2 であった。
Instead of the above-mentioned BP-2000, the carbon black carrier has a specific surface area of 300 m 2 / g, a carbon black particle size of 300 Å and an interlayer distance (Co / 2) of 3.59 Å.
Non-graphitizable carbon black AB- manufactured by Denki Kagaku Kogyo Co., Ltd., which has a P oil absorption of 390 ml / 100 g
An electrode was prepared in the same manner using 12, and the cathode and the anode were integrated with a Nafion membrane, which is an ion exchange membrane manufactured by DuPont, sandwiched therebetween to form a fuel cell. This fuel cell was operated at 60 ° C and the current densities at 0.9 V and 0.7 V were measured.
It was 95 mA / cm 2 and 910 mA / cm 2 .

【0016】[0016]

【実施例2】カソード用担体として、カーボンブラック
担体の比表面積が1310m2 /g、カーボンブラック粒径
が300 Å、層間距離(Co/2)が3.60ÅでDBP吸油
量が500 ミリリットル/100 gである三菱油化株式会社
製易グラファイト性カーボンブラックケッチェンブラッ
クEC600 JDを使用したこと及び熱処理温度を700℃
としたこと以外は実施例1と同様にして、カソード及び
アノードを作製し、かつ燃料電池を構成した(白金担持
量:40重量%)。このカソードの白金粒径を測定したと
ころ、21Åであった。この燃料電池を60℃で作動させ、
0.9 V及び0.7 Vにおける電流密度を測定したところ、
それぞれ102 mA/cm2 及び970 mA/cm2 であっ
た。
[Example 2] As a cathode carrier, the carbon black carrier has a specific surface area of 1310 m 2 / g, a carbon black particle size of 300 Å, an interlayer distance (Co / 2) of 3.60 Å, and a DBP oil absorption of 500 ml / 100 g. Graphite carbon black Ketjenblack EC600 JD manufactured by Mitsubishi Petrochemical Co., Ltd. was used and the heat treatment temperature was 700 ° C.
A cathode and an anode were prepared and a fuel cell was constructed in the same manner as in Example 1 except that the above was adopted (amount of platinum carried: 40% by weight). The platinum particle size of this cathode was measured and found to be 21Å. Operate this fuel cell at 60 ℃,
When the current density at 0.9 V and 0.7 V was measured,
They were 102 mA / cm 2 and 970 mA / cm 2 , respectively.

【0017】[0017]

【実施例3】カソード用担体として、前述の難グラファ
イト性カーボンブラックAB−12を使用したこと以外は
実施例1と同様にして、カソード及びアノードを作製
し、かつ燃料電池を構成した(白金担持量:30重量
%)。このカソードの白金粒径を測定したところ、35Å
であった。この燃料電池を60℃で作動させ、0.9 V及び
0.7 Vにおける電流密度を測定したところ、それぞれ90
mA/cm2 及び860 mA/cm2 であった。
Example 3 A cathode and an anode were prepared and a fuel cell was constructed in the same manner as in Example 1 except that the above-mentioned non-graphitizable carbon black AB-12 was used as a cathode carrier. Amount: 30% by weight). The platinum particle size of this cathode was measured and found to be 35Å
Met. This fuel cell is operated at 60 ° C, 0.9 V and
When the current density at 0.7 V was measured, it was 90
mA / cm 2 and 860 mA / cm 2 .

【0018】[0018]

【比較例1】カソード用担体として、カーボンブラック
担体の比表面積が1500m2 /g、カーボンブラック粒径
が150 Å、層間距離(Co/2)が3.84ÅでDBP吸油
量が360 ミリリットル/100 gである三菱化成株式会社
製易グラファイト性カーボンブラックM−3950を使用し
たこと及び熱処理温度を480 ℃としたこと以外は実施例
1と同様にして、カソード及びアノードを作製し、かつ
燃料電池を構成した(白金担持量:20重量%)。このカ
ソードの白金粒径を測定したところ、15Åであった。こ
の燃料電池を60℃で作動させ、0.9 V及び0.7 Vにおけ
る電流密度を測定したところ、それぞれ48mA/cm2
及び350 mA/cm2 であった。
[Comparative Example 1] As a cathode carrier, a carbon black carrier has a specific surface area of 1500 m 2 / g, a carbon black particle size of 150 Å, an interlayer distance (Co / 2) of 3.84 Å and a DBP oil absorption of 360 ml / 100 g. A cathode and an anode were prepared and a fuel cell was constructed in the same manner as in Example 1 except that the easily graphitizable carbon black M-3950 manufactured by Mitsubishi Kasei Co., Ltd. was used and the heat treatment temperature was 480 ° C. (Platinum loading: 20% by weight). The platinum particle size of this cathode was measured and found to be 15Å. When this fuel cell was operated at 60 ° C. and the current densities at 0.9 V and 0.7 V were measured, they were 48 mA / cm 2 respectively.
And 350 mA / cm 2 .

【0019】[0019]

【比較例2】カソード用担体として、カーボンブラック
担体の比表面積が800 m2 /g、カーボンブラック粒径
が300 Å、層間距離(Co/2)が3.59ÅでDBP吸油
量が365 ミリリットル/100 gである三菱油化株式会社
製易グラファイト性カーボンブラックケッチェンブラッ
クECを使用したこと及び熱処理温度を450 ℃としたこ
と以外は実施例1と同様にして、カソード及びアノード
を作製し、かつ燃料電池を構成した(白金担持量:20重
量%)。このカソードの白金粒径を測定したところ、18
Åであった。この燃料電池を60℃で作動させ、0.9 V及
び0.7 Vにおける電流密度を測定したところ、それぞれ
68mA/cm2 及び500 mA/cm2 であった。
[Comparative Example 2] As a cathode carrier, the carbon black carrier has a specific surface area of 800 m 2 / g, a carbon black particle size of 300 Å, an interlayer distance (Co / 2) of 3.59 Å and a DBP oil absorption of 365 ml / 100. A cathode and an anode were prepared in the same manner as in Example 1 except that the graphitizable carbon black Ketjen Black EC manufactured by Mitsubishi Petrochemical Co., Ltd. (g) was used and the heat treatment temperature was 450 ° C. A battery was constructed (platinum loading: 20% by weight). The platinum particle size of this cathode was measured and found to be 18
Was Å. This fuel cell was operated at 60 ° C and the current densities at 0.9 V and 0.7 V were measured.
It was 68 mA / cm 2 and 500 mA / cm 2 .

【0020】[0020]

【比較例3】カソード用担体として、カーボンブラック
担体の比表面積が1120m2 /g、カーボンブラック粒径
が220 Å、層間距離(Co/2)が3.66ÅでDBP吸油
量が420 ミリリットル/100 gである電気化学工業株式
会社製難グラファイト性カーボンブラックAB−7を使
用したこと及び熱処理温度を450 ℃としたこと以外は実
施例1と同様にして、カソード及びアノードを作製し、
かつ燃料電池を構成した(白金担持量:40重量%)。こ
のカソードの白金粒径を測定したところ、50Åであっ
た。この燃料電池を60℃で作動させ、0.9 V及び0.7 V
における電流密度を測定したところ、それぞれ46mA/
cm2 及び500 mA/cm2 であった。
[Comparative Example 3] As a cathode carrier, the carbon black carrier has a specific surface area of 1120 m 2 / g, a carbon black particle size of 220 Å, an interlayer distance (Co / 2) of 3.66 Å and a DBP oil absorption of 420 ml / 100 g. A cathode and an anode were prepared in the same manner as in Example 1 except that the non-graphitizable carbon black AB-7 manufactured by Denki Kagaku Kogyo Co., Ltd. was used and the heat treatment temperature was 450 ° C.
In addition, a fuel cell was constructed (platinum loading: 40% by weight). The platinum particle size of this cathode was measured and found to be 50Å. This fuel cell is operated at 60 ℃, 0.9 V and 0.7 V
The current density was measured to be 46 mA /
cm 2 and 500 mA / cm 2 .

【0021】実施例1〜3及び比較例1〜3で使用され
たカーボンブラックの物性等を表1に纏めた(なお易グ
ラファイト性カーボンブラックを易CBと、難グラファ
イト性カーボンブラックを難CBと略した)。
The physical properties and the like of the carbon blacks used in Examples 1 to 3 and Comparative Examples 1 to 3 are summarized in Table 1 (the graphitizable carbon black is referred to as CB, and the graphitizable carbon black is referred to as CB. Omitted).

【0022】[0022]

【表1】 [Table 1]

【0023】実施例1〜3と比較例1〜3を比較すると
分かるように、同じ種類の難グラファイト性又は易グラ
ファイト性カーボンブラックを担体として使用しても、
その物性特に比表面積と粒径が異なると得られる電流密
度に大きな差異が生ずる。例えば易グラファイト性カー
ボンブラックを担体として使用する場合、担体比表面積
が900 〜1500m2 /gで担体粒径が200 〜400 Åの場合
には(実施例1及び2)電流密度は0.9 Vで95〜102 m
A/cm2 と高いのに対し、比表面積の上限である1500
2 /gに達すると(比較例1)取り出せる電流密度は
大きく減少する。同様に難グラファイト性カーボンブラ
ックを担体として使用する場合にも担体比表面積を250
〜350 m2 /gの範囲に維持すると(実施例3)高電流
密度を得ることができるのに対し、この比表面積の範囲
を超えると(比較例2及び3)、取り出せる電流密度は
大きく減少する。
As can be seen by comparing Examples 1 to 3 and Comparative Examples 1 to 3, even if the same kind of non-graphitizable or graphitizable carbon black is used as a carrier,
If the physical properties, especially the specific surface area and the particle size are different, a large difference occurs in the obtained current density. For example, when using easily graphitizable carbon black as a carrier, when the carrier specific surface area is 900 to 1500 m 2 / g and the carrier particle size is 200 to 400 Å (Examples 1 and 2), the current density is 0.9 V and 95 ~ 102 m
A / cm 2 is high, but the upper limit of specific surface area is 1500
When it reaches m 2 / g (Comparative Example 1), the current density that can be taken out is greatly reduced. Similarly, when using non-graphitizable carbon black as a carrier, the carrier specific surface area is 250
When maintained in the range of ~ 350 m 2 / g (Example 3), a high current density can be obtained, whereas when the specific surface area is exceeded (Comparative Examples 2 and 3), the current density that can be taken out is greatly reduced. To do.

【0024】[0024]

【発明の効果】本発明は、難グラファイト性カーボンブ
ラック担体に白金又は白金合金触媒粒子を担持して成る
高分子固体電解質型燃料電池用触媒において、前記難グ
ラファイト性カーボンブラック担体の比表面積が250 〜
350 m2 /g、粒径が150 〜350 Åであり、前記担体に
対する担持触媒量が20〜55重量%であることを特徴とす
る燃料電池用触媒であり、易グラファイト性の場合に
は、比表面積が900 〜1500m2 /g、粒径が200 〜400
Å、前記担体に対する触媒担持量が20〜55重量%(請求
項2)となる。
Industrial Applicability The present invention provides a catalyst for polymer solid oxide fuel cells, which comprises platinum or platinum alloy catalyst particles supported on a non-graphitizable carbon black carrier, and the non-graphitizable carbon black carrier has a specific surface area of 250. ~
A catalyst for a fuel cell, which is characterized by having 350 m 2 / g, a particle size of 150 to 350 Å, and an amount of supported catalyst of 20 to 55% by weight with respect to the carrier. a specific surface area of 900 ~1500m 2 / g, particle size 200-400
Å The amount of catalyst supported on the carrier is 20 to 55% by weight (claim 2).

【0025】従来の難グラファイト性カーボンブラック
及び易グラファイト性カーボンブラック担体では、カー
ボンブラックの物性自体の活性等への影響は殆ど検討さ
れていない。本発明者が各カーボンブラックの物性、特
にその比表面積、粒径及び該カーボンブラックへの触媒
担持量について検討したところ、使用するカーボンブラ
ックの物性によって作製される高分子固体電解質型燃料
電池用触媒を用いて電極を形成した際の電極としての活
性が大きく変化することを見出した。従って本発明によ
ると、担体の物性を選択するという簡単な手法により、
電極触媒の活性を向上させることができるため、経済的
に高活性の燃料電池を提供できる。
[0025] In the conventional non-graphitizable carbon black and the graphitizable carbon black carrier, the influence of the physical properties of carbon black on the activity etc. has hardly been studied. The present inventor examined the physical properties of each carbon black, particularly the specific surface area, particle size and amount of catalyst supported on the carbon black, and found that the catalyst for polymer solid oxide fuel cells produced by the physical properties of the carbon black used. It has been found that the activity as an electrode when the electrode is formed by using is greatly changed. Therefore, according to the present invention, by the simple method of selecting the physical properties of the carrier,
Since the activity of the electrode catalyst can be improved, an economically highly active fuel cell can be provided.

【0026】又前記比表面積等以外にもカーボンブラッ
クの層間距離及びDBP吸油量も燃料電池電極触媒の活
性に影響を及ぼし、前者の層間距離は3.4 以上(請求項
3)、後者のDBP吸油量は200 〜650 ミリリットルと
すると、より以上の高活性を得ることができる。
In addition to the specific surface area and the like, the interlayer distance of carbon black and the DBP oil absorption amount also affect the activity of the fuel cell electrode catalyst, the former interlayer distance is 3.4 or more (claim 3), and the latter DBP oil absorption amount. When it is 200 to 650 ml, even higher activity can be obtained.

───────────────────────────────────────────────────── フロントページの続き (71)出願人 391016716 ストンハルト・アソシエーツ・インコーポ レーテッド STONEHART ASSOCIATE S INCORPORATED アメリカ合衆国 06443 コネチカット州、 マジソン、コテッジ・ロード17、ピー・オ ー・ボックス1220 (72)発明者 山本 夕美 神奈川県平塚市新町2番73号 田中貴金属 工業株式会社技術開発センター内 ─────────────────────────────────────────────────── ─── Continued Front Page (71) Applicant 391016716 STONHART Associates Incorporated STONEHART ASSOCIATES INCORPORATED USA 06443 Connecticut, Madison, Cottage Road 17, P-O Box 1220 (72) Inventor Yumi Yamamoto 2-7 Shinmachi, Hiratsuka-shi, Japan Tanaka Kikinzoku Kogyo Co., Ltd. Technology Development Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 難グラファイト性カーボンブラック担体
に白金又は白金合金触媒粒子を担持して成る燃料電池用
触媒において、前記難グラファイト性カーボンブラック
担体の比表面積が250 〜350 m2 /g、粒径が150 〜35
0 Åであり、前記担体に対する担持触媒量が20〜55重量
%であることを特徴とする高分子固体電解質型燃料電池
用触媒。
1. A fuel cell catalyst comprising a non-graphitizable carbon black carrier carrying platinum or platinum alloy catalyst particles, wherein the non-graphitizable carbon black carrier has a specific surface area of 250 to 350 m 2 / g and a particle size. Is 150-35
A catalyst for a polymer electrolyte fuel cell, wherein the amount of supported catalyst is 20 to 55% by weight based on the carrier.
【請求項2】 易グラファイト性カーボンブラック担体
に白金又は白金合金触媒粒子を担持して成る燃料電池用
触媒において、前記易グラファイト性カーボンブラック
担体の比表面積が900 〜1500m2 /g、粒径が200 〜40
0 Åであり、前記担体に対する担持触媒量が20〜55重量
%であることを特徴とする高分子固体電解質型燃料電池
用触媒。
2. A fuel cell catalyst comprising a graphitizable carbon black carrier carrying platinum or platinum alloy catalyst particles, wherein the graphitizable carbon black carrier has a specific surface area of 900 to 1500 m 2 / g and a particle size of 200-40
A catalyst for a polymer electrolyte fuel cell, wherein the amount of supported catalyst is 20 to 55% by weight based on the carrier.
【請求項3】 カーボンブラックの層間距離が3.4 以上
である請求項2に記載の高分子固体電解質型燃料電池用
触媒。
3. The catalyst for polymer electrolyte fuel cell according to claim 2, wherein the interlayer distance of carbon black is 3.4 or more.
【請求項4】 カーボンブラックのDBP吸油量が200
〜650 ミリリットルである請求項2又は3に記載の高分
子固体電解質型燃料電池用触媒。
4. The DBP oil absorption of carbon black is 200.
The catalyst for polymer solid oxide fuel cells according to claim 2 or 3, wherein the catalyst is about 650 ml.
JP6279865A 1994-10-19 1994-10-19 Catalyst for high-molecular solid electrolytic type fuel cell Pending JPH08117598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6279865A JPH08117598A (en) 1994-10-19 1994-10-19 Catalyst for high-molecular solid electrolytic type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6279865A JPH08117598A (en) 1994-10-19 1994-10-19 Catalyst for high-molecular solid electrolytic type fuel cell

Publications (1)

Publication Number Publication Date
JPH08117598A true JPH08117598A (en) 1996-05-14

Family

ID=17617028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6279865A Pending JPH08117598A (en) 1994-10-19 1994-10-19 Catalyst for high-molecular solid electrolytic type fuel cell

Country Status (1)

Country Link
JP (1) JPH08117598A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
WO2001017047A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
WO2001056102A1 (en) * 2000-01-25 2001-08-02 Sanyo Electric Co., Ltd. Fuel cell
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
JP2003527735A (en) * 2000-03-22 2003-09-16 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Electrode catalyst powder, method for producing powder, and device formed from the powder
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
JP2005026207A (en) * 2003-03-10 2005-01-27 Sekisui Chem Co Ltd Electrode for solid polymer type fuel cell, and its manufacturing method
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
WO2005083818A1 (en) * 2004-02-26 2005-09-09 Sharp Kabushiki Kaisha Electrode catalyst for fuel cell and fuel cell using same
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
CN1294667C (en) * 2003-11-13 2007-01-10 三星Sdi株式会社 Metal oxide-carbon composite catalyst support and fuel cell comprising the same
WO2007034945A1 (en) * 2005-09-26 2007-03-29 Hitachi Maxell, Ltd. Microparticle-supported carbon particle, method for production thereof, and fuel cell electrode
JP2007111635A (en) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd Metal catalyst and method for manufacturing the same
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
US7749935B2 (en) 2004-01-27 2010-07-06 Showa Denko K.K. Catalyst carrier and fuel cell using the same
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2012000612A (en) * 2011-08-08 2012-01-05 Jgc Catalysts & Chemicals Ltd Platinum colloid-carrying carbon

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541458B2 (en) * 1996-10-25 2010-09-08 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Solid polymer fuel cell
JPH10228912A (en) * 1996-10-25 1998-08-25 Johnson Matthey Plc Improved catalyst
US6818339B1 (en) 1999-08-27 2004-11-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
WO2001017047A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
WO2001056102A1 (en) * 2000-01-25 2001-08-02 Sanyo Electric Co., Ltd. Fuel cell
JP2001283869A (en) * 2000-01-25 2001-10-12 Sanyo Electric Co Ltd Fuel cell
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
JP2003527735A (en) * 2000-03-22 2003-09-16 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Electrode catalyst powder, method for producing powder, and device formed from the powder
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell
US7128996B2 (en) 2001-05-11 2006-10-31 Kureha Corporation Separator for solid polymer fuel cells, and production process thereof
WO2002093670A1 (en) * 2001-05-11 2002-11-21 Kureha Chemical Industry Company, Limited Separator for solid state polymer type fuel cell and method for producing the same
CN1316659C (en) * 2001-05-11 2007-05-16 株式会社吴羽 Separator for solid polymer type fuel cell and method for producing same
JP2003045442A (en) * 2001-08-03 2003-02-14 Toyota Motor Corp Noble metal-base metal alloy based catalyst, its evaluation and method for manufacturing it
JP2005026207A (en) * 2003-03-10 2005-01-27 Sekisui Chem Co Ltd Electrode for solid polymer type fuel cell, and its manufacturing method
JP2004311225A (en) * 2003-04-08 2004-11-04 Sony Corp Catalytic powder, catalytic electrode, and electrochemical device
US7462575B2 (en) 2003-04-08 2008-12-09 Sony Corporation Catalyst powder, catalyst electrode, and electrochemical device
CN1294667C (en) * 2003-11-13 2007-01-10 三星Sdi株式会社 Metal oxide-carbon composite catalyst support and fuel cell comprising the same
US7749935B2 (en) 2004-01-27 2010-07-06 Showa Denko K.K. Catalyst carrier and fuel cell using the same
US7919427B2 (en) 2004-01-27 2011-04-05 Showa Denko K.K. Catalyst carrier and fuel cell using the same
JP4759507B2 (en) * 2004-02-26 2011-08-31 シャープ株式会社 Fuel cell electrode catalyst and fuel cell using the same
WO2005083818A1 (en) * 2004-02-26 2005-09-09 Sharp Kabushiki Kaisha Electrode catalyst for fuel cell and fuel cell using same
US7931998B2 (en) 2004-05-11 2011-04-26 Samsung Sdi Co., Ltd. Catalyst for fuel cell and fuel cell comprising the same
JP2005327721A (en) * 2004-05-11 2005-11-24 Samsung Sdi Co Ltd Catalyst for fuel cell and fuel cell including this
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
US9343747B2 (en) 2004-12-17 2016-05-17 Lg Chem, Ltd. Membrane electrode assembly, fuel cell comprising the membrane electrode assembly, and method for preparing an electrode catalyst
WO2007034945A1 (en) * 2005-09-26 2007-03-29 Hitachi Maxell, Ltd. Microparticle-supported carbon particle, method for production thereof, and fuel cell electrode
JP2007111635A (en) * 2005-10-20 2007-05-10 Sumitomo Electric Ind Ltd Metal catalyst and method for manufacturing the same
US8007691B2 (en) 2006-06-13 2011-08-30 Hitachi Maxell Energy, Ltd. Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP2012000612A (en) * 2011-08-08 2012-01-05 Jgc Catalysts & Chemicals Ltd Platinum colloid-carrying carbon

Similar Documents

Publication Publication Date Title
JPH08117598A (en) Catalyst for high-molecular solid electrolytic type fuel cell
KR101363797B1 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
US6007934A (en) Co-tolerant anode catalyst for PEM fuel cells and a process for its preparation
KR100696463B1 (en) High concentration carbon impregnated catalyst, method for preparing the same, catalyst electrode using the same and fuel cell having the catalyst electrode
US5294232A (en) Process of preparing solid polymer electrolyte type fuel cell
KR100572638B1 (en) Electrode Catalyst for Fuel Cell, and Fuel Cell and Electrode Using the Same
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
Yi et al. Carbon supported Pt–Sn nanoparticles as anode catalyst for direct borohydride–hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance
JP5456797B2 (en) Fuel cell electrode catalyst
JP2005150085A (en) Catalyst support consisting of metal oxide-carbon composite, and fuel cell utilizing this
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
US20220140354A1 (en) Fuel cell electrode with catalysts grown in situ on ordered structure microporous layer and method for preparing membrane electrode assembly
JP2006134630A (en) Electrode structure of polymer electrolyte fuel cell
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
CN101495232A (en) Membrane comprising an electrocatalyst containing palladium and ruthenium
WO2006119147A2 (en) Supports for fuel cell catalysts
JP2008210572A (en) Electrocatalyst and power generation system using it
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP5555615B2 (en) Fuel cell supported catalyst and fuel cell
JP2020047432A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
KR100541977B1 (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
JP4892811B2 (en) Electrocatalyst
JP4759507B2 (en) Fuel cell electrode catalyst and fuel cell using the same
JP2009531810A (en) Fuel cell electrode catalyst with reduced amount of noble metal and solid polymer fuel cell having the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040219