JPH0792457A - Liquid crystal display element - Google Patents
Liquid crystal display elementInfo
- Publication number
- JPH0792457A JPH0792457A JP5237029A JP23702993A JPH0792457A JP H0792457 A JPH0792457 A JP H0792457A JP 5237029 A JP5237029 A JP 5237029A JP 23702993 A JP23702993 A JP 23702993A JP H0792457 A JPH0792457 A JP H0792457A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrates
- electrodes
- crystal display
- display element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、液晶表示素子に係わ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.
【0002】[0002]
【従来の技術】一般に液晶表示素子(以下LCDと略
称)を光制御の観点から分類すると、明暗の変化を液晶
分子の偏光効果と偏光子を組み合わせにより生じさせる
ものと、液晶の相転移を利用し、光の散乱と透過により
生じさせるもの、及び染料を添加し、染料の可視光吸収
量を制御し、色の濃淡変化により生じさせるもの等に分
けられる。2. Description of the Related Art Generally, when a liquid crystal display element (hereinafter abbreviated as LCD) is classified from the viewpoint of light control, a combination of a polarization effect of liquid crystal molecules and a polarizer and a phase transition of liquid crystal are used. However, it is classified into those generated by light scattering and transmission, and those generated by adding a dye to control the visible light absorption amount of the dye and changing the shade of the color.
【0003】前者の偏光効果と偏光子を組み合わせたL
CDは、例えば90°ねじれた分子配列をもつツイステ
ッドネマティック(TN)型液晶であり、原理的に薄い
液晶層厚、低電圧で偏光制御できることから、早い応答
速度、低消費電力にて、高いコントラスト比を示し、時
計や電卓、単純マトリクス駆動や、スイッチング素子を
各画素ごとに具備したアクティブマトリクス駆動で、ま
た、カラーフィルターと組み合わせて、フルカラーの表
示の液晶TVなどに応用されている。L, which is a combination of the former polarization effect and a polarizer
CD is, for example, a twisted nematic (TN) type liquid crystal having a 90 ° twisted molecular arrangement. In principle, a thin liquid crystal layer and polarization control can be performed at a low voltage, so that a high response speed, low power consumption, and high contrast are achieved. The ratio is used for a clock, a calculator, a simple matrix drive, an active matrix drive provided with a switching element for each pixel, and in combination with a color filter, it is applied to a full color display liquid crystal TV or the like.
【0004】しかし、これら偏光効果と偏光子を組み合
わせたLCDは、原理上偏光板を用いることから素子の
透過率が著しく低く、また分子配列の方位性により見る
角度・方位によって表示色やコントラスト比が大きく変
化するといった視角依存性をもち冷陰極線管(CRT)
の表示性能を完全に越えるまでにはいたらない。However, an LCD combining these polarization effects and a polarizer has a remarkably low transmissivity of the element since it uses a polarizing plate in principle, and the display color and the contrast ratio depend on the viewing angle / direction depending on the orientation of the molecular arrangement. Cold-cathode ray tube (CRT) that has a viewing angle dependency such as a large change in
The display performance of is completely exceeded.
【0005】一方、後者の液晶の相転移を利用したも
の、及び染料の可視光吸収量を制御したLCDは、例え
ば、ヘリカル構造の分子配列をもつコレステリック相か
らホメオトロピック分子配列のネマティック相への相転
移を電場印加で生じさせるPC型液晶及びこれに染料を
添加してなるホワイト・テイラー型GH液晶であり、偏
光子を用いず、原理的に偏光効果を用いないことから、
明るく、広い視認角を示し、自動車機器や、投影型表示
器などに応用されている。On the other hand, the latter one utilizing the phase transition of liquid crystal and the LCD in which the visible light absorption amount of the dye is controlled, for example, from a cholesteric phase having a molecular structure of helical structure to a nematic phase of homeotropic molecular alignment. A PC-type liquid crystal which causes a phase transition by applying an electric field and a white Taylor type GH liquid crystal obtained by adding a dye to the PC-type liquid crystal, which does not use a polarizer and theoretically does not use a polarization effect.
It is bright and has a wide viewing angle, and is used in automobile equipment and projection displays.
【0006】しかし、充分な光の散乱を得るには、液晶
相厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。However, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal phase thick enough or to increase the helical strength that causes the scattering, which requires a high driving voltage and an extremely slow response speed. Therefore, it has been difficult to apply it to a display element having a large display amount (number of pixels). In addition, it has been considered difficult to provide gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.
【0007】さらに説明すると、偏光効果と偏光子を用
いた場合、原理上透過率が低くなり、視角依存性を生じ
させる。すなわち、少なくとも1枚の偏光板を用いるた
め、透過光量は少なくとも50%以下となり、また、製
造上及び配向の安定化のためプレティルト角を有し、そ
れが視角特性に影響する。特に原理上、透過率が低く、
この方式を用いた場合、避けられない問題である。To further explain, when the polarization effect and the polarizer are used, the transmittance is lowered in principle, and the viewing angle dependency is caused. That is, since at least one polarizing plate is used, the amount of transmitted light is at least 50% or less, and a pretilt angle is provided for manufacturing and stabilization of orientation, which affects the viewing angle characteristics. Especially in principle, the transmittance is low,
Using this method is an unavoidable problem.
【0008】また、液晶の相転移を利用した場合、これ
ら低い透過率、視角依存といった問題は生じないが、充
分に光を散乱させるためには、上記のように液晶層厚を
充分に厚くし、ヘリカル強度を強くしたりする必要があ
る。これは光の散乱を種々の液晶分子配列に因っている
からである。つまり、充分に光を散乱させるためには、
例えば、ヘリカル構造の分子配列をもつコレステリック
相の場合、入射光方向に対し、あらゆる方位にヘリカル
軸をもつ必要性が生じる。このように、多数の方位のヘ
リカル軸をもたせるためには、液晶相厚を厚くしなくて
はならない。また、有機電解質などの導電性物質を溶解
したNn液晶を用い、低周波で高電圧を印加することに
より散乱性を得る手段(一般にDS効果という)が提案
されているが、これも充分な散乱性を得るためには、前
記問題点を伴わねばなし得ない。無論、相転移を熱光学
効果による場合も同様である。When the phase transition of the liquid crystal is used, these problems such as low transmittance and viewing angle dependence do not occur, but in order to sufficiently scatter light, the liquid crystal layer thickness should be sufficiently thick as described above. , It is necessary to increase the helical strength. This is because the scattering of light is due to various liquid crystal molecule arrangements. In other words, in order to scatter light sufficiently,
For example, in the case of a cholesteric phase having a helical molecular arrangement, it becomes necessary to have a helical axis in every direction with respect to the incident light direction. As described above, in order to have the helical axes in many directions, the liquid crystal phase thickness must be increased. In addition, a means (generally called the DS effect) for obtaining a scattering property by applying a high voltage at a low frequency using Nn liquid crystal in which a conductive substance such as an organic electrolyte is dissolved has been proposed. In order to obtain the property, it is necessary to have the above problems. Of course, the same applies when the phase transition is caused by the thermo-optic effect.
【0009】また、これら各種の相転移を利用した方式
では、光散乱状態と光透過状態とで液晶の分子配列が著
しく異なり、このため、前記2種の状態の相互変化を電
界制御でなし遂げる場合、その電気光学特性にヒステリ
シスが生じてしまう。このヒステリシスが生じる原因に
は諸説があり明確にされていないが、分子配列が著しく
異なると発生し、また、電界を印加していない状態で光
散乱状態(液晶の分子配列が微細なドメインの集合体と
なっている状態)を形成している場合に発生しやすいこ
とがわかっている。Further, in the methods utilizing these various phase transitions, the molecular alignment of the liquid crystal is remarkably different between the light scattering state and the light transmitting state. Therefore, the mutual change between the above two states can be achieved by electric field control. In that case, hysteresis will occur in the electro-optical characteristics. The cause of this hysteresis has not been clarified due to various theories, but it occurs when the molecular arrangement is significantly different, and it also occurs in the light-scattering state (the molecular arrangement of liquid crystals is a collection of fine domains) when no electric field is applied. It is known that this is more likely to occur when the body is in a state).
【0010】また、図3(a)に示すように基板1、2
間で挾持されたポリマー3内に多数のカプセルを形成し
て、この中に液晶4を封入したカプセル状構造、および
図3(b)に示すように繊維状ポリマー5の間に液晶6
を分散させた繊維状ポリマー構造を用いて散乱性を高め
る高分子分散型LCDが提案されているが、高い散乱
性、充分に低い駆動電圧と応答速度など必要な特性を得
るには至っていない。これは、そのポリマーの形状に製
法上、及び原理から、ポリマーと液晶層との混合比に制
約があり、やはり、要求される駆動特性を満足しようと
すると、充分な散乱性を得られないためである。Further, as shown in FIG.
A large number of capsules are formed in the polymer 3 held between them, and the liquid crystal 4 is enclosed in the capsule-shaped structure, and the liquid crystal 6 is sandwiched between the fibrous polymers 5 as shown in FIG.
A polymer-dispersed LCD that uses a fibrous polymer structure in which is dispersed to enhance scattering properties has been proposed, but it has not yet achieved the required properties such as high scattering properties, a sufficiently low driving voltage, and a response speed. This is because, due to the manufacturing method and the principle of the shape of the polymer, there is a restriction on the mixing ratio of the polymer and the liquid crystal layer, and again, when trying to satisfy the required driving characteristics, sufficient scattering cannot be obtained. Is.
【0011】また、これらの方式においても光散乱状態
と光透過状態とで液晶の分子配列が著しく異なるため、
前述したように電気光学特性にヒステリシスが生じてし
まう。これに対し散乱状態における液晶分子配列をある
程度制御(例えばカプセル内面における液晶分子配列を
制御するためにポリマーに疎水性の物質を混合する等)
し、前記ヒステリシスを軽減させることも可能である
が、このことは同時に光散乱を弱めることとなり、実用
的でない。Also in these systems, since the molecular alignment of the liquid crystal is significantly different between the light scattering state and the light transmitting state,
As described above, hysteresis occurs in electro-optical characteristics. On the other hand, the liquid crystal molecular alignment in the scattering state is controlled to some extent (for example, a polymer is mixed with a hydrophobic substance to control the liquid crystal molecular alignment on the inner surface of the capsule).
However, it is possible to reduce the hysteresis, but this also weakens the light scattering and is not practical.
【0012】カプセル状の高分子分散型のNCAP形L
CDは散乱モードの液晶表示素子であり、偏光板をもち
いないため、明るく、広い視認角を示し、自動車機器
や、投影型表示器などに応用されている。しかしなが
ら、外部から印加した電圧は有機高分子と液晶とに分圧
され、液晶には印加電圧の一部しか印加されず、実用的
には動作電圧が高まり問題であった。また、充分な光の
散乱を得るには、液晶厚を充分厚くする必要があり、応
答速度も極めて遅いといった問題点をもっているため表
示量(画素数)の多い表示素子への応用は困難とされて
いた。さらに、その印加電圧−透過率特性にヒステリシ
スがあり、マルチプレクス駆動することが困難など実用
的に問題があった。これと同様の動作原理で動作する繊
維状ポリマーの網目状有機高分子中に液晶を保持した高
分子分散形LCDにおいても、同様の問題があった。Capsule-like polymer dispersion type NCAP type L
The CD is a scattering mode liquid crystal display element, and since it does not have a polarizing plate, it is bright and has a wide viewing angle, and is applied to automobile equipment, projection type displays and the like. However, the voltage applied from the outside is divided between the organic polymer and the liquid crystal, and only a part of the applied voltage is applied to the liquid crystal, which causes a problem that the operating voltage is practically increased. Further, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thickness sufficiently thick, and there is a problem that the response speed is extremely slow, so that it is difficult to apply it to a display element with a large display amount (number of pixels). Was there. Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. The polymer-dispersed LCD in which liquid crystal is held in a network organic polymer of fibrous polymer, which operates on the same operation principle, has the same problem.
【0013】また、光を散乱させる手法として、2枚の
電極付基板の表面において種々の方向に液晶分子を配列
させるよう微細な領域毎に配向処理を行い、これらを内
面として対向させた間隙に液晶を挟持させることも考え
れらるが、これも前記ヒステリシスの問題を解決する手
段とはならないし、また、こうした構成を実現する手段
は見出だされておらず、現実的な手法とはなっていな
い。こうした構成が実現できない理由は微細な領域毎に
配向処理方向(例えばラビング方向)を異ならせること
が困難であるからである。Further, as a method of scattering light, an alignment treatment is performed for each fine region so that liquid crystal molecules are arranged in various directions on the surfaces of two electrode-attached substrates, and these are treated as inner surfaces to form a gap facing each other. It is conceivable to sandwich the liquid crystal, but this is not a means for solving the above-mentioned problem of hysteresis, and a means for realizing such a structure has not been found, which is a practical method. Not not. The reason why such a configuration cannot be realized is that it is difficult to make the orientation processing direction (for example, the rubbing direction) different for each fine region.
【0014】[0014]
【発明が解決しようとする課題】前述したように、従来
の液晶表示素子は透過率が低く、視角依存性をもつか、
高い駆動電圧を要し、応答速度も遅いといった問題点を
もっていた。As described above, the conventional liquid crystal display device has a low transmittance and a viewing angle dependency.
There was a problem that a high drive voltage was required and the response speed was slow.
【0015】したがって、光を散乱させる手段として、
光散乱状態を得るために液晶以外の媒体を必要とせず、
なおかつ、光透過状態とで液晶の分子配列が著しく異な
らず、良好な光散乱状態を得るような構成であり、なお
かつ、製法上制約がない構成であれば前述した問題点は
発生しない。Therefore, as means for scattering light,
Does not require any medium other than liquid crystal to obtain the light scattering state,
Moreover, the above-mentioned problems do not occur as long as the molecular arrangement of the liquid crystal is not significantly different from that in the light-transmitting state and a good light-scattering state is obtained, and there is no restriction in the manufacturing method.
【0016】本発明はこの条件を満足する新規な構成を
提供するものである。The present invention provides a novel structure satisfying this condition.
【0017】[0017]
【課題を解決するための手段】本発明は課題を解決する
手段として、対向して複数の画素を形成する電極をそれ
ぞれ有する2枚の基板間にネマティック液晶組成物から
なる液晶層を挟持し、前記両基板の電極が画素毎に、最
も狭い幅が3μm以下である微細な領域を単位とした導
電体部と非導電体部からなり、両基板間で一方の電極の
導電体部と他方の電極の非導電体部の少なくとも一部が
対向して配置されてなることを特徴とした液晶表示素子
において、液晶層の分子配列が前記両基板の表面上での
プレチルト角α0が45°より大であり、かつチルト方
向が両基板同一方向である液晶表示素子を提供する。As a means for solving the problem, the present invention sandwiches a liquid crystal layer made of a nematic liquid crystal composition between two substrates each having electrodes facing each other to form a plurality of pixels, The electrodes of the both substrates are composed of a conductor portion and a non-conductor portion in units of a fine region having a narrowest width of 3 μm or less for each pixel. In a liquid crystal display device characterized in that at least a part of non-conductor parts of electrodes are arranged so as to face each other, the pretilt angle α0 on the surfaces of both substrates is larger than 45 °. And a tilt direction is the same in both substrates.
【0018】さらに、両基板の液晶のプレチルト角の差
が0.5°以下であることを特徴とする液晶表示素子を
提供するものである。Furthermore, the present invention provides a liquid crystal display device characterized in that the difference in pretilt angle between the liquid crystals on both substrates is 0.5 ° or less.
【0019】[0019]
【作用】本発明の液晶表示素子の構造は先願の特願平5
−184273号において提案した、分子配列構造、お
よび電極構造と同様の機能を用いている。この特願平5
−184273号において提案した分子配列構造は、い
わゆるスプレイ配列及びそれにねじれを加えた分子配列
であり、なおかつ上下基板表面における液晶分子プレチ
ルト角が上下でほぼ等しいことを特徴としている。こう
した分子配列では、電界の印加の仕方によってはその分
子のチルト方向が2方向となる。これは電圧を印加して
いない状態での液晶分子配列が液晶層の上半分と下半分
で対象な形をしていることによっている。つまり、液晶
分子のチルト方向が2以上の自由度を持っていることに
なる。よって、電圧を印加した際にのみ、分子のチルト
方向の境界部にディスクリネ−ションラインを発生させ
ることができ、入射光を散乱させる機能を得ることがで
きるわけである。本発明はこのように液晶分子のチルト
方向が2以上の自由度を持たせる一つの構成を提供する
ものである。The structure of the liquid crystal display element of the present invention is the same as the prior application No.
The function similar to that of the molecular arrangement structure and the electrode structure proposed in No. 184273 is used. This Japanese Patent Application 5
The molecular arrangement structure proposed in No. 184273 is a so-called splay arrangement and a molecular arrangement obtained by adding a twist thereto, and is characterized in that liquid crystal molecule pretilt angles on the upper and lower substrate surfaces are substantially equal in the vertical direction. In such a molecular arrangement, the tilt directions of the molecules are two directions depending on how the electric field is applied. This is because the liquid crystal molecule alignment in the state where no voltage is applied has a symmetrical shape in the upper half and the lower half of the liquid crystal layer. That is, the tilt direction of the liquid crystal molecules has two or more degrees of freedom. Therefore, only when a voltage is applied, a disclination line can be generated at the boundary portion in the tilt direction of the molecule, and a function of scattering incident light can be obtained. The present invention thus provides one configuration in which the tilt direction of liquid crystal molecules has two or more degrees of freedom.
【0020】本発明は液晶をベンド配列(同一方向のプ
レチルト角を有する分子配列)させたい場合に、横電界
成分をもつ印加電圧の有無によって液晶分子の向きが変
化することを利用して光散乱効果を高めるようにしたも
ので、電極の微小領域内に導電体部と非導電体部を形成
し、基板間で、液晶層を挟んで相対向する一方の電極の
導電体部と他方の電極の非導電体部を対面させたもので
ある。In the present invention, when it is desired to arrange the liquid crystal in a bend alignment (a molecular alignment having a pretilt angle in the same direction), the direction of the liquid crystal molecules changes depending on the presence or absence of an applied voltage having a transverse electric field component. It is designed to enhance the effect by forming a conductor part and a non-conductor part in a small area of the electrode, and between the substrates, the conductor part of one electrode and the other part of the other electrode which face each other with the liquid crystal layer interposed therebetween. The non-conducting part of is faced.
【0021】図1に本発明の実施例の構造を示す。FIG. 1 shows the structure of an embodiment of the present invention.
【0022】図1(a)は本発明の液晶表示素子の構成
を実現する上下基板の電極構造の一例およびラビング方
向の一例(この例の場合、液晶層はねじれを持たない配
列となるように液晶組成物としてカイラル剤を混入して
いない誘電異方性が負のネマティック液晶を用いる)を
説明した斜視図であって、図1(b)はその断面図であ
り、上下基板の画素電極間に電圧を印加した際の電界の
かかる方向(点線で示す)および液晶分子の立ち下がる
方向を概念的に説明した図である。図1(c)は本構成
の分子配列を示す図である。図1(c)に示す分子配列
は、上基板の分子配列F、下基板の分子配列Rが同方向
にあり、分子配列は、液晶分子のプレチルト角α0が4
5°より大きく、上基板11のプレチルト角α0から徐
々に角度が増加して、液晶層厚dの中点d/2で基板1
1とほぼ垂直になった後、下基板12のプレチルト角α
0に至まで逆の角度に傾いていくようになっているもの
である。このような配列をベンド配列という。FIG. 1A shows an example of the electrode structure of the upper and lower substrates and an example of the rubbing direction for realizing the structure of the liquid crystal display device of the present invention (in this example, the liquid crystal layer is arranged so as not to have twist). 1B is a cross-sectional view illustrating a nematic liquid crystal having a negative dielectric anisotropy in which a chiral agent is not mixed as a liquid crystal composition, and FIG. FIG. 3 is a diagram conceptually illustrating a direction in which an electric field is applied (indicated by a dotted line) and a direction in which liquid crystal molecules fall when a voltage is applied to the electrodes. FIG. 1C is a diagram showing the molecular arrangement of this constitution. In the molecular arrangement shown in FIG. 1C, the molecular arrangement F of the upper substrate and the molecular arrangement R of the lower substrate are in the same direction, and the molecular arrangement is such that the pretilt angle α0 of liquid crystal molecules is 4
The angle is larger than 5 ° and gradually increases from the pretilt angle α0 of the upper substrate 11 to the substrate 1 at the midpoint d / 2 of the liquid crystal layer thickness d.
After being almost perpendicular to 1, the pretilt angle α of the lower substrate 12
It is designed to incline in the opposite angle to 0. Such a sequence is called a bend sequence.
【0023】そこで、本実施例を示す図1(b)のよう
に、上電極13を複数のストライプ状導電体部13aを
非導電体部13bを介して等間隔に配置した電極パター
ンとし、同様に下電極14を複数のストライプ状導電体
部14aを非導電体部14bを介して等間隔に配置した
パターンとして、これら電極を相対向させたときに、一
方の電極の導電体部13aまたは14aが他方の電極の
非導電体部14bまたは13bに対向するように基板間
に間隙を形成するように重ねる。 この場合、上下基板
の液晶配向方向が同一方向になるようにラビング処理し
ておく。この結果、無電圧印加時は、液晶はベンド配列
状態を整然と保持するが、電圧印加時は導電体部が上下
電極でずれているために、電極間に横電界成分をもつ斜
め電界が発生し、図示のように交互に傾斜方向を変えた
電気力線eを形成する。液晶分子Mは電気力線にそって
倒れて配列するから右上がり斜め電界と左上がり斜め電
界との境界で液晶配列が不連続となりディスクリネーシ
ョンラインDLが発生する。 このディスクリネーショ
ンラインDLは僅かな液晶配列変化によって生じる配列
不連続点であることから、一般的なメモリー性の強い電
界印加時のディスクリネーション出現現象と区別するた
めに、以下本発明ではウォールと称する。Therefore, as shown in FIG. 1 (b) showing the present embodiment, the upper electrode 13 has an electrode pattern in which a plurality of stripe-shaped conductor portions 13a are arranged at equal intervals through the non-conductor portion 13b, and The lower electrode 14 has a pattern in which a plurality of stripe-shaped conductor portions 14a are arranged at equal intervals through the non-conductor portion 14b, and when these electrodes are opposed to each other, the conductor portion 13a or 14a of one electrode is formed. Overlap so as to form a gap between the substrates so as to face the non-conductor portion 14b or 13b of the other electrode. In this case, rubbing treatment is performed so that the liquid crystal alignment directions of the upper and lower substrates are the same. As a result, when no voltage is applied, the liquid crystal maintains the bend alignment state in an orderly manner, but when a voltage is applied, the conductor parts are displaced between the upper and lower electrodes, so an oblique electric field having a transverse electric field component is generated between the electrodes. , The electric force lines e whose inclination directions are alternately changed are formed as shown in the drawing. Since the liquid crystal molecules M are arranged in a tilted manner along the lines of electric force, the liquid crystal alignment becomes discontinuous at the boundary between the obliquely upward electric field rising to the right and the oblique electric field rising left to generate a disclination line DL. Since the disclination line DL is an array discontinuity point caused by a slight liquid crystal alignment change, in order to distinguish it from the phenomenon of appearance of disclination upon application of an electric field having a strong memory property, the wall will be referred to as a wall in the present invention. Called.
【0024】一画素内で電極の導電体部と非導電体部を
微細に多数形成すれば液晶分子の倒れる方向が微細に分
割されるから、一画素内に多数のウォールを発生するこ
とができて、この部分で光散乱をおこさせることができ
る。If a large number of conductive parts and non-conductive parts of electrodes are formed in one pixel, the direction in which the liquid crystal molecules fall is minutely divided, so that many walls can be generated in one pixel. Then, light scattering can be caused in this portion.
【0025】光散乱領域は境界部を中心に幅3乃至50
μmであるので、微細な領域の大きさをこの値の範囲
(最狭幅は3μm以下でも可)で一致させるように、ま
たはそれよりも小さな値になるように分割すれば一画素
全面において光を散乱することができ、また電圧を印加
していない状態では液晶分子は全面連続的な配列をなす
ので、光透過状態を得ることができる。したがって、本
発明によれば、電圧無印加時に光透過状態、電圧印加時
に光散乱状態を得る電界制御を行うことができる。The light-scattering region has a width of 3 to 50 around the boundary.
Since it is μm, if the size of a fine area is matched within this value range (the narrowest width can be 3 μm or less), or if it is divided into smaller values, the light will be distributed over the entire surface of one pixel. Can be scattered, and in the state where no voltage is applied, the liquid crystal molecules are continuously arranged over the entire surface, so that a light transmitting state can be obtained. Therefore, according to the present invention, it is possible to perform electric field control to obtain a light transmission state when no voltage is applied and a light scattering state when a voltage is applied.
【0026】ここで、本発明の液晶表示素子は印加され
る電界の方向によって、液晶分子の傾く方向を制御して
いるので、上下基板のプレチルト角が等しいことが望ま
しく、実用的には差を0.5°以下にすることが望まし
い。しかし、プレチルト角が相違してもある程度の作用
を発揮する。Since the liquid crystal display device of the present invention controls the tilting direction of the liquid crystal molecules according to the direction of the applied electric field, it is desirable that the pretilt angles of the upper and lower substrates are equal to each other, and a difference is practically applied. It is desirable that the angle be 0.5 ° or less. However, even if the pretilt angles are different, some effects are exhibited.
【0027】また、微視的に見ると各領域における分子
配列変化は分子配列の変化に等しく、応答速度はこれに
準じた値をとるため、応答速度は従来のユニフォームツ
イスト配列のTN−LCDやSTN−LCD、ホモジニ
アス配列LCDよりもさらに速いことがわかっており、
したがって、本発明の液晶表示素子も極めて速い応答速
度を得ることになる(先願の特願昭3−344592
号、特願昭3−344593号参照)。Microscopically, the change in the molecular sequence in each region is equal to the change in the molecular sequence, and the response speed takes a value in accordance with this, so that the response speed is the same as that of the conventional uniform twisted array TN-LCD or It is known to be even faster than STN-LCD and homogeneous array LCD,
Therefore, the liquid crystal display device of the present invention can also obtain an extremely fast response speed (Japanese Patent Application No. 3-344592 of the prior application).
See Japanese Patent Application No. 3-34493).
【0028】また、本発明の液晶表示素子は僅かな液晶
分子配列変化によって光透過状態と光散乱状態の2状態
を得るので電気光学特性にヒステリシスを生じない。Further, the liquid crystal display device of the present invention obtains two states, a light transmission state and a light scattering state, by a slight change in the alignment of liquid crystal molecules, so that hysteresis does not occur in electro-optical characteristics.
【0029】また、液晶のプレチルト角α0 の違いによ
って、電気光学特性の急峻なものやなだらかなものな
ど、種々実現可能である。Further, depending on the difference in the pretilt angle α 0 of the liquid crystal, various ones such as one having a steep electro-optical characteristic and one having a gentle slope can be realized.
【0030】また、本発明の液晶表示素子は、液晶層の
光散乱状態を僅かな液晶分子配列変化によって実現する
ことができるので、印加電圧は極めて小さい値となる。
よって低電圧駆動が可能となるといった利点も得ること
ができる。Further, in the liquid crystal display device of the present invention, since the light scattering state of the liquid crystal layer can be realized by a slight change in the alignment of the liquid crystal molecules, the applied voltage becomes a very small value.
Therefore, an advantage that low voltage driving is possible can be obtained.
【0031】[0031]
【実施例】以下本発明の液晶表示素子の実施例を説明す
る。EXAMPLES Examples of the liquid crystal display device of the present invention will be described below.
【0032】(実施例1)図1は本実施例を示し、図1
(a)は上下電極のパターンを示す斜視図、図1(b)
は電極を相対向させた液晶セルの略断面図、図1(c)
は電圧無印加時の液晶分子配列のベンド配列状態を示す
略図である。(Embodiment 1) FIG. 1 shows this embodiment.
FIG. 1A is a perspective view showing patterns of upper and lower electrodes, FIG.
Is a schematic sectional view of a liquid crystal cell in which electrodes are opposed to each other, FIG.
3 is a schematic view showing a bend alignment state of liquid crystal molecule alignment when no voltage is applied.
【0033】ガラスでできた上基板11の一方の面全面
にITOの透明共通電極13が形成され、その表面にポ
リイミドの上配向膜(AL−3046、日本合成ゴム
製)15を積層している。他方のガラスでできた下電極
12の一面にITOでできた画素単位でモザイク状に配
置された300μm×300μmの画素電極14が設け
られ、表面にポリイミドの下配向膜(AL−3046、
日本合成ゴム製)16が積層される。各基板を垂直配向
処理剤であるシラン系アルコール処理液(商品名OSD
−E、チッソ製)に浸し、超音波を3分かけた後に乾燥
させ、図に示す方向F、Rにラビング処理を施し、最終
プレチルト角を89°とする。An ITO transparent common electrode 13 is formed on the entire surface of one surface of an upper substrate 11 made of glass, and an upper alignment film (AL-3046, made by Japan Synthetic Rubber) 15 of polyimide is laminated on the surface. . The lower electrode 12 made of the other glass is provided on one surface thereof with pixel electrodes 14 of 300 μm × 300 μm, which are made of ITO and are arranged in a mosaic in pixel units, and a polyimide lower alignment film (AL-3046,
16 made of Japanese synthetic rubber are laminated. A silane-based alcohol treatment liquid (trade name OSD) that is a vertical alignment treatment agent for each substrate
-E, manufactured by Chisso), ultrasonic waves are applied for 3 minutes and then dried, and rubbing treatment is performed in the directions F and R shown in the figure to set the final pretilt angle to 89 °.
【0034】上電極13は一画素pごとに幅2.5μm
の複数のスリットすなわち非導電部13bを有して幅
2.5μmの導電部13aを5μmピッチでストライプ
状に配列したパターンでなり、一画素300μm幅の中
に多数本の導電部13aを形成している。The upper electrode 13 has a width of 2.5 μm for each pixel p.
A plurality of slits, that is, non-conductive portions 13b and conductive portions 13a having a width of 2.5 μm are arranged in a stripe pattern at a pitch of 5 μm, and a large number of conductive portions 13a are formed in one pixel 300 μm width. ing.
【0035】相対する下電極14も同じく2.5μm幅
の導電部14aと2.5μm幅の非導電部14bを等間
隔で配置したパターンを有し、300μm幅内に多数本
の導電部14aを形成している。The lower electrodes 14 facing each other also have a pattern in which conductive portions 14a having a width of 2.5 μm and non-conductive portions 14b having a width of 2.5 μm are arranged at equal intervals, and a large number of conductive portions 14a are arranged within a width of 300 μm. Is forming.
【0036】これら電極の導電部は上下基板を相対させ
た状態で相互に2.5μmずらしてあり、一方の電極の
導電部13aまたは14aが他方の電極の非導電部14
bまたは13bに対面する。The conductive portions of these electrodes are offset from each other by 2.5 μm with the upper and lower substrates facing each other, and the conductive portion 13a or 14a of one electrode is the non-conductive portion 14 of the other electrode.
face b or 13b.
【0037】下電極14はTFTスイッチング素子17
を有し、ゲート線18と信号線19に接続される。The lower electrode 14 is a TFT switching element 17
And is connected to the gate line 18 and the signal line 19.
【0038】上下基板の配向方向F、Rを図示のように
電極の導電部に直交するように、かつ同一方向とし、上
下基板の間隙を10μmとしてセルを形成する。この基
板間隙に誘電異方性が負のネマティック液晶(ZLI−
4850、メルクジャパン製)を充填し、液晶層20と
する。この液晶はΔnが0.2080と大きく、液晶層
を10μmと厚く選択したのは光散乱状態における光散
乱性を高めるためである。As shown in the figure, the orientation directions F and R of the upper and lower substrates are perpendicular to the conductive portions of the electrodes and in the same direction, and the gap between the upper and lower substrates is 10 μm to form a cell. Nematic liquid crystal with negative dielectric anisotropy (ZLI-
4850, manufactured by Merck Japan) to fill the liquid crystal layer 20. This liquid crystal has a large Δn of 0.2080, and the liquid crystal layer was selected to be as thick as 10 μm in order to enhance the light scattering property in the light scattering state.
【0039】このようにして得られた本発明の液晶表示
素子にTFT17を介して電源21から電圧を印加して
電気光学特性(透過率−印加電圧曲線)を測定した。電
圧印加により、電極間に横電界成分をもつ電界が発生
し、一画素の微小な範囲で横電界成分の方向が変化する
から、液晶層20の液晶分子Mが電界に応じて配列を変
化する。したがって、液晶配列の境に多数のウォールD
Lが発生して光散乱状態を作りだす。A voltage was applied from the power source 21 to the liquid crystal display element of the present invention thus obtained through the TFT 17, and the electro-optical characteristics (transmittance-applied voltage curve) were measured. When a voltage is applied, an electric field having a lateral electric field component is generated between the electrodes, and the direction of the lateral electric field component changes in a minute range of one pixel. Therefore, the liquid crystal molecules M of the liquid crystal layer 20 change their arrangement according to the electric field. . Therefore, a large number of walls D are formed at the boundary of the liquid crystal alignment.
L is generated to create a light scattering state.
【0040】透過率−印加電圧曲線を求めるために、液
晶表示素子にHe−Neレーザー光を入射させ、透過率
を測定した。光のスポット径は2mmで、透過したレー
ザー光は液晶表示素子から距離20cmのところにある
フォトダイオードにより検出した。図2に0Vから徐々
に印加電圧を5Vまで増加、5Vから徐々に0Vまで減
少させていったときの透過率−印加電圧曲線を示す。電
圧を印加していない状態(0V印加)では透過率約80
%(ガラス基板2枚の透過率)を示した。また、印加電
圧3.7Vでは最少透過率0.4%と良好な散乱状態が
得られた。また、図から明らかなように電気光学特性に
ヒステリシスは全くなかった。また、印加電圧3.7V
及び0Vにて、応答速度を測定したところ立ち上がり6
msec、立ち下がり21msecと極めて速い値を得
た。In order to obtain a transmittance-applied voltage curve, a He-Ne laser beam was made incident on the liquid crystal display element, and the transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display element. FIG. 2 shows a transmittance-applied voltage curve when the applied voltage is gradually increased from 0V to 5V and gradually decreased from 5V to 0V. The transmittance is about 80 when no voltage is applied (0 V is applied).
% (Transmittance of two glass substrates) is shown. Further, when the applied voltage was 3.7 V, the minimum transmittance was 0.4%, and a good scattering state was obtained. Further, as is clear from the figure, there was no hysteresis in the electro-optical characteristics. The applied voltage is 3.7V
When the response speed was measured at 0 and 0V, it started up 6
A very fast value was obtained with msec and a fall of 21 msec.
【0041】[0041]
【発明の効果】本発明によれば、散乱特性が高く、駆動
電圧の低い、明るくコントラスト比の高い階調性に優れ
た液晶表示素子や、階調表示しても表示が反転する視角
のない極めて広い視角依存性である液晶表示素子が得ら
れる。According to the present invention, a liquid crystal display element having a high scattering characteristic, a low driving voltage, a bright and high contrast ratio and an excellent gradation property, and a viewing angle at which the display is inverted even when gradation display is performed are eliminated. A liquid crystal display device having an extremely wide viewing angle dependency can be obtained.
【図1】本発明の液晶表示素子の一実施例を説明する図
で、(a)は電極の斜視図、(b)は作用説明の断面
図、(c)は液晶分子配列を説明する略図。1A and 1B are diagrams illustrating an embodiment of a liquid crystal display device of the present invention, in which FIG. 1A is a perspective view of an electrode, FIG. 1B is a sectional view for explaining an operation, and FIG. .
【図2】本発明の実施例1の素子の透過率−印加電圧曲
線図。FIG. 2 is a transmittance-applied voltage curve diagram of the device of Example 1 of the present invention.
【図3】従来素子を説明するもので、(a)はカプセル
状構造の断面略図、(b)は繊維状ポリマー構造の断面
略図。3A and 3B are schematic cross-sectional views of a capsule-like structure and FIG. 3B is a schematic cross-sectional view of a fibrous polymer structure for explaining a conventional device.
11…上基板 12…下基板 13…上電極 13a…導電体部 13b…非導電体部 14…下電極 14a…導電体部 14b…非導電体部 15、16…配向膜 20…液晶層 11 ... Upper substrate 12 ... Lower substrate 13 ... Upper electrode 13a ... Conductor part 13b ... Non-conductor part 14 ... Lower electrode 14a ... Conductor part 14b ... Non-conductor part 15, 16 ... Alignment film 20 ... Liquid crystal layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 羽藤 仁 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Hato 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Incorporated company Toshiba Yokohama Office
Claims (2)
れぞれ有する2枚の基板間にネマティック液晶組成物か
らなる液晶層を挟持し、前記両基板の電極が画素毎に、
最も狭い幅が3μm以下である微細な領域を単位とした
導電体部と非導電体部からなり、両基板間で一方の電極
の導電体部と他方の電極の非導電体部の少なくとも一部
が対向して配置されてなることを特徴とした液晶表示素
子において、液晶層の分子配列が前記両基板の表面上で
のプレチルト角α0 が45°より大であり、かつチルト
方向が両基板同一方向であることを特徴とする液晶表示
素子。1. A liquid crystal layer made of a nematic liquid crystal composition is sandwiched between two substrates each having electrodes which face each other and form a plurality of pixels, and the electrodes of both substrates are provided for each pixel.
At least a part of the conductor part of one electrode and the non-conductor part of the other electrode between the two substrates, which is made up of a conductor part and a non-conductor part with the smallest width being 3 μm or less as a unit. In the liquid crystal display element, the liquid crystal layer has a molecular arrangement in which the pretilt angle α 0 on the surfaces of both substrates is larger than 45 ° and the tilt directions are the same for both substrates. A liquid crystal display element characterized by being directional.
5°以下であることを特徴とする請求項1記載の液晶表
示素子。2. The difference between the pretilt angles of the liquid crystals of both substrates is 0.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element has an angle of 5 ° or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5237029A JPH0792457A (en) | 1993-09-24 | 1993-09-24 | Liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5237029A JPH0792457A (en) | 1993-09-24 | 1993-09-24 | Liquid crystal display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0792457A true JPH0792457A (en) | 1995-04-07 |
Family
ID=17009343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5237029A Pending JPH0792457A (en) | 1993-09-24 | 1993-09-24 | Liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0792457A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010152372A (en) * | 1997-05-30 | 2010-07-08 | Samsung Electronics Co Ltd | Liquid crystal display device and method of manufacturing the same |
-
1993
- 1993-09-24 JP JP5237029A patent/JPH0792457A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010152372A (en) * | 1997-05-30 | 2010-07-08 | Samsung Electronics Co Ltd | Liquid crystal display device and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0148502B1 (en) | Lcd device | |
KR100527004B1 (en) | Liquid crystal display, method of manufacturing the same, method of driving liquid crystal display | |
US5748275A (en) | Liquid crystal display device and liquid crystal display apparatus | |
JPH09160042A (en) | Liquid crystal display element | |
JP3529434B2 (en) | Liquid crystal display device | |
US20020008828A1 (en) | Fringe field switching mode LCD | |
EP2290437B1 (en) | Liquid crystal display device | |
JPH09160041A (en) | Liquid crystal display element | |
JP4041610B2 (en) | Liquid crystal display | |
JP2546898B2 (en) | Liquid crystal display | |
WO2000031582A1 (en) | Vertically aligned helix-deformed liquid crystal display | |
JPH0829812A (en) | Liquid crystal display device | |
JPH08136941A (en) | Liquid crystal display element | |
JPH07199205A (en) | Liquid crystal display element | |
KR100412125B1 (en) | Liquid crystal display device | |
JP3026901B2 (en) | LCD panel | |
JPH0792457A (en) | Liquid crystal display element | |
JPH0756148A (en) | Liquid crystal display element | |
JPH06281938A (en) | Liquid crystal display element | |
JPH0792459A (en) | Liquid crystal display element | |
JPH0792458A (en) | Liquid crystal display element | |
EP0352792A2 (en) | Liquid crystal device | |
JP3635546B2 (en) | LCD panel | |
JP3506804B2 (en) | LCD panel | |
Lee et al. | Multi‐Domainlike, Homeotropic Nematic Liquid Crystal Display |