JPH08109378A - Ground solidifying material - Google Patents
Ground solidifying materialInfo
- Publication number
- JPH08109378A JPH08109378A JP24747994A JP24747994A JPH08109378A JP H08109378 A JPH08109378 A JP H08109378A JP 24747994 A JP24747994 A JP 24747994A JP 24747994 A JP24747994 A JP 24747994A JP H08109378 A JPH08109378 A JP H08109378A
- Authority
- JP
- Japan
- Prior art keywords
- fine particle
- slag
- cement
- fine
- silica sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/24—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00732—Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/10—Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
- C04B2111/1025—Alkali-free or very low alkali-content materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はスラグ・セメント系の地
盤固結材の改良に係り、具体的には水ガラスのアルカリ
の大部分をイオン交換樹脂で除去して得られた中性〜弱
アルカリ性のシリカゾル(以下中性シリカゾルと称す
る)と、特定の条件範囲にある微粒子スラグ、微粒子セ
メントを使用することにより、高い固結強度が得られる
と共に、ゲル化時間が長くてかつゲル化時間の調整が容
易で、懸濁型地盤固結材としては浸透性にも優れ、かつ
通常の水ガラス系懸濁型よりもアルカリの溶脱が少ない
スラグ・セメント系の地盤固結材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a slag / cement-based ground consolidating material, specifically, neutral to weak obtained by removing most of alkali in water glass with an ion exchange resin. By using alkaline silica sol (hereinafter referred to as neutral silica sol), fine particle slag and fine particle cement in a specific condition range, high consolidation strength can be obtained and gelation time is long and gelation time is long. The present invention relates to a slag / cement-based ground consolidation material that is easy to adjust, has excellent permeability as a suspension-type ground consolidation material, and has less alkali leaching than ordinary water glass-based suspension consolidation materials.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】地盤を
固結するための地盤注入用のグラウトが種々知られてい
る。例えば、スラグ系の水ガラスグラウトとして、従来
モル比が小さくアルカリ度の高い水ガラスを用いること
が知られている。このグラウトは固結強度が大きいがア
ルカリの溶脱が懸念される。また水ガラスと酸を混合し
て得られる酸性シリカゾルとセメント系からなるグラウ
トではゲル化時間が短く、フロック状の沈澱が出来易い
ため浸透性が悪い。また普通スラグ(ブレーン比表面積
3500〜4400 cm2/g)では、上記酸性シリカゾルに対し
ては中和剤として作用してゲル化時間の促進剤にはなり
うるが、強度的にはほとんど効果はなく、中性シリカゾ
ルに対しては反応性をほとんど示さず強度発現もない。
中性シリカゾルとポルトランドセメントを1.5 ショット
で合流して注入する方法も知られている。しかしこのグ
ラウトはゲル化時間がせいぜい1分以内と短く浸透性が
悪い。また中性シリカゾルに多価金属塩またはアルカリ
金属塩を加えたグラウトは強度が低いという欠点があっ
た。この強度の問題を解決するために近年、中性シリカ
ゾルに高炉スラグ粉末75〜90重量部及びポルトランドセ
メントクリンカー粉末25〜10重量部からなりブレーン比
表面積が7000〜8500 cm2/gの範囲内にある混合高炉ス
ラグ粉末のスラリーを加えた注入材も開示されている
(特開平6−145662号)。しかしこのグラウトは細粒土
への浸透が悪く、土粒子間で目づまりをおこしてしま
い、また、ゲル化時間も、長いゲル化時間での調整がむ
ずかしいという欠点を有する。2. Description of the Related Art Various grouts for ground injection for solidifying the ground are known. For example, as a slag-based water glass grout, it is known to use water glass having a small molar ratio and a high alkalinity. This grout has a high consolidation strength, but alkali leaching is a concern. Further, in the case of grout consisting of an acidic silica sol obtained by mixing water glass and an acid and a cement system, gelation time is short and floc-like precipitation is likely to occur, resulting in poor permeability. Ordinary slag (Blaine specific surface area
At 3500 to 4400 cm 2 / g), it acts as a neutralizing agent for the above acidic silica sol and can act as a promoter for the gelation time, but it has little effect on the strength, and it has no effect on the neutral silica sol. Shows almost no reactivity and no strength development.
A method is also known in which neutral silica sol and Portland cement are combined and injected at 1.5 shots. However, this grout has a short gelling time of at most 1 minute and has poor permeability. In addition, the grout obtained by adding a polyvalent metal salt or an alkali metal salt to the neutral silica sol has a drawback of low strength. In order to solve this strength problem, the neutral silica sol has been recently made up of 75 to 90 parts by weight of blast furnace slag powder and 25 to 10 parts by weight of Portland cement clinker powder and has a Blaine specific surface area within the range of 7000 to 8500 cm 2 / g. An injection material added with a slurry of a certain mixed blast furnace slag powder is also disclosed (JP-A-6-145662). However, this grout has the drawbacks that it has poor penetration into fine-grained soil, causing clogging between soil particles, and that the gelling time is difficult to adjust with a long gelling time.
【0003】このように懸濁型の地盤注入材として用い
られている水ガラス−スラグ系、シリカゾル−セメント
またはスラグ系および中性シリカゾル−セメントまたは
スラグ系にはそれぞれの欠点がある。従って、本発明の
目的は、ゲル化時間を長く調整して浸透性に優れ、しか
も固結強度を大きくし、かつアルカリの溶脱が少ないシ
リカゾル−微粒子スラグ・微粒子セメント系の懸濁型地
盤固結材を提供することにある。Thus, the water glass-slag system, silica sol-cement or slag system and neutral silica sol-cement or slag system used as suspension type ground injection materials have their respective drawbacks. Therefore, an object of the present invention is to adjust the gelation time to be excellent in permeability, to increase the consolidation strength, and to reduce alkali leaching silica sol-fine particle slag / fine particle cement-based suspension type ground consolidation. Is to provide wood.
【0004】[0004]
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究の結果、中性シリカゾルと微粒
子スラグ、微粒子セメントを主成分とする地盤固結材、
あるいはさらにゲル化調整剤を配合した地盤固結材を見
出し、本発明を完成するに到った。即ち、本発明は、中
性シリカゾルと、微粒子スラグまたは微粒子セメントま
たは微粒子スラグと微粒子セメントのそれぞれの併用ま
たは微粒子スラグと微粒子セメントの混合物とを主成分
とする地盤固結材であって、上記微粒子セメントまたは
微粒子スラグまたはこの両者の混合物の少なくともいず
れかがブレーン比表面積約9000 cm2/g以上であること
を特徴とする地盤固結材、及びこれらに更にゲル化調整
剤を配合してなる地盤固結材を提供するものである。Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that neutral silica sol, fine particle slag, and ground consolidation material containing fine particle cement as a main component,
Alternatively, the inventors have found a ground consolidation material further containing a gelling agent, and completed the present invention. That is, the present invention is a ground consolidating material mainly composed of a neutral silica sol, a fine particle slag or a fine particle cement, or a combination of fine particle slag and a fine particle cement, or a mixture of a fine particle slag and a fine particle cement, wherein the fine particles are Ground consolidation material characterized by having a Blaine specific surface area of at least about 9,000 cm 2 / g or more of cement, fine particle slag, or a mixture of both, and a ground formed by further compounding a gelation modifier therewith. It provides a solidifying material.
【0005】本発明で用いられる中性シリカゾルは、水
ガラスをイオン交換樹脂で処理してNa+ イオン等のアル
カリをほとんど分離除去し、中性〜弱アルカリ性、好ま
しくはpHが 8.0〜10.5の弱アルカリ性に調整し、比重が
1.16〜1.24で、おおよそSiO2が10〜60重量%、Na2Oが0.
01〜4重量%の範囲にあるものである。従って通常の強
アルカリの水ガラスを使用した固結材に比べるとアルカ
リの溶脱が非常に少なくなることが期待できる。The neutral silica sol used in the present invention treats water glass with an ion exchange resin to almost separate and remove alkalis such as Na + ions, and is neutral to weakly alkaline, preferably having a weak pH of 8.0 to 10.5. Adjusted to alkaline and has a specific gravity
1.16 to 1.24, approximately 10 to 60 wt% SiO 2 and 0 to 2 Na 2 O.
It is in the range of 01 to 4% by weight. Therefore, it can be expected that the leaching of alkali will be much less than that of the solidified material using ordinary strong alkaline water glass.
【0006】本発明において、中性シリカゾルに配合す
る微粒子スラグや微粒子セメントおよびこれらそれぞれ
の併用あるいは混合物は、微粒子スラグ、微粒子セメン
ト又はこの両者の混合物の少なくともいずれかがブレー
ン比表面積約9000 cm2/g以上であることが必要である
が、微粉化を極端に行うと懸濁液中で再凝集を起こすこ
ともあって、それほどの効果は期待できず、また粉砕費
用も高価につく。このような点を考慮すれば、ブレーン
比表面積は9000〜20000cm2/g程度の範囲のものが好ま
しい。また微粒子スラグ、微粒子スラグ・微粒子セメン
トの併用あるいは微粒子スラグ・微粒子セメントの混合
物を使用する場合、これらの水硬率は 0.9〜2.0 、塩基
度は 1.9〜2.9 の範囲にあることが望ましい場合が多
い。ここで水硬率とは微粒子スラグ・微粒子セメントの
CaO/(SiO2+Al2O3+Fe2O3)、塩基度とは(CaO+MgO+
Al2O3)/SiO2を表す(尚、CaO, SiO2, Al2O3, Fe2O3, M
gOはセメント・スラグ中のそれぞれの含有百分率を示
す)。In the present invention, the fine particle slag, the fine particle cement and the combination or mixture of the fine particle slag, the fine particle cement and the mixture of the fine particle slag, the fine particle cement and the mixture of the fine slag and the fine particle slag mixed with the neutral silica sol have a Blaine specific surface area of about 9000 cm 2 / It is necessary that the amount be g or more, but if the powder is extremely pulverized, reaggregation may occur in the suspension, so that such an effect cannot be expected, and the crushing cost becomes expensive. Considering these points, the Blaine specific surface area is preferably in the range of about 9,000 to 20,000 cm 2 / g. When using fine particle slag, a combination of fine particle slag / fine particle cement, or a mixture of fine particle slag / fine particle cement, it is often desirable that the hydraulic modulus of these is 0.9 to 2.0 and the basicity is in the range of 1.9 to 2.9. . Here, the hydraulic modulus of fine particle slag and fine particle cement
CaO / (SiO 2 + Al 2 O 3 + Fe 2 O 3 ), What is basicity? (CaO + MgO +
Represents Al 2 O 3 ) / SiO 2 (note that CaO, SiO 2 , Al 2 O 3 , Fe 2 O 3 , M
gO indicates the content percentage of each in cement and slag).
【0007】この中性シリカゾル−微粒子スラグ、微粒
子セメントの系では一般にゲル化時間が短い(数秒〜2
分ぐらい)のでゲル化調整剤によってゲル化時間を遅延
せしめて浸透性の向上をはかることができる。この場
合、微粒子スラグ、微粒子セメントのブレーン比表面積
が約9000 cm2/g近辺を境としてこれ以下でも遅延効果
を示すもののゲル化調整剤の添加量を増やしてもせいぜ
い10分程度までである。これに対して約9000 cm2/g以
上に超微粒子化することによりゲル化調整剤の遅延効果
が著しく発揮されるようになり、ゲル化時間を60分程度
にまで遅延せしめることができ、その間の粘性上昇も少
ないことがわかった。しかも地盤固結材の強度は劣化す
ることなく増大することがわかった。In this system of neutral silica sol-fine particle slag and fine particle cement, the gelation time is generally short (several seconds to 2 seconds).
Therefore, the gelling time can be delayed by a gelling agent to improve the permeability. In this case, although the Blaine specific surface area of the fine particle slag and fine particle cement is about 9000 cm 2 / g as a boundary, a retarding effect is shown below this, but the addition amount of the gelling regulator is increased to about 10 minutes at most. On the other hand, when the particles are made into ultra-fine particles of about 9000 cm 2 / g or more, the delay effect of the gelling agent becomes remarkable, and the gelling time can be delayed to about 60 minutes. It was also found that the increase in viscosity was small. Moreover, it has been found that the strength of the ground consolidation material increases without deterioration.
【0008】本発明に用いられるゲル化調整剤として
は、アルカリ金属やアルカリ土類金属の重炭酸塩、炭酸
塩、リン酸塩、酸性リン酸塩、ピロリン酸塩等があげら
れるが、中でも水に易溶性のものが好ましい。これらゲ
ル化調整剤は予め水に混合溶解し、その後に微粒子スラ
グ、微粒子セメントや中性シリカゾルを添加することも
できるし、微粒子スラグや微粒子セメントと同時に水に
添加することもできるが、効果を充分発揮させるには、
予め水に溶解しておくのが好ましい。Examples of the gelling agent used in the present invention include alkali metal and alkaline earth metal bicarbonates, carbonates, phosphates, acid phosphates, pyrophosphates, and the like. Those that are easily soluble are preferred. These gelling modifiers are mixed and dissolved in water in advance, and then the fine particle slag, fine particle cement or neutral silica sol can be added, or the fine particle slag and the fine particle cement can be added to water at the same time, but the effect is obtained. To get the most out,
It is preferably dissolved in water in advance.
【0009】本発明に用いられる微粒子セメントとして
はポルトランドセメントや高炉セメント等や、これらの
クリンカーの粉砕物でも、これに石膏等を混合したセメ
ントの微粒子でもよい。さらにこれらと微粒子スラグの
混合物は混合前にブレーン比表面積が約9000 cm2/g以
上となるように粉砕されたものを混合しても、ある程度
粉砕されたものを混合し、さらにブレーン比表面積が約
9000 cm2/g以上になるまで粉砕したものでもよい。さ
らに懸濁液状として微粒子状のものを分級して微粒子懸
濁液として使用することもできる。The fine particle cement used in the present invention may be Portland cement, blast furnace cement, crushed products of these clinker, or fine particles of cement in which gypsum or the like is mixed. Furthermore, even if the mixture of these and fine particle slag is pulverized to have a Blaine specific surface area of about 9000 cm 2 / g or more before mixing, the pulverized material is mixed to some extent, and the Blaine specific surface area is further increased. about
It may be crushed to a size of 9000 cm 2 / g or more. Further, fine particles in a suspension form may be classified and used as a fine particle suspension.
【0010】本発明の地盤固結材において、中性シリカ
ゾルの配合量は地盤固結材(グラウト)1000g当たり50
〜300 gが好ましく、これ以上多くすると溶液型グラウ
トのホモゲルに近い弾力性を有するゲルとなり、強度上
昇はほとんどみられない。また微粒子スラグ、微粒子セ
メントあるいはこれらの混合物の配合量はグラウト1000
g当たり20〜400 gが好ましく、これより少ないと固結
材の強度が小さく、これ以上多くなると液の粘性が高く
なり、凝固時間も長くすることができなくなる。また本
発明の地盤固結材において、ゲル化調整剤を配合する場
合には、その配合量は、ゲル化調整剤の種類、他の成分
組成等により一概に規定することは難しいが、一般には
全配合液中の10重量%以下が好ましい。In the ground consolidation material of the present invention, the content of the neutral silica sol is 50 per 1000 g of the ground consolidation material (grout).
Approximately 300 g is preferable, and when the amount is more than 300 g, the gel has elasticity similar to that of a solution type grout homogel, and almost no increase in strength is observed. Also, the mixing amount of fine particle slag, fine particle cement or a mixture thereof is grout 1000.
20 to 400 g per g is preferable, and if it is less than this, the strength of the solidifying material is low, and if it is more than this, the viscosity of the liquid becomes high and the solidification time cannot be lengthened. Further, in the ground consolidation material of the present invention, when a gelling regulator is blended, the blending amount is difficult to unconditionally be specified by the type of gelling regulator, other component composition, etc. It is preferably 10% by weight or less in the total liquid mixture.
【0011】[0011]
【作用】本発明はブレーン比表面積が約9000 cm2/g以
上の微粒子スラグ、微粒子セメントを使用するので土中
への浸透性がよく、硬化反応が活性化し、固結物の強度
発現が優れ、高強度となる。またゲル化調整剤との反応
性も活性化され、ゲル化調整剤としての本来の機能、即
ちゲル化時間の遅延効果が著しく発揮されるものと思わ
れる。また本発明においては、シリカゾルとして水ガラ
スからNa+ イオン等のアルカリの大部分を除去し加熱重
合してつくられた中性〜弱アルカリ性のコロイダルシリ
カを使用するので、硬化時間が長く、しかもフロック状
の沈澱を生成することなく均質にして浸透性の向上をよ
り助長するものと思われる。又、一般にセメント中の遊
離しやすい硬分あるいは石膏分は溶液中で懸濁液の分散
性を阻害し、粒子を微粒子化してもそれを懸濁液中で電
気的に凝集せしめ粘度を上げ浸透性を阻害するが、ブレ
ーン比表面積が約9000 cm2/g以上でゲル化調整剤を使
用するとこのような成分による性質が妨げられ、浸透性
が向上するものと思われる。The present invention uses fine particle slag and fine particle cement having a Blaine specific surface area of about 9000 cm 2 / g or more, so that it has good permeability into the soil, activates the hardening reaction, and exhibits excellent strength of the solidified product. , High strength. It is also considered that the reactivity with the gelling regulator is activated, and the original function as the gelling regulator, that is, the effect of delaying the gelling time is remarkably exhibited. Further, in the present invention, since a neutral to weakly alkaline colloidal silica prepared by removing most of alkali such as Na + ions from water glass and heat-polymerizing is used as the silica sol, the curing time is long, and the floc is high. It seems that homogenization is further promoted without formation of a precipitate and the penetration is further promoted. Generally, hard components or gypsum components that easily release in cement impair the dispersibility of the suspension in the solution, and even if the particles are made into fine particles, they are electrically aggregated in the suspension to increase the viscosity and penetrate. However, the use of a gelling agent having a Blaine specific surface area of about 9000 cm 2 / g or more hinders the properties of these components and improves the permeability.
【0012】[0012]
【実施例】以下、本発明を実施例によって具体的に説明
するが、これらの実施例は本発明の一例にすぎず、本発
明はこれらの実施例に限定されるものではない。尚、以
下の実施例及び比較例に用いた中性シリカゾル、スラ
グ、セメント、スラグ−セメント混合物及びゲル化調整
剤を以下にまとめて示す。EXAMPLES The present invention will be specifically described below with reference to examples, but these examples are merely examples of the present invention, and the present invention is not limited to these examples. The neutral silica sol, slag, cement, slag-cement mixture, and gelling agent used in the following Examples and Comparative Examples are summarized below.
【0013】(1) 中性シリカゾル 水ガラスを陽イオン交換樹脂で処理することによりアル
カリの大部分を除去して得られた、表1に示す組成の中
性シリカゾルを使用した。(1) Neutral silica sol A neutral silica sol having a composition shown in Table 1 obtained by treating water glass with a cation exchange resin to remove most of the alkali was used.
【0014】[0014]
【表1】 [Table 1]
【0015】(2) スラグ 表2に示す2種類のスラグをそれぞれ粉砕度を異にして
使用した。(2) Slag Two types of slag shown in Table 2 were used with different pulverization degrees.
【0016】[0016]
【表2】 [Table 2]
【0017】(3) セメント 表3に示す粉砕度を異にしたポルトランドセメントと高
炉セメントを使用した。(3) Cement Portland cement and blast furnace cement having different pulverization degrees shown in Table 3 were used.
【0018】[0018]
【表3】 [Table 3]
【0019】(4) スラグ−セメント混合物 グラウトの配合にあたり表2のスラグと表3のセメント
を予め混合した表4に示す混合物を使用した。(4) Slag-Cement Mixture A mixture shown in Table 4 in which the slag of Table 2 and the cement of Table 3 were premixed was used for compounding the grout.
【0020】[0020]
【表4】 [Table 4]
【0021】(5) ゲル化調整剤 代表的なゲル化調整剤として炭酸水素ナトリウム(試薬
一級:NaHCO3) を使用した。他のゲル化調整剤は添加量
の差はあるがゲル化遅延効果を示すものの、重炭酸のア
ルカリ金属塩又は炭酸のアルカリ金属塩が特に優れた効
果が得られた。又、重炭酸のアルカリ金属塩と炭酸のア
ルカリ金属塩は殆ど同じ効果を示した。(5) Gelation conditioner Sodium hydrogen carbonate (first-grade reagent: NaHCO 3 ) was used as a typical gelation conditioner. Although other gelation regulators have a gelling retarding effect although the addition amount is different, the alkali metal salt of bicarbonate or the alkali metal salt of carbonic acid obtained a particularly excellent effect. The alkali metal salt of bicarbonate and the alkali metal salt of carbonic acid showed almost the same effect.
【0022】実施例1〜6及び比較例1〜4(中性シリ
カゾル−スラグ系) 表1の中性シリカゾルの水溶液をA液とし、B液として
表2のスラグと炭酸水素ナトリウムとの水懸濁液を用
い、A液とB液を表5に示す割合で混合し各種の地盤固
結材を調製した。得られた地盤固結材について、カップ
倒立法によりゲル化時間を測定し、また土質工学会基準
「土の一軸圧縮試験方法」により一軸圧縮強度を測定し
た。結果を表5に示す。Examples 1 to 6 and Comparative Examples 1 to 4 (Neutral silica sol-slag system) Aqueous solution of neutral silica sol in Table 1 was used as solution A, and as solution B, water suspension of slag in table 2 and sodium hydrogen carbonate was used. Using the suspension, the solutions A and B were mixed at the ratios shown in Table 5 to prepare various ground consolidation materials. The gelation time of the obtained ground consolidation material was measured by the cup upside-down method, and the uniaxial compressive strength was measured by the standard of Japan Society of Geotechnical Engineering "Soil uniaxial compression test method". The results are shown in Table 5.
【0023】[0023]
【表5】 [Table 5]
【0024】表5において比較例1及び実施例1〜2の
スラグは塩基度が1.78、水硬率が0.82と何れも低く、ゲ
ル化時間は極めて長く、固結強度は弱いが、スラグのブ
レーン比表面積が本発明の範囲内にある実施例1及び2
は比較例1に比べてゲル化時間は短縮し、固結強度は上
昇している。比較例2及び実施例3〜4のスラグの塩基
度、水硬率は共に上記の好ましい範囲にあるが、このう
ち比較例2はブレーン比表面積が本発明範囲外の粒子で
他の実施例3及び4に比べると、ゲル化時間は速くな
り、強度は明らかに見劣りする。実施例4〜6及び比較
例2〜4ではゲル化調整剤としての炭酸水素ナトリウム
の添加量の効果を試験した。実施例5、4及び6は本発
明の微粒子スラグで炭酸水素ナトリウムの添加量を変化
させた例である。これに対して比較例3、2及び4はブ
レーン比表面積が本発明の範囲外の粒子のスラグを使用
したもので明らかに実施例5、4及び6ではゲル化調整
剤の添加量が多くなるに従いゲル化時間の遅延効果は著
しく、これに反して比較例3、2及び4ではゲル化調整
剤の添加量が多くなってもゲル化時間の遅延効果は著し
くない。さらに実施例5、4及び6ではゲル化調整剤の
添加量が多くなるに従い明らかに強度も向上している。In Table 5, the slags of Comparative Example 1 and Examples 1 and 2 have a low basicity of 1.78 and a hydraulic modulus of 0.82, and have extremely long gelling times and weak consolidation strength, but the slag branes Examples 1 and 2 having a specific surface area within the scope of the present invention
In comparison with Comparative Example 1, the gelation time is shorter and the consolidation strength is higher. Both the basicity and hydraulic modulus of the slags of Comparative Example 2 and Examples 3 to 4 are in the above preferred ranges, of which Comparative Example 2 is a particle having a Blaine specific surface area outside the range of the present invention. Compared with Nos. 4 and 4, the gelation time was faster and the strength was clearly inferior. In Examples 4 to 6 and Comparative Examples 2 to 4, the effect of the added amount of sodium hydrogencarbonate as a gelling modifier was tested. Examples 5, 4 and 6 are examples in which the addition amount of sodium hydrogen carbonate was changed in the fine particle slag of the present invention. On the other hand, Comparative Examples 3, 2 and 4 use slags of particles having a Blaine specific surface area outside the range of the present invention, and obviously, in Examples 5, 4 and 6, the addition amount of the gelling modifier increases. Accordingly, the effect of delaying the gelling time is remarkable, and on the contrary, in Comparative Examples 3, 2 and 4, the effect of delaying the gelling time is not remarkable even when the amount of the gelling modifier added is large. Further, in Examples 5, 4, and 6, the strength is obviously improved as the addition amount of the gelling modifier is increased.
【0025】実施例7〜10及び比較例5〜8(中性シリ
カゾル−セメント系) 表1の中性シリカゾルの水溶液をA液とし、B液として
表3のセメントと炭酸水素ナトリウムの水懸濁液を用
い、A液とB液を表6に示す割合で混合し各種の地盤固
結材を調製した。得られた地盤固結材について、実施例
1と同様にゲル化時間及び一軸圧縮強度を測定した。結
果を表6に示す。Examples 7 to 10 and Comparative Examples 5 to 8 (Neutral silica sol-cement system) Aqueous solution of neutral silica sol in Table 1 was used as liquid A, and as liquid B, the cement of Table 3 and aqueous suspension of sodium hydrogen carbonate were suspended. Using the solution, the solutions A and B were mixed at the ratios shown in Table 6 to prepare various ground consolidation materials. The gelation time and the uniaxial compressive strength of the obtained ground consolidation material were measured in the same manner as in Example 1. The results are shown in Table 6.
【0026】[0026]
【表6】 [Table 6]
【0027】表6において、固結強度は一般に表5のス
ラグの場合に比べて高い。これに反してゲル化時間は全
般に速く、かつ粘性的には高いようである。しかし、ブ
レーン比表面積が本発明の範囲内にある実施例7及び8
は比較的ゲル化時間が長く、固結強度は優れている。炭
酸水素ナトリウムはスラグの場合と同様にゲル化時間の
遅延と強度増強に効果がみられる。即ち実施例9, 7及
び10はブレーン比表面積が本発明の範囲内にある微粒子
セメントを使用した例で、比較例7, 5及び8はブレー
ン比表面積が本発明の範囲外の粒子のセメントを使用し
た例で、前者の方が明らかにゲル化時間の遅延効果、強
度の増強共に優れていることがわかる。In Table 6, the consolidation strength is generally higher than that of the slag in Table 5. On the contrary, gelling times appear to be generally fast and viscously high. However, Examples 7 and 8 in which the Blaine specific surface area is within the scope of the present invention.
Has a relatively long gelation time and excellent consolidation strength. Sodium hydrogencarbonate is effective in delaying gelation time and strengthening, as in the case of slag. That is, Examples 9, 7 and 10 are examples in which fine grain cement having a Blaine specific surface area within the range of the present invention was used, and Comparative Examples 7, 5 and 8 were cements with particles having a Blaine specific surface area outside the range of the present invention. In the example of use, it can be seen that the former is clearly superior in both the effect of delaying gelation time and the enhancement of strength.
【0028】実施例11〜18及び比較例9〜10(中性シリ
カゾル−スラグ・セメント併用系) 表1の中性シリカゾルの水溶液をA液とし、B液として
表2のスラグと表3のセメントをそれぞれ併用し、更に
炭酸水素ナトリウムを添加した水懸濁液を用い、A液と
B液を表7に示す割合で混合し各種の地盤固結材を調製
した。得られた地盤固結材について、実施例1と同様に
ゲル化時間及び一軸圧縮強度を測定した。結果を表7に
示す。Examples 11 to 18 and Comparative Examples 9 to 10 (neutral silica sol-slag / cement combination system) Aqueous solution of neutral silica sol in Table 1 was used as solution A, and slag of table 2 and cement of table 3 were used as solution B. Was used in combination with each other, and an aqueous suspension prepared by further adding sodium hydrogencarbonate was used to mix solutions A and B at the ratios shown in Table 7 to prepare various ground consolidation materials. The gelation time and the uniaxial compressive strength of the obtained ground consolidation material were measured in the same manner as in Example 1. The results are shown in Table 7.
【0029】[0029]
【表7】 [Table 7]
【0030】表7において、比較例9及び10はスラグ、
セメント共にブレーン比表面積が本発明の範囲外の粒子
を用いた例で、比較的粘性が高く、強度的にも見劣りが
する。実施例11〜14はスラグまたはセメントの一方のみ
がブレーン比表面積が本発明の範囲内の微粒子である
が、実施例11と13はスラグ・セメント併用の塩基度、水
硬率が本発明の好ましい範囲からはずれており、実施例
11は固結強度が弱く、実施例13ではゲル化時間が速すぎ
る。スラグまたはセメントの一方のみのブレーン比表面
積が本発明の範囲内にある実施例12及び14、特にスラ
グ、セメント共ブレーン比表面積が本発明の範囲内にあ
る実施例15及び16ではゲル化時間が長くそのわりに固結
強度も優れている。実施例17、16及び18はブレーン比表
面積が本発明の範囲内にある配合で炭酸水素ナトリウム
の添加量を変化させた場合で、添加量が増えるに従って
明らかにゲル化時間は遅延し、固結強度は増強してい
る。In Table 7, Comparative Examples 9 and 10 are slags,
This is an example in which particles having a Blaine specific surface area outside the range of the present invention are used together with cement, and the viscosity is relatively high and the strength is also poor. In Examples 11 to 14, only one of slag or cement is fine particles having a Blaine specific surface area within the range of the present invention, but Examples 11 and 13 are basicity of slag / cement combination, and water hardness is preferable of the present invention. Example out of range
No. 11 has a weak caking strength, and the gelation time is too fast in Example 13. Gelling time in Examples 12 and 14 in which the Blaine specific surface area of only one of slag or cement is within the scope of the present invention, particularly in Examples 15 and 16 in which the slag and the cement Blaine specific surface area are within the scope of the present invention. It has a long consolidation time and excellent consolidation strength. Examples 17, 16 and 18 are cases in which the addition amount of sodium hydrogen carbonate was changed in a formulation having a Blaine specific surface area within the range of the present invention, and the gelling time was obviously delayed as the addition amount increased, and the solidification Strength is increasing.
【0031】実施例19〜24及び比較例11〜12(中性シリ
カゾル−スラグ・セメント混合物系) 表1の中性シリカゾルの水溶液をA液とし、B液とし
て、表4のスラグ−セメント混合物と炭酸水素ナトリウ
ムの水懸濁液を用い、A液とB液を表8に示す割合で混
合し各種の地盤固結材を調製した。得られた地盤固結材
について、実施例1と同様にゲル化時間及び一軸圧縮強
度を測定した。結果を表8に示す。Examples 19 to 24 and Comparative Examples 11 to 12 (neutral silica sol-slag / cement mixture system) An aqueous solution of the neutral silica sol in Table 1 was used as solution A and solution B was used as the slag-cement mixture in table 4. Liquids A and B were mixed at a ratio shown in Table 8 using an aqueous suspension of sodium hydrogen carbonate to prepare various ground consolidation materials. The gelation time and the uniaxial compressive strength of the obtained ground consolidation material were measured in the same manner as in Example 1. Table 8 shows the results.
【0032】[0032]
【表8】 [Table 8]
【0033】表8におけるスラグ・セメント混合物の比
率は表7の比較例9〜10及び実施例11〜16が表8の比較
例11〜12及び実施例19〜24に全く比適したものである。
結果は表7とほとんど対応したものが得られ、スラグ、
セメントはそれぞれ別個に併用しても、また予め混合物
としたものを配合しても大差のないことを示している。
しかし、細かく観察すると30日後強度は誤差範囲で変化
はみられないが、表8では表7の場合より7日後強度は
若干高いようで、ゲル化時間は相対的に若干短縮してい
るようである。Regarding the ratio of the slag / cement mixture in Table 8, Comparative Examples 9 to 10 and Examples 11 to 16 in Table 7 are completely suitable for Comparative Examples 11 to 12 and Examples 19 to 24 in Table 8. .
The results almost corresponded to those in Table 7, and the slag,
It shows that there is no great difference between the cements used in combination, or the mixture prepared in advance as a mixture.
However, when observed in detail, the strength after 30 days did not change within the error range, but in Table 8, the strength after 7 days seems to be slightly higher than in the case of Table 7, and the gelation time seems to be relatively shortened. is there.
【0034】実施例25〜30及び比較例13〜15(浸透試
験) 上記実施例1〜24及び比較例1〜12の結果から中性シリ
カゾル−微粒子スラグ・微粒子セメント−ゲル化調整剤
の系において本発明の条件を満たせば高い固結強度と比
較的長いゲル化時間が得られ、また中性シリカゾルの使
用で通常の水ガラスの場合に比べて粘性的にも一般に低
いことが観察され、従って浸透性にも優れることが期待
される。そこで実際に浸透性を確かめるために次のよう
な浸透試験を実施した。結果を表10に示す。Examples 25 to 30 and Comparative Examples 13 to 15 (penetration test) From the results of the above Examples 1 to 24 and Comparative Examples 1 to 12, in the system of neutral silica sol-fine particle slag / fine particle cement-gelling conditioner. It has been observed that if the conditions of the present invention are satisfied, a high consolidation strength and a relatively long gelation time can be obtained, and that the use of neutral silica sol is also generally lower in viscosity than the case of ordinary water glass. It is expected to have excellent permeability. Therefore, the following penetration test was conducted in order to actually confirm the permeability. The results are shown in Table 10.
【0035】<浸透試験>5φ×100cm のアクリルパイ
プに90cmの豊浦標準砂の層(上下に5cmずつ細砂の層)
をつくり、上記の代表的な実施例及び比較例の配合液を
注入圧0.5kgf/cm2で注入し、浸透の程度を測定した。豊
浦標準砂の充填は所定量を数回に分けて行い、その都度
パイプの側面をハンマーで叩いた。配合液の調製はミキ
サー中に炭酸水素ナトリウムを溶解した水溶液とスラ
グ、セメントを入れて30秒間攪拌後、中性シリカゾルの
水溶液を入れ10秒間攪拌することにより行った。浸透性
の評価は、固結材注入1日後に脱型し固結の長さを測定
し、表9に示す基準で評価した。<Penetration test> A layer of 90 cm Toyoura standard sand on a 5φ x 100 cm acrylic pipe (layer of fine sand 5 cm above and below)
Was prepared, and the mixed solutions of the above-mentioned representative examples and comparative examples were injected at an injection pressure of 0.5 kgf / cm 2 , and the degree of permeation was measured. The filling of Toyoura standard sand was carried out by dividing a predetermined amount into several times, and the side of the pipe was hit with a hammer each time. The mixed solution was prepared by adding an aqueous solution of sodium hydrogencarbonate, slag and cement in a mixer and stirring for 30 seconds, and then adding an aqueous solution of neutral silica sol and stirring for 10 seconds. The permeability was evaluated by demolding one day after the injection of the solidifying material, measuring the length of the solidifying material, and evaluating it according to the criteria shown in Table 9.
【0036】[0036]
【表9】 [Table 9]
【0037】[0037]
【表10】 [Table 10]
【0038】表10において、実施例25、29及び30はブレ
ーン比表面積が総て本発明の範囲内にある微粒子のスラ
グまたは微粒子のスラグと微粒子のセメントを使用した
例で優れた浸透性を示した。実施例26は微粒子セメント
の例で微粒子スラグの実施例25に比べると浸透性は幾分
劣っている。実施例27及び28は、スラグ、セメントのい
ずれか一方のブレーン比表面積が本発明の範囲内である
例で浸透性はよいが双方ともブレーン比表面積が本発明
の範囲内にある実施例29及び30に比べると幾分劣ってい
る。比較例13のブレーン比表面積が本発明範囲内にない
粒子のスラグの場合は浸透性に劣るが、比較例14のブレ
ーン比表面積が本発明の範囲内ではない粒子のセメント
に比べると幾分良好である。比較例14のブレーン比表面
積が本発明の範囲内ではない粒子のセメント、比較例15
のブレーン比表面積が本発明の範囲内ではない粒子のス
ラグとセメントの併用系では殆ど浸透性はみられなかっ
た。以上からブレーン比表面積が本発明の範囲内にある
地盤固結材は懸濁型としては優れた浸透性を示すことが
確認された。In Table 10, Examples 25, 29 and 30 show excellent penetrability in examples using fine particle slag or fine particle slag and fine particle cement having all Blaine specific surface areas within the range of the present invention. It was Example 26 is an example of fine particle cement, and the permeability is somewhat inferior to that of Example 25 of fine particle slag. Examples 27 and 28, slag, cement is an example in which the Blaine specific surface area of either one is within the scope of the present invention is good permeability, but both are Blaine specific surface area within the scope of the present invention Example 29 and Somewhat inferior to 30. In the case of the slag of the particles whose Blaine specific surface area of Comparative Example 13 is not within the range of the present invention, the permeability is poor, but it is somewhat better than that of the cement of the Blaine specific surface area of Comparative Example 14 which is not within the range of the present invention. Is. A cement of particles having a Blaine specific surface area of Comparative Example 14 that is not within the scope of the present invention, Comparative Example 15
Almost no permeability was observed in the combined slag / cement system of particles having a Blaine specific surface area outside the range of the present invention. From the above, it was confirmed that the ground consolidation material having a Blaine specific surface area within the range of the present invention exhibits excellent permeability as a suspension type.
【0039】[0039]
【発明の効果】中性シリカゾルと、上記特定のブレーン
比表面積を有する微粒子スラグ、微粒子セメントを配合
した本発明の懸濁型地盤固結材、更にゲル化調整剤を配
合した本発明の地盤固結材は次のような効果を発揮す
る。 比較的長いゲル化時間の調整が可能で、懸濁型とし
ては極めて優れた浸透性を示す。 溶液型ではみられない高い固結強度が得られる。 中性シリカゾルは通常の水ガラスのような高アルカ
リを示さないため、アルカリの溶脱が少ない期待がもて
る。EFFECTS OF THE INVENTION A suspension type ground consolidation material of the present invention containing a neutral silica sol, fine particle slag having the above-mentioned specific brane specific surface area and fine particle cement, and a ground solid matter of the present invention further containing a gelation modifier. The binder has the following effects. The gelation time can be adjusted for a relatively long time, and it exhibits extremely excellent permeability as a suspension type. High consolidation strength not seen in the solution type is obtained. Neutral silica sol does not show a high alkali like ordinary water glass, and therefore, it can be expected that alkali leaching is small.
Claims (3)
換樹脂で除去して得られたシリカゾルと、微粒子スラグ
または微粒子セメントまたは微粒子スラグと微粒子セメ
ントのそれぞれの併用または微粒子スラグと微粒子セメ
ントの混合物とを主成分とする地盤固結材であって、上
記微粒子セメントまたは微粒子スラグまたはこの両者の
混合物の少なくともいずれかがブレーン比表面積約9000
cm2/g以上であることを特徴とする地盤固結材。1. A silica sol obtained by removing most of the alkali of water glass with an ion exchange resin, and a combination of fine particle slag or fine particle cement or fine particle slag and fine particle cement, or a mixture of fine particle slag and fine particle cement. A ground consolidation material containing as a main component, at least one of the above-mentioned fine particle cement or fine particle slag or a mixture of the fine particle cement and the fine particle slag having a Blaine specific surface area of about 9,000.
A ground consolidation material characterized by being at least cm 2 / g.
地盤固結材。2. The ground consolidation material according to claim 1, which contains a gelling conditioner.
メントの併用あるいは微粒子スラグ・微粒子セメントの
混合物を使用する場合、これらの水硬率が0.9 〜2.0 、
塩基度が 1.9〜2.9 である請求項1又は2記載の地盤固
結材。3. When using fine particle slag, a combination of fine particle slag / fine particle cement or a mixture of fine particle slag / fine particle cement, the hydraulic modulus of these is 0.9 to 2.0,
The ground consolidation material according to claim 1 or 2, which has a basicity of 1.9 to 2.9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24747994A JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24747994A JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08109378A true JPH08109378A (en) | 1996-04-30 |
JP3575561B2 JP3575561B2 (en) | 2004-10-13 |
Family
ID=17164076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24747994A Expired - Fee Related JP3575561B2 (en) | 1994-10-13 | 1994-10-13 | Ground consolidated material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3575561B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654094B1 (en) * | 1999-09-21 | 2006-12-05 | 쌍용양회공업(주) | Matrix for the continuous fiber reinforced cement composites using ultra-super fine cement |
JP2007314724A (en) * | 2006-05-29 | 2007-12-06 | Raito Kogyo Co Ltd | Material for soil improvement |
JP2008169262A (en) * | 2007-01-10 | 2008-07-24 | Mitsubishi Rayon Co Ltd | Chemical for stabilizing soil quality |
JP2024037096A (en) * | 2022-09-06 | 2024-03-18 | 強化土エンジニヤリング株式会社 | Soil solidification material and ground injection method using the same |
JP2024074595A (en) * | 2022-11-21 | 2024-05-31 | 強化土エンジニヤリング株式会社 | Ground consolidation material and grouting method therewith |
-
1994
- 1994-10-13 JP JP24747994A patent/JP3575561B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100654094B1 (en) * | 1999-09-21 | 2006-12-05 | 쌍용양회공업(주) | Matrix for the continuous fiber reinforced cement composites using ultra-super fine cement |
JP2007314724A (en) * | 2006-05-29 | 2007-12-06 | Raito Kogyo Co Ltd | Material for soil improvement |
JP2008169262A (en) * | 2007-01-10 | 2008-07-24 | Mitsubishi Rayon Co Ltd | Chemical for stabilizing soil quality |
JP2024037096A (en) * | 2022-09-06 | 2024-03-18 | 強化土エンジニヤリング株式会社 | Soil solidification material and ground injection method using the same |
JP2024074595A (en) * | 2022-11-21 | 2024-05-31 | 強化土エンジニヤリング株式会社 | Ground consolidation material and grouting method therewith |
Also Published As
Publication number | Publication date |
---|---|
JP3575561B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6989719B1 (en) | Two-form quick-setting admixture, spraying material and spraying method | |
CN102634343A (en) | Mineral slag based soil stabilizer and preparation method and application thereof | |
JP3856541B2 (en) | Injection material | |
JP2003119464A (en) | Slug-based grouting material | |
JP3575561B2 (en) | Ground consolidated material | |
JP6032830B2 (en) | Cement-based injection material | |
JPH1161125A (en) | Grouting material | |
JP5689224B2 (en) | Injection material and injection method | |
KR100886726B1 (en) | High-strength ultrafine cement, early-strength admixture, and grout for reinforcement of ground using those | |
JP7244971B1 (en) | Ground consolidation material and ground grouting method using it | |
JP3501543B2 (en) | Ground consolidated material | |
JP2530658B2 (en) | Alkaline hydraulic ground injection material | |
JP2003137618A (en) | Blast furnace slag fine powder containing inorganic admixture, blast furnace cement, and method of producing them | |
JP2808252B2 (en) | Ground consolidated material | |
JP2884395B2 (en) | Ground consolidated material | |
JPH0711624A (en) | Ground grouting chemical | |
JP3007905B2 (en) | Soil improvement method | |
JP2000087035A (en) | Ground solidifying material | |
JP2001098271A (en) | Ground solidification material | |
JP4070982B2 (en) | Neutral solidification material and neutral solidification treatment method | |
JP7308499B1 (en) | Ground consolidation material and ground grouting method using it | |
JP3336058B2 (en) | Ground injection agent and its injection method | |
JPH11172248A (en) | Grout for ground injection | |
JP2981859B2 (en) | Suspended ground injection chemicals | |
JP2853087B1 (en) | Reinforced cement composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040630 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |