[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0798702B2 - Method for manufacturing ceramic structure - Google Patents

Method for manufacturing ceramic structure

Info

Publication number
JPH0798702B2
JPH0798702B2 JP61244921A JP24492186A JPH0798702B2 JP H0798702 B2 JPH0798702 B2 JP H0798702B2 JP 61244921 A JP61244921 A JP 61244921A JP 24492186 A JP24492186 A JP 24492186A JP H0798702 B2 JPH0798702 B2 JP H0798702B2
Authority
JP
Japan
Prior art keywords
ceramic
base material
sio
silicon
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61244921A
Other languages
Japanese (ja)
Other versions
JPS63100087A (en
Inventor
明秀 高見
義史 山本
順一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61244921A priority Critical patent/JPH0798702B2/en
Publication of JPS63100087A publication Critical patent/JPS63100087A/en
Publication of JPH0798702B2 publication Critical patent/JPH0798702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、断熱特性の優れたセラミック構造体の製造方
法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a ceramic structure having excellent heat insulating properties.

(従来の技術) 従来より、窒化珪素系セラミックは高温強度,耐熱性お
よび耐衝撃性等が優れていることから、各種の産業分野
に広汎に用いられている。そして、この窒化珪素系セラ
ミックを例えば自動車等車両用のエンジン部品等のよう
に高温に晒される部品として適用する場合には、特に優
れた断熱特性が要求される。
(Prior Art) Conventionally, silicon nitride ceramics have been widely used in various industrial fields because of their excellent high-temperature strength, heat resistance, impact resistance, and the like. When this silicon nitride ceramic is applied as a component exposed to high temperature such as an engine component for a vehicle such as an automobile, a particularly excellent heat insulating property is required.

そこで、セラミックの断熱特性をより一層向上させる手
段として、例えばセラミックに多孔質層を形成したり、
また、セラミックと他の例えば金属製部材とを併用して
両者間に空気層を形成したり、さらには、セラミック表
面に断熱材をコーティングすることなどが考えられる。
Therefore, as a means for further improving the heat insulating properties of the ceramic, for example, by forming a porous layer in the ceramic,
It is also conceivable to use a ceramic and another member such as a metal together to form an air layer between them, or to coat the surface of the ceramic with a heat insulating material.

一方、例えば特開昭59−6303号公報に開示されているよ
うに、窒化珪素系セラミック表面に例えばCO2レーザビ
ームを照射してその表面に珪素を生成させた後、アルゴ
ンガス等の中性雰囲気下において珪素の融点以上に加熱
して上記セラミック表面に生成された珪素を溶融させる
ことにより、セラミック表面に珪素の表面層および含浸
層を形成し、これにより上記セラミックの耐酸化性およ
び気密性の向上を図るようにすることが知られている。
On the other hand, as disclosed in, for example, Japanese Unexamined Patent Publication No. 59-6303, a silicon nitride ceramic surface is irradiated with, for example, a CO 2 laser beam to generate silicon, and then neutralized with argon gas or the like. By heating above the melting point of silicon in an atmosphere to melt the silicon generated on the ceramic surface, a surface layer of silicon and an impregnated layer are formed on the surface of the ceramic, which results in oxidation resistance and airtightness of the ceramic. It is known to try to improve.

(発明が解決しようとする課題) ところが、上記従来の多孔質層を形成したものでは、強
度が低下することとなって例えばエンジン部品等には採
用し難い。また、金属製部材等との間に空気層を形成し
たものでは、シール性に問題があるとともに、空気層の
介在により両者の接触面積が小さくなって上記金属製部
材等の保持強度等が低下することから、構造材としての
用途が制限されることとなる。さらに、断熱材をコーテ
ィングしたものでは、セラミックに対する断熱材の接着
強度が低いために断熱材が剥離するとい問題があり、特
に凹部を有するセラミック構造体の場合には上記剥離現
象が著しい。このため、セラミック構造体の形状や断熱
材の層厚が制限されてしまうこととなり、実用的でな
い。
(Problems to be Solved by the Invention) However, in the case where the above-mentioned conventional porous layer is formed, the strength is lowered, and it is difficult to employ it, for example, in an engine part or the like. Further, in the case where an air layer is formed between the metal member and the like, there is a problem in the sealing property, and the contact area between the two becomes small due to the presence of the air layer, and the holding strength of the metal member, etc. is reduced. Therefore, the use as a structural material is limited. Further, the heat-insulating material coated has a problem that the heat-insulating material peels off due to the low adhesive strength of the heat-insulating material to the ceramic, and the peeling phenomenon is remarkable especially in the case of a ceramic structure having a recess. Therefore, the shape of the ceramic structure and the layer thickness of the heat insulating material are limited, which is not practical.

一方、上記公報の如くセラミック表面に珪素の表面層お
よび含浸層を形成したものは、上述の如くセラミックの
耐酸化性および気密性の向上を図ることはできるもの
の、断熱性の向上に関しては余り期待できない。
On the other hand, a ceramic surface layer and an impregnated layer formed on the surface of the ceramic as in the above publication can improve the oxidation resistance and airtightness of the ceramic as described above, but are expected to be improved in heat insulation. Can not.

本発明はかかる点に鑑みてなされたものであり、その目
的とするところは、上述の如きレーザビームによる照射
手段を採用し、このレーザビームの照射を特定の雰囲気
中にて行わしめることにより、窒化珪素系セラミック母
材の表面に熱伝導率の低い層を形成して断熱性の一段と
優れたセラミック構造体を効率良く製造しようとするこ
とである。
The present invention has been made in view of such a point, and the purpose thereof is to adopt an irradiation means using a laser beam as described above, and by performing irradiation of this laser beam in a specific atmosphere, An object of the present invention is to efficiently manufacture a ceramic structure having a further excellent heat insulating property by forming a layer having a low thermal conductivity on the surface of a silicon nitride ceramic base material.

(課題を解決するための手段) 上記の目的を達成するため、本発明の解決手段は、窒化
珪素系セラミック母材の表面に酸化雰囲気中にてレーザ
ビームを照射して上記セラミック母材表面に酸化珪素を
生成させかつ該酸化珪素とセラミック母材中の焼結助剤
とを反応させることにより、セラミック母材表面に上記
焼結助剤と酸化珪素との複合化合物層を形成することを
特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the solution means of the present invention is to irradiate a surface of a silicon nitride ceramic base material with a laser beam in an oxidizing atmosphere to thereby make the surface of the ceramic base material. A compound compound layer of the above-mentioned sintering aid and silicon oxide is formed on the surface of the ceramic base material by producing silicon oxide and reacting the silicon oxide with the sintering aid in the ceramic base material. And

(作用) 上記の構成により、本発明の製造方法では、レーザビー
ムが酸化雰囲気中において窒化珪素系セラミック母材の
表面に照射されると、該セラミック母材表面に酸化珪素
が生成し、この酸化珪素がセラミック母材中の焼結助剤
と反応することにより、セラミック母材表面に上記焼結
助剤と酸化珪素との複合化合物層が形成する。この複合
化合物層の熱伝導率は上記セラミック母材の熱伝導率よ
りも低いという特性を備えており、これにより断熱性の
一段と優れたセラミック構造体が得られる。しかも、熱
伝導率の低い複合化合物層が高温で長時間加熱すること
なく酸化雰囲気中でレーザビームを照射するだけで形成
されることから、セラミック構造体が効率良く得られ
る。
(Operation) According to the manufacturing method of the present invention having the above structure, when the surface of the silicon nitride ceramic base material is irradiated with the laser beam in the oxidizing atmosphere, silicon oxide is generated on the surface of the ceramic base material, and the oxidation is performed. When silicon reacts with the sintering aid in the ceramic base material, a composite compound layer of the sintering aid and silicon oxide is formed on the surface of the ceramic base material. This composite compound layer has a characteristic that the thermal conductivity thereof is lower than that of the ceramic base material, whereby a ceramic structure having a further excellent heat insulating property can be obtained. Moreover, since the composite compound layer having a low thermal conductivity is formed only by irradiating the laser beam in the oxidizing atmosphere without heating at a high temperature for a long time, the ceramic structure can be efficiently obtained.

(実施例) 以下、本発明に係るセラミック構造体の製造方法を図面
に基づいて説明する。
(Example) Hereinafter, the manufacturing method of the ceramic structure which concerns on this invention is demonstrated based on drawing.

本発明方法は、窒化珪素(Si3N4)系セラミック母材の
表面に酸化雰囲気中にてCO2レーザビーム等のレーザビ
ームを照射して上記セラミック母材表面に酸化珪素(Si
O2)を生成させ、かつ該酸化珪素(SiO2)とセラミック
母材中の焼結助剤とを反応させることにより、セラミッ
ク母材表面に上記焼結助剤と酸化珪素(Si−O2)との複
合化合物層を形成させるようにしたものである。
According to the method of the present invention, the surface of a silicon nitride (Si 3 N 4 ) based ceramic base material is irradiated with a laser beam such as a CO 2 laser beam in an oxidizing atmosphere so that the surface of the silicon base material (Si 3 N 4 ) is exposed.
O 2 ) is produced and the silicon oxide (SiO 2 ) is reacted with the sintering aid in the ceramic base material, whereby the sintering aid and silicon oxide (Si-O 2 ) are formed on the surface of the ceramic base material. ) And a composite compound layer are formed.

上記酸化雰囲気中とは、例えば大気中であるが、アシス
トガストとして酸素を併用してもよい。
The oxidizing atmosphere is, for example, in the air, but oxygen may be used together as an assist gas.

上記焼結助剤としては、酸化イットリウム(Y2O3),酸
化マグネシウム(MgO),酸化ジルコニウム(ZrO2),
酸化アルミニウム(Al2O3)等の酸化物系の焼結助剤を
用いる。
As the sintering aid, yttrium oxide (Y 2 O 3 ), magnesium oxide (MgO), zirconium oxide (ZrO 2 ),
An oxide-based sintering aid such as aluminum oxide (Al 2 O 3 ) is used.

上記複合化合物層としては、例えば焼結助剤が酸化マグ
ネシウム(MgO)である場合にはMgO・SiO2の層であり、
焼結助剤が酸化イットリウム(Y2O3)である場合にはY2
O3・SiO2の層であり、焼結助剤が酸化ジルコニウム(Zr
O2)である場合にはZrO2・SiO2の層であり、焼結助剤が
酸化アルミニウム(Al2O3)である場合にはAl2O3・SiO2
の層である。これらの層を構成する複合化合物は、上記
窒化珪素(Si3N4)よりも熱導電率が低いという特性を
備えており、例えば窒化珪素(Si3N4)の熱伝導率が約
0.04cal/cm・sec・℃であるのに対し、上記MgO・SiO2
0.006cal/cm・sec・℃、2MgO・SiO2は0.008cal/cm・sec
・℃、ZrO2・SiO2は0.012cal/cm・sec・℃、Al2O3・SiO
2は0.01cal/cm・sec・℃である。
The composite compound layer is, for example, a layer of MgO.SiO 2 when the sintering aid is magnesium oxide (MgO),
When the sintering aid is yttrium oxide (Y 2 O 3) of Y 2
It is a layer of O 3 · SiO 2 and the sintering aid is zirconium oxide (Zr
O 2 ), it is a layer of ZrO 2 · SiO 2 , and when the sintering aid is aluminum oxide (Al 2 O 3 ), Al 2 O 3 · SiO 2
Layers. The composite compound forming these layers has a characteristic that the thermal conductivity is lower than that of the above silicon nitride (Si 3 N 4 ), and for example, the thermal conductivity of silicon nitride (Si 3 N 4 ) is about
0.04 cal / cm · sec · ° C, while the above MgO / SiO 2
0.006cal / cm ・ sec ・ ℃, 2MgO ・ SiO 2 0.008cal / cm ・ sec
・ ℃, ZrO 2・ SiO 2 is 0.012cal / cm ・ sec ・ ℃, Al 2 O 3・ SiO
2 is 0.01 cal / cm · sec · ° C.

このように窒化珪素(Si3N4)系セラミック母材の表面
に上述の如き複合化合物からなる層が形成するのは、酸
化雰囲気中において上記窒化珪素(Si3N4)系セラミッ
ク母材の表面にレーザビームを照射した際、照射部のSi
3N4粒子の一部が昇華してフリーの珪素(Si)粒子がで
き、このSi粒子が容易に酸化珪素(SiO2)となる。一
方、Si3N4粒子粒界部にある上記酸化物系焼結助剤であ
る酸化マグネシウム(MgO)等が上記レーザビームの照
射により活性化されて若干ながら溶融状態となってお
り、これら活性化されている酸化珪素(SiO2)と酸化マ
グネシウム(MgO)等が互いに化学結合して上述の如きM
gO・SiO2等の複合化合物を生成するものと思われる。
Thus the layer made of silicon nitride (Si 3 N 4) system such as the above complex compound on the surface of the ceramic matrix is formed, the silicon nitride in an oxidizing atmosphere (Si 3 N 4) type of ceramic matrix When the surface is irradiated with a laser beam, the Si
Part of the 3 N 4 particles sublime to form free silicon (Si) particles, and the Si particles easily become silicon oxide (SiO 2 ). On the other hand, magnesium oxide (MgO), which is the oxide-based sintering aid in the grain boundary of Si 3 N 4 particles, is activated by the laser beam irradiation and is in a slightly molten state. Silicon oxide (SiO 2 ) and magnesium oxide (MgO), etc. which have been converted to each other are chemically bonded to each other, and thus M
It seems to form a complex compound such as gO / SiO 2 .

次に、窒化珪素(Si3N4)系セラミック母材の表面に上
述の如きMgO・SiO2等の複合化合物からなる層を形成し
たセラミック構造体の製造方法をさらに具体的に説明す
る。
Next, the method for producing a ceramic structure in which a layer made of the complex compound such as MgO.SiO 2 is formed on the surface of a silicon nitride (Si 3 N 4 ) ceramic base material will be described in more detail.

まず、α型Si3N4を91%含む平均粒径0.7μmの窒化珪素
(Si3N4)粉末に平均粒径1μmの酸化イットリウム(Y
2O3)と平均粒径0.8μmの酸化マグネシウム(MgO)と
を組成比が重量%でSi3N4:Y2O3:MgO=90:5:5になるよう
に調合する。そして、この調合物を混合粉砕した後、ホ
ットプレスにて焼結温度1600℃、焼結時間1時間、プレ
ス圧200kg・f/cm2の条件下で焼結し、密度3.24kg/cm2
緻密な焼結体を得た。
First, silicon nitride (Si 3 N 4 ) powder containing 91% α-type Si 3 N 4 and having an average particle size of 0.7 μm was added to yttrium oxide (Y
2 O 3 ) and magnesium oxide (MgO) having an average particle size of 0.8 μm are mixed so that the composition ratio is Si 3 N 4 : Y 2 O 3 : MgO = 90: 5: 5 in weight%. Then, after mixing and pulverizing this mixture, it is sintered by hot pressing under the conditions of a sintering temperature of 1600 ° C., a sintering time of 1 hour and a pressing pressure of 200 kg · f / cm 2 , and a density of 3.24 kg / cm 2 . A dense sintered body was obtained.

次に、この焼結体を30×30×10mmの寸法に加工して試料
1(第1図に表われる)となし、この試料1の表面に大
気中でCO2レーザビームを出力2.0Kw,加工速度1000mm/mi
n,焦点距離127mm,Defocus量+50mmの条件下で照射する
と同時に、アシストガスとしての酸素を噴出圧1.5kg/cm
2,噴出量50/minの条件下で噴出し、これにより上記試
料1表面を幅30mm,加工深さ500μmに亘って加工した。
Next, this sintered body was processed into a size of 30 × 30 × 10 mm to form a sample 1 (shown in FIG. 1), and a CO 2 laser beam was emitted to the surface of the sample 1 in the atmosphere at 2.0 Kw, Processing speed 1000 mm / mi
n, focal length 127 mm, defocus amount + 50 mm, and at the same time, oxygen as an assist gas is ejected at a pressure of 1.5 kg / cm
2 , the ejection rate was 50 / min, and the surface of the sample 1 was machined to have a width of 30 mm and a machining depth of 500 μm.

その後、第1図に示すように、上記表面加工した試料1
を該試料1と同一寸法に加工されたアルミニウム合金製
板状部材2と隙間のないように密着させた後、試料1お
よび板状部材2の各々中央部に熱電対3,3を取り付け、
かつ試料1側にはさらに出力80Wのヒーター4を取り付
け、これら全体を図示しない断熱材で覆って上記ヒータ
ー4の熱が散逸するのを防止した。そして。上記ヒータ
ー4をパワーコントローラ5の制御により400℃に所定
時間一定に保持した状態で、ヒーター4の熱が上記アル
ミニウム合金製板状部材2に伝わる様子を調べた。な
お、第1図中、6は上記両熱電対3,3の起電力を電気信
号に変換するADコンバータ、7は該ADコンバータ6の電
気信号に基づいて温度変化を計測するマイクロコンピュ
ータである。
After that, as shown in FIG.
Was adhered to the aluminum alloy plate-shaped member 2 processed to the same size as the sample 1 without any gaps, and then the thermocouples 3 and 3 were attached to the central portions of the sample 1 and the plate-shaped member 2, respectively.
Moreover, a heater 4 with an output of 80 W was further attached to the sample 1 side, and the whole thereof was covered with a heat insulating material (not shown) to prevent the heat of the heater 4 from being dissipated. And. It was examined how the heat of the heater 4 was transferred to the aluminum alloy plate-shaped member 2 while the heater 4 was kept constant at 400 ° C. for a predetermined time by the control of the power controller 5. In FIG. 1, 6 is an AD converter for converting the electromotive force of the thermocouples 3, 3 into an electric signal, and 7 is a microcomputer for measuring the temperature change based on the electric signal of the AD converter 6.

そのときのデータを、比較例としてCO2レーザビームを
照射しない別の試料のデータと共に第2図に示す。同図
中、△印を付したものは本実施例に係る試料1の表面温
度を、□印を付したものは比較例に係る試料の表面温度
を、○印を付したものはヒーター4の表面温度をそれぞ
れ示す。そして、このデータより明らかなように、ヒー
ター4が加熱開始後から20分経過して400℃に保持され
た状態になると、本実施例の方が比較例よりも温度上昇
度合が低く、本実施例の方が断熱特性が優れていること
が判る。
The data at that time are shown in FIG. 2 together with the data of another sample not irradiated with the CO 2 laser beam as a comparative example. In the figure, those marked with Δ are the surface temperature of the sample 1 according to this example, those marked with □ are the surface temperatures of the sample according to the comparative example, and those marked with ○ are the heater 4 Surface temperatures are shown respectively. Then, as is clear from this data, when the heater 4 is kept at 400 ° C. for 20 minutes after the heating is started, the temperature rise degree of the present embodiment is lower than that of the comparative example, and the present embodiment It can be seen that the example has better insulation properties.

このことは、酸化雰囲気中において試料1つまり窒化珪
素(Si3N4)系セラミック母材の表面にレーザビームを
照射した際、照射部のSi3N4粒子の一部が昇華してフリ
ーの珪素(Si)粒子ができ、このSi粒子が容易に酸化珪
素(SiO2)となる一方、Si3N4粒子粒界部にある上記酸
化物系焼結助剤である酸化マグネシウム(MgO)等が上
記レーザビームの照射により活性化されて若干ながら溶
融状態となっており、これら活性化されている酸化珪素
(SiO2)と酸化マグネシウム(MgO)等が互いに化学結
合して、熱導電率の低いMgO・SiO2,2MgO・SiO2,Y2O3・S
iO2等の複合化合物が生成していることによるものと思
われる。そして、例えば上記MgO・SiO2の熱導電率は0.0
06cal/cm・sec・℃で、Si3N4の約0.04cal/cm・sec・℃
に比べて約1/7と低く、したがって、加工深さ500μmの
うちMgO・SiO2が約5割生成されていたとしてもSi3N4
セラミックの約2mm相当の熱抵抗となって第2図に示す
如く約10%程度の断熱特性の向上が期待できる。
This means that when the surface of the sample 1, that is, the surface of the silicon nitride (Si 3 N 4 ) ceramic base material is irradiated with a laser beam in an oxidizing atmosphere, some of the Si 3 N 4 particles in the irradiated part sublime and become free. Silicon (Si) particles are formed, and while these Si particles easily become silicon oxide (SiO 2 ), magnesium oxide (MgO), which is the above oxide-based sintering aid at the grain boundary of Si 3 N 4 particles, etc. Are activated by the irradiation of the laser beam and are in a molten state to some extent, and the activated silicon oxide (SiO 2 ) and magnesium oxide (MgO) are chemically bonded to each other, and the thermal conductivity of Low MgO ・ SiO 2 , 2MgO ・ SiO 2 ,, Y 2 O 3・ S
This is probably due to the formation of complex compounds such as iO 2 . And, for example, the thermal conductivity of MgO.SiO 2 is 0.0
At 06 cal / cm ・ sec ・ ° C, about 0.04 cal / cm ・ sec ・ ° C of Si 3 N 4
It is as low as about 1/7 of that of the above. Therefore, even if about 50% of MgO / SiO 2 is generated in the processing depth of 500 μm, it will have a thermal resistance equivalent to about 2 mm of Si 3 N 4 based ceramic. As shown in the figure, it can be expected to improve the heat insulation property by about 10%.

また、上記製造方法は、CO2レーザビームを照射するだ
けの簡単な手段であるので、例えば高温で長時間加熱反
応させてMgO・SiO2等からなる複合化合物層を形成する
場合に比べて該複合化合物層を有する窒化珪素(Si
3N4)系セラミック構造体を効率良く製造することがで
きる。
Further, the above-described manufacturing method is a simple means of irradiating a CO 2 laser beam, so that, for example, as compared with the case where a composite compound layer made of MgO / SiO 2 or the like is formed by heating and reacting at a high temperature for a long time, Silicon nitride (Si
It is possible to efficiently manufacture 3 N 4 ) -based ceramic structures.

なお、上記実施例では、アシストガスとして酸素を用い
たが、これに限らず、例えば大気を用いることも採用可
能である。
In addition, although oxygen is used as the assist gas in the above embodiment, the present invention is not limited to this, and it is also possible to use, for example, the atmosphere.

(発明の効果) 以上説明したように、本発明の製造方法によれば、酸化
雰囲気中で窒化珪素系セラミック母材の表面にレーザビ
ームを照射するだけの簡単な方法で、焼結助剤と酸化珪
素との複合化合物である熱伝導率の低い層を有する断熱
性に優れたセラミック構造体を効率良く製造することが
できる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, a sintering aid can be formed by a simple method of irradiating the surface of a silicon nitride ceramic base material with a laser beam in an oxidizing atmosphere. It is possible to efficiently manufacture a ceramic structure having excellent heat insulating properties, which has a layer having a low thermal conductivity which is a composite compound with silicon oxide.

【図面の簡単な説明】[Brief description of drawings]

第1図はセラミック構造体の熱伝導特性の計測要領を説
明する計測装置の概略構成図、第2図は本実施例および
比較例におけるセラミック構造体の熱伝導特性を示すデ
ータである。
FIG. 1 is a schematic configuration diagram of a measuring device for explaining the procedure for measuring the heat conduction characteristics of a ceramic structure, and FIG. 2 is data showing the heat conduction characteristics of the ceramic structures in the present example and comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−109286(JP,A) 特開 昭62−30679(JP,A) 特開 昭62−252388(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-55-109286 (JP, A) JP-A-62-30679 (JP, A) JP-A-62-252388 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】窒化珪素系セラミック母材の表面に酸化雰
囲気中にてレーザビームを照射して上記セラミック母材
表面に酸化珪素を生成させかつ該酸化珪素とセラミック
母材中の焼結助剤とを反応させることにより、セラミッ
ク母材表面に上記焼結助剤と酸化珪素との複合化合物層
を形成することを特徴とするセラミック構造体の製造方
法。
1. A surface of a silicon nitride ceramic base material is irradiated with a laser beam in an oxidizing atmosphere to generate silicon oxide on the surface of the ceramic base material and a sintering aid in the silicon oxide and the ceramic base material. A method of manufacturing a ceramic structure, comprising forming a composite compound layer of the above-mentioned sintering aid and silicon oxide on the surface of a ceramic base material by reacting with.
JP61244921A 1986-10-15 1986-10-15 Method for manufacturing ceramic structure Expired - Fee Related JPH0798702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244921A JPH0798702B2 (en) 1986-10-15 1986-10-15 Method for manufacturing ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244921A JPH0798702B2 (en) 1986-10-15 1986-10-15 Method for manufacturing ceramic structure

Publications (2)

Publication Number Publication Date
JPS63100087A JPS63100087A (en) 1988-05-02
JPH0798702B2 true JPH0798702B2 (en) 1995-10-25

Family

ID=17125954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244921A Expired - Fee Related JPH0798702B2 (en) 1986-10-15 1986-10-15 Method for manufacturing ceramic structure

Country Status (1)

Country Link
JP (1) JPH0798702B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141160A (en) * 1990-09-21 1991-06-17 Kyocera Corp Silicone nitride sintered compact
JP7047493B2 (en) * 2017-03-16 2022-04-05 三菱マテリアル株式会社 Ceramic substrate manufacturing method and circuit board manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109286A (en) * 1979-02-13 1980-08-22 Asahi Glass Co Ltd Enhancement of nonnoxide ceramic sintered body
JPS6230679A (en) * 1985-08-02 1987-02-09 トヨタ自動車株式会社 Structural ceramics
JPS62252388A (en) * 1986-04-22 1987-11-04 トヨタ自動車株式会社 Silicon nitride sintered body

Also Published As

Publication number Publication date
JPS63100087A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
JP3057932B2 (en) Joining method of ceramic sintered body
WO2006057408A1 (en) Composite ceramic body, method for producing same, microchemical chip, and reformer
US5473137A (en) Method of bonding copper and a substrate for power electronics and made of a non-oxide ceramic
JPH0798702B2 (en) Method for manufacturing ceramic structure
US4163074A (en) Method for fast adhesion of silver to nitride type ceramics
JPS60171274A (en) Ceramic bonding method
JPH0244784B2 (en)
JP4489344B2 (en) Stage member
JP5941006B2 (en) Bonding material, bonding structure, manufacturing method thereof, and semiconductor module
JPS6141757A (en) Zro2-base powder for heat insulating coating
JP2984654B1 (en) Method for producing ceramic laminate having sprayed ceramic layer
JP2675187B2 (en) Gradient silicon nitride composite material and method of manufacturing the same
JP2886138B2 (en) LAMINATED CERAMIC AND PROCESS FOR PRODUCING THE SAME
JP3294772B2 (en) Tool for firing and method of manufacturing the same
JP2582494B2 (en) Ceramic joint and its joining method
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same
US3844830A (en) Sintering process for metallizing non-metal substrates
JPH0134954B2 (en)
EP0393332A1 (en) Treatment of reaction-bonded silicon nitride articles
JPS59182284A (en) Surface treatment of silicon nitride ceramics
US5837632A (en) Method for eliminating porosity in micropyretically synthesized products and densified
JPH0336785B2 (en)
JPH06247776A (en) Porous ceramic joined body and its production
JPH0324431B2 (en)
JPH07300374A (en) Joined structure of heat-shielding member and method for joining the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees