[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH079164A - Instrument and method for measuring resistance between electrodes of resistance welding machine - Google Patents

Instrument and method for measuring resistance between electrodes of resistance welding machine

Info

Publication number
JPH079164A
JPH079164A JP15726193A JP15726193A JPH079164A JP H079164 A JPH079164 A JP H079164A JP 15726193 A JP15726193 A JP 15726193A JP 15726193 A JP15726193 A JP 15726193A JP H079164 A JPH079164 A JP H079164A
Authority
JP
Japan
Prior art keywords
current
value
voltage
electrodes
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15726193A
Other languages
Japanese (ja)
Other versions
JP3586473B2 (en
Inventor
Shingo Kawai
真吾 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NA DETSUKUSU KK
Original Assignee
NA DETSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NA DETSUKUSU KK filed Critical NA DETSUKUSU KK
Priority to JP15726193A priority Critical patent/JP3586473B2/en
Publication of JPH079164A publication Critical patent/JPH079164A/en
Application granted granted Critical
Publication of JP3586473B2 publication Critical patent/JP3586473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

PURPOSE:To easily measure accurate resistance between electrodes of the resistance welding machine. CONSTITUTION:The resistance between electrodes measuring instrument of the resistance welding machine is provided with a voltage detecting means C1 which detects the voltage (detection voltage) between both electrodes A, a current differentiation value detecting means D1 which detects a current differentiation value being the value obtained by differentiating timewise a current flowing between both electrodes A, a current value calculating means E1 which integrates timewise the current differentiation value and calculates a current value flowing between both electrodes A, a voltage integrating means F11 which integrates timewise the detection voltage between current coincident timings which are between two timings when sizes of the current value coincide mutually, a current integrating means G11 which integrates timewise the current value between current coincident timings and a dividing means H11 which divides an integration value by the voltage integrating means F11 by an integration value by the current integrating means G11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ワークを挟んだ2つ
の電極間に溶接用電流を流してそのジュール熱によって
そのワークの溶接を行う抵抗溶接機における両電極間の
抵抗を測定する装置及び方法に関するものである。そし
て、特に、両電極間に流される溶接用電流が時間的に変
化するものであって、両電極間の電圧を測定しようとす
るとその溶接用電流の時間的変化に起因して誘導電圧が
生じる場合において、その誘導電圧成分に関する値を含
まない正確な抵抗を測定する装置及び方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring the resistance between two electrodes in a resistance welding machine in which a welding current is passed between two electrodes sandwiching a work to weld the work by Joule heat. It is about the method. And, in particular, the welding current flowing between both electrodes changes with time, and when an attempt is made to measure the voltage between both electrodes, an induced voltage is generated due to the temporal change of the welding current. In some cases, the present invention relates to an apparatus and method for measuring an accurate resistance that does not include a value related to the induced voltage component.

【0002】[0002]

【従来の技術】図5に示すように、抵抗溶接機40で
は、2つの電極44a,44b間に2つのワークW,W
が挟まれ、両電極44a,44b間に大きな溶接用電流
iが流され、その電流iによって生じたジュール熱によ
って両ワークW,Wが溶接される。そして、かかる抵抗
溶接溶接機による溶接の途中においては、その溶接の段
階において両電極44a,44b間の抵抗や電圧が変化
することがわかっている。このため、その電極間の抵抗
や電圧を測定することによって、その時点において溶接
がどの段階まで進んでいるかがわかるのである。そし
て、溶接段階に応じて電極44a,44bの加圧等を適
宜行うことによって、良好な溶接を行うことができるの
である。
2. Description of the Related Art As shown in FIG. 5, in a resistance welding machine 40, two works W, W are placed between two electrodes 44a, 44b.
, A large welding current i is caused to flow between the electrodes 44a and 44b, and the workpieces W and W are welded by the Joule heat generated by the current i. It is known that the resistance and voltage between the electrodes 44a and 44b change during the welding process by the resistance welding machine. Therefore, by measuring the resistance and voltage between the electrodes, it is possible to know to what stage welding has progressed at that time. Then, by appropriately applying pressure to the electrodes 44a and 44b according to the welding stage, good welding can be performed.

【0003】したがって、そのためには両電極44a,
44b間の抵抗または電圧を正確に測定することが必要
である。しかしながら、図5中のアーム42aから電極
44a,44b間を通ってアーム42bを流れる溶接用
電流iが時間的に変化するものの場合においては、各電
極44a,44bに接続されたリード線72a,72b
を各アーム42a,42bに這わせてその検出端74
a,74b間の電圧を検出すると、その検出電圧Vは次
のようになる。 V=V0 +M・di/dt ここで、V0 は電極間電圧であり、V0 =R・iと表さ
れる(Rは電極間抵抗である)。Mはリード線72a,
72bとアーム42a,42bとの間の相互インダクタ
ンスである。すなわち、検出電圧Vは、電極間電圧V0
=R・iのみでなく、両アーム42a,42bを流れる
電流iによって両リード線72a,72bに誘導される
誘導電圧M・di/dtが加算された値となる。この誘
導電圧成分が含まれているため、電極間電圧V0 を正確
に求めることができず、電極間抵抗も正確に求めること
ができないのである。
Therefore, for that purpose, both electrodes 44a,
It is necessary to accurately measure the resistance or voltage between 44b. However, in the case where the welding current i flowing through the arm 42b from the arm 42a to the electrodes 44a and 44b in FIG. 5 changes with time, the lead wires 72a and 72b connected to the electrodes 44a and 44b are connected.
To the respective arms 42a, 42b, and its detection end 74
When the voltage between a and 74b is detected, the detected voltage V is as follows. V = V 0 + M · di / dt Here, V 0 is an inter-electrode voltage, and is expressed as V 0 = R · i (R is an inter-electrode resistance). M is a lead wire 72a,
The mutual inductance between 72b and the arms 42a and 42b. That is, the detection voltage V is the inter-electrode voltage V 0.
= R · i as well as a value obtained by adding the induced voltage M · di / dt induced in both lead wires 72a, 72b by the current i flowing through both arms 42a, 42b. Since this induced voltage component is included, the inter-electrode voltage V 0 cannot be accurately determined, and the inter-electrode resistance cannot be accurately determined.

【0004】このような背景の下、電極間電圧V0 を求
めることを目的とした装置が、特開昭62−10138
6号公報に開示されている。この装置では、ロゴスキー
コイルによって溶接用電流iの微分値e(t)=−M′
・di/dtが求められ(公報では−M・di/dtと
表されている)、それが増幅器で増幅率αで増幅されて
α・e(t)=−α・M′・di/dtとされる。そし
て、この値が前述の検出電圧V=V0 +M・di/dt
(公報ではV 0 +K・di/dtと表されている)に加
算されて次のようにされる。 V+α・e(t)=V0 +M・di/dt−α・M′・
di/dt=V0 +(M−α・M′)・di/dt そして、増幅率αの値がα=M/M′と設定されること
によって、電極間電圧V0 が、V+α・e(t)=V0
=R・iと求められるのである。
Under such a background, the inter-electrode voltage V0Seeking
A device intended to be mounted is disclosed in JP-A-62-1138.
No. 6 publication. With this device, Rogowski
Depending on the coil, the differential value e (t) =-M 'of the welding current i
-Di / dt is calculated (in the publication, -M * di / dt
(Represented), it is amplified by the amplifier with the amplification factor α
α · e (t) = − α · M ′ · di / dt. That
This value is the above-mentioned detection voltage V = V0+ M · di / dt
(V in the publication 0+ K · di / dt)
Calculated as follows. V + α ・ e (t) = V0+ M ・ di / dt-α ・ M '・
di / dt = V0+ (M−α · M ′) · di / dt Then, the value of the amplification factor α is set to α = M / M ′.
The inter-electrode voltage V0Is V + α · e (t) = V0
= R · i.

【0005】しかしながら、上記の公報に記載の装置で
は、増幅器における増幅率αの値をα=M/M′と設定
する方法が開示されていない。このため、何度も試行錯
誤的に増幅率αの値を変更し、誘導成分(M−α・
M′)・di/dtがゼロとなるように導いていくしか
ない。しかし、それでは、その手順が非常に煩雑であ
り、正確に電極間電圧V0 =R・iを求めることが困難
である。このため、正確な電極間抵抗を測定することも
困難である。
However, the apparatus described in the above publication does not disclose a method of setting the value of the amplification factor α in the amplifier as α = M / M '. For this reason, the value of the amplification factor α is changed many times by trial and error, and the induction component (M−α ·
There is no choice but to guide it so that M ′) · di / dt becomes zero. However, in that case, the procedure is very complicated, and it is difficult to accurately determine the inter-electrode voltage V 0 = R · i. Therefore, it is also difficult to measure the interelectrode resistance accurately.

【0006】そこで、本発明は、抵抗溶接機の正確な電
極間抵抗を容易に測定することができる装置及び方法を
提供することを課題とする。
Therefore, it is an object of the present invention to provide an apparatus and method capable of easily measuring the accurate interelectrode resistance of a resistance welding machine.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、請求項1に係る発明は、図1に模式的に示すよう
に、ワークWを挟んだ2つの電極A,A間に時間的に変
化する電流を流してそのジュール熱によってワークWの
溶接を行う抵抗溶接機における両電極A,A間の抵抗を
測定する装置B11であって、両電極A,A間の電圧を
検出する電圧検出手段C1と、両電極A,A間を流れる
電流を時間的に微分した値である電流微分値を検出する
電流微分値検出手段D1と、前記電流微分値を時間的に
積分して両電極A,A間を流れる電流値を算出する電流
値算出手段E1と、前記電流値の大きさが相互に一致す
る2つのタイミング間である電流一致タイミング間で、
電圧検出手段C1で検出された電圧を時間的に積分する
電圧積分手段F11と、前記電流一致タイミング間で前
記電流値を時間的に積分する電流積分手段G11と、電
圧積分手段F11による積分値を電流積分手段G11に
よる積分値によって除算する除算手段H11とを有する
ことを特徴とする。
In order to solve this problem, the invention according to claim 1 is, as schematically shown in FIG. 1, temporally between two electrodes A and A sandwiching a work W. A device B11 for measuring the resistance between both electrodes A and A in a resistance welding machine that welds a work W by applying a current that changes to a voltage, and is a voltage for detecting the voltage between both electrodes A and A. A detection means C1, a current differential value detection means D1 for detecting a current differential value which is a value obtained by temporally differentiating a current flowing between the electrodes A and A, and both electrodes by integrating the current differential value with time. Between the current value calculation means E1 for calculating the current value flowing between A and A and the current matching timing which is between two timings at which the magnitudes of the current values match each other
The voltage integration unit F11 that temporally integrates the voltage detected by the voltage detection unit C1, the current integration unit G11 that temporally integrates the current value between the current coincidence timings, and the integration value obtained by the voltage integration unit F11. And a dividing means H11 for dividing by the integrated value of the current integrating means G11.

【0008】また、請求項2に係る発明は、同じく図1
に模式的に示すように、ワークWを挟んだ2つの電極
A,A間に時間的に変化する電流を流してそのジュール
熱によってワークWの溶接を行う抵抗溶接機における両
電極A,A間の抵抗を測定する装置B12であって、両
電極A,A間の電圧を検出する電圧検出手段C1と、両
電極A,A間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出手段D1と、前記
電流微分値を時間的に積分して両電極A,A間を流れる
電流値を算出する電流値算出手段E1と、前記電流微分
値を時間的に積分し始める積分開始タイミングからその
積分値がゼロとなるタイミングまでの間である積分値ゼ
ロタイミング間で、電圧検出手段C1で検出された電圧
を時間的に積分する電圧積分手段F12と、前記積分値
ゼロタイミング間で前記電流値を時間的に積分する電流
積分手段G12と、電圧積分手段F12による積分値を
電流積分手段G12による積分値によって除算する除算
手段H12とを有することを特徴とする。
The invention according to claim 2 is also the same as in FIG.
Between the two electrodes A and A in a resistance welding machine for welding the work W by Joule heat by passing a time-varying current between the two electrodes A and A sandwiching the work W. A device B12 for measuring the resistance of the device, a voltage detecting means C1 for detecting a voltage between the electrodes A and A, and a current differential value which is a value obtained by temporally differentiating a current flowing between the electrodes A and A. A current differential value detecting means D1 for detecting, a current value calculating means E1 for temporally integrating the current differential value to calculate a current value flowing between both electrodes A, A, and a current differential value for temporal integration. Voltage integration means F12 for temporally integrating the voltage detected by the voltage detection means C1 between the integration start timing from the start of integration and the timing at which the integration value becomes zero, and the integration value. Between zero timing A current integrating means G12 for integrating the serial current time, and having a dividing means H12 for dividing the integral value an integration value by the voltage integration means F12 by the current integrating means G12.

【0009】また、請求項3に係る発明は、図2に模式
的に示すように、ワークWを挟んだ2つの電極A,A間
に時間的に変化する電流を流してそのジュール熱によっ
てワークWの溶接を行う抵抗溶接機における両電極A,
A間の抵抗を測定する方法B21であって、両電極A,
A間の電圧を検出する電圧検出段階C2と、両電極A,
A間を流れる電流を時間的に微分した値である電流微分
値を検出する電流微分値検出段階D2と、前記電流微分
値を時間的に積分して両電極A,A間を流れる電流値を
算出する電流値算出段階E2と、前記電流値の大きさが
相互に一致する2つのタイミング間である電流一致タイ
ミング間で、電圧検出段階C2で検出された電圧を時間
的に積分する電圧積分段階F21と、前記電流一致タイ
ミング間で前記電流値を時間的に積分する電流積分段階
G21と、電圧積分段階F21による積分値を電流積分
段階G21による積分値によって除算する除算段階H2
1とを有することを特徴とする。
Further, in the invention according to claim 3, as schematically shown in FIG. 2, a time-varying current is caused to flow between the two electrodes A, A sandwiching the work W, and the work is heated by the Joule heat. Both electrodes A in the resistance welding machine for welding W,
A method B21 for measuring the resistance between the two electrodes A and B,
A voltage detection step C2 for detecting the voltage between A and both electrodes A,
A current differential value detection step D2 for detecting a current differential value which is a value obtained by temporally differentiating a current flowing between A, and a current value flowing between both electrodes A, A by temporally integrating the current differential value. Between the current value calculation step E2 to be calculated and the current coincidence timing between the two timings when the magnitudes of the current values are mutually equal, a voltage integration step of temporally integrating the voltage detected in the voltage detection step C2. F21, a current integration step G21 for temporally integrating the current value between the current coincidence timings, and a division step H2 for dividing the integrated value by the voltage integration step F21 by the integrated value by the current integration step G21.
1 and 1.

【0010】また、請求項4に係る発明は、同じく図2
に模式的に示すように、ワークWを挟んだ2つの電極
A,A間に時間的に変化する電流を流してそのジュール
熱によってワークWの溶接を行う抵抗溶接機における両
電極A,A間の抵抗を測定する方法B22であって、両
電極A,A間の電圧を検出する電圧検出段階C2と、両
電極A,A間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出段階D2と、前記
電流微分値を時間的に積分して両電極A,A間を流れる
電流値を算出する電流値算出段階E2と、前記電流微分
値を時間的に積分し始める積分開始タイミングからその
積分値がゼロとなるタイミングまでの間である積分値ゼ
ロタイミング間で、電圧検出段階C2で検出された電圧
を時間的に積分する電圧積分段階F22と、前記積分値
ゼロタイミング間で前記電流値を時間的に積分する電流
積分段階G22と、電圧積分段階F22による積分値を
電流積分段階G22による積分値によって除算する除算
段階H22とを有することを特徴とする。
The invention according to claim 4 is the same as in FIG.
Between the two electrodes A and A in a resistance welding machine for welding the work W by Joule heat by passing a time-varying current between the two electrodes A and A sandwiching the work W. A method B22 for measuring the resistance of the electrode, the voltage detection step C2 for detecting the voltage between the electrodes A and A, and the current differential value that is a value obtained by temporally differentiating the current flowing between the electrodes A and A. A current differential value detection step D2 for detecting, a current value calculation step E2 for temporally integrating the current differential value to calculate a current value flowing between both electrodes A, A, and a current differential value for time integration A voltage integration step F22 for temporally integrating the voltage detected in the voltage detection step C2 between the integration start timing from the integration start timing to the timing when the integration value becomes zero; Between zero timing A current integrator stage G22 integrating the serial current time, and having a division step H22 dividing by the integral value integrated value by the voltage integration phase F22 by the current integration phase G22.

【0011】[0011]

【作用】請求項1に係る発明においては、まず、電圧検
出手段C1によって、各電極A,A間の電圧(検出電
圧)が検出される。この検出電圧には、両電極A,A間
の電圧のみでなく、電極A,A間に流される電流の時間
的変化に起因する誘導電圧成分が含まれている。一方、
電流微分値検出手段D1によって、両電極A,A間を流
れる電流を時間的に微分した値である電流微分値が検出
され、その電流微分値が電流値算出手段E1によって時
間的に積分され、両電極A,A間を流れる電流値が算出
される。そして、その電流値の大きさが相互に一致する
2つのタイミング間(電流一致タイミング間)にわたっ
て、電圧積分手段F11によって前記検出電圧が時間的
に積分される。その際、その検出電圧に含まれる前記誘
導電圧成分は前記電流微分値に比例するものであり、こ
の電圧積分手段F11による積分の範囲(電流一致タイ
ミング間)が前述したように両電極A,A間を流れる電
流値(これは前記電流微分値が電流値算出手段E1によ
って積分されて算出されたものである)が相互に一致す
るタイミング間であるため、その誘導電圧成分が電流一
致タイミング間にわたって積分された値はゼロとなる。
すなわち、検出電圧に含まれる誘導電圧成分は、電圧積
分手段F11によって電流一致タイミング間にわたって
積分されることによって除去されるのである。一方、電
流積分手段G11によって、前記電流一致タイミング間
にわたって前記電流値が時間的に積分される。そして、
除算手段H11によって、電圧積分手段F11による積
分値が電流積分手段G11による積分値によって除算さ
れ、電流一致タイミング間の平均的な抵抗が求められ
る。その際、この電圧積分手段F11による積分値には
前述したように誘導電圧成分が含まれていないため、そ
の抵抗は、誘導電圧成分に関する値を含まない正確な電
極A,A間の抵抗なのである。このようにして、請求項
1に係る発明の電極間抵抗測定装置B11によって、誘
導電圧成分に関する値を含まない正確な電極A,A間の
抵抗が容易に測定されるのである。
In the first aspect of the invention, first, the voltage detecting means C1 detects the voltage (detection voltage) between the electrodes A and A. The detected voltage includes not only the voltage between the electrodes A and A, but also the induced voltage component due to the temporal change of the current flowing between the electrodes A and A. on the other hand,
The current differential value detecting means D1 detects a current differential value which is a value obtained by temporally differentiating the current flowing between the electrodes A and A, and the current differential value is temporally integrated by the current value calculating means E1. The current value flowing between the two electrodes A, A is calculated. The voltage integrator F11 temporally integrates the detected voltage between two timings (between current coincidence timings) in which the magnitudes of the current values match each other. At that time, the induced voltage component included in the detected voltage is proportional to the current differential value, and the integration range (between the current coincidence timings) by the voltage integrating means F11 is the both electrodes A, A as described above. Since the current values flowing between the current values (which are calculated by integrating the current differential value by the current value calculating means E1) match each other, the induced voltage components thereof are distributed over the current matching timings. The integrated value is zero.
That is, the induced voltage component included in the detected voltage is removed by being integrated by the voltage integrating means F11 over the current coincidence timing. On the other hand, the current integrator G11 temporally integrates the current value between the current coincidence timings. And
The dividing means H11 divides the integrated value by the voltage integrating means F11 by the integrated value by the current integrating means G11 to obtain the average resistance between the current coincidence timings. At that time, since the integrated value by the voltage integrating means F11 does not include the induced voltage component as described above, the resistance is a resistance between the electrodes A and A that does not include a value related to the induced voltage component. . In this way, the inter-electrode resistance measuring device B11 of the invention according to claim 1 can easily measure the accurate resistance between the electrodes A and A that does not include the value related to the induced voltage component.

【0012】また、請求項2に係る発明においては、ま
ず、請求項1の発明と同様に、電圧検出手段C1によっ
て両電極A,A間の電圧(検出電圧)が検出され、電流
微分値検出手段D1によって両電極A,A間を流れる電
流を時間的に微分した値である電流微分値が検出され、
電流値算出手段E1によって両電極A,A間を流れる電
流値が算出される。そして、電圧積分手段F12によっ
て、その電流微分値を時間的に積分し始める積分開始タ
イミングからその積分値がゼロとなるタイミングまでの
間(積分値ゼロタイミング間)において、前記検出電圧
が時間的に積分される。その際、その検出電圧に含まれ
る前記誘導電圧成分は前記電流微分値に比例するもので
あり、この電圧積分手段F12による積分の範囲(積分
値ゼロタイミング間)が前記電流微分値を時間的に積分
し始める積分開始タイミングからその積分値がゼロとな
るタイミングまでの範囲であるため、その誘導電圧成分
が積分値ゼロタイミング間にわたって積分された値はゼ
ロとなる。すなわち、検出電圧に含まれる誘導電圧成分
は、電圧積分手段F12によって積分値ゼロタイミング
間にわたって積分されることによって除去されるのであ
る。一方、電流積分手段G12によって、前記積分値ゼ
ロタイミング間にわたって前記電流値が時間的に積分さ
れる。そして、除算手段H12によって、電圧積分手段
F12による積分値が電流積分手段G12による積分値
によって除算され、積分値ゼロタイミング間の平均的な
抵抗が求められる。その際、この電圧積分手段F12に
よる積分値には前述したように誘導電圧成分が含まれて
いないため、その抵抗は、誘導電圧成分に関する値を含
まない正確な電極A,A間の抵抗なのである。このよう
にして、請求項2に係る発明の電極間抵抗測定装置B1
2によっても、誘導電圧成分に関する値を含まない正確
な電極A,A間の抵抗が容易に測定されるのである。
In the invention according to claim 2, first, similarly to the invention according to claim 1, the voltage (detection voltage) between both electrodes A and A is detected by the voltage detection means C1 to detect the current differential value. A current differential value, which is a value obtained by temporally differentiating the current flowing between the electrodes A and A, is detected by the means D1.
The current value calculating means E1 calculates the value of the current flowing between the electrodes A and A. Then, during the period from the integration start timing when the voltage differential means F12 starts to integrate the current differential value temporally to the timing when the integrated value becomes zero (between the integrated value zero timing), the detected voltage is temporally changed. Integrated. At that time, the induced voltage component included in the detected voltage is proportional to the current differential value, and the range of integration by the voltage integrating means F12 (between the integration value zero timings) temporally changes the current differential value. Since the range is from the integration start timing when the integration starts to the timing when the integrated value becomes zero, the value of the induced voltage component integrated over the integrated value zero timing becomes zero. That is, the induced voltage component included in the detected voltage is removed by being integrated by the voltage integrating means F12 over the integrated value zero timing. On the other hand, the current integrator G12 temporally integrates the current value during the zero time of the integrated value. Then, the dividing means H12 divides the integrated value by the voltage integrating means F12 by the integrated value by the current integrating means G12 to obtain the average resistance between the integrated value zero timings. At that time, since the integrated value by the voltage integrating means F12 does not include the induced voltage component as described above, the resistance thereof is the resistance between the electrodes A and A which does not include the value related to the induced voltage component. . In this way, the interelectrode resistance measuring device B1 of the invention according to claim 2 is provided.
Even with 2, the accurate resistance between the electrodes A and A, which does not include the value related to the induced voltage component, can be easily measured.

【0013】また、請求項3に係る発明においては、請
求項1に係る発明の各手段C1〜H11による処理が、
対応する各段階C2〜H21において行われ、両電極
A,A間の抵抗が容易に測定される。
In the invention according to claim 3, the processing by each means C1 to H11 of the invention according to claim 1 is
The resistance between both electrodes A and A is easily measured by performing the corresponding steps C2 to H21.

【0014】また、請求項4に係る発明においては、請
求項2に係る発明の各手段C1〜H12による処理が、
対応する各段階C2〜H22において行われ、両電極
A,A間の抵抗が容易に測定される。
Further, in the invention according to claim 4, the processing by each means C1 to H12 of the invention according to claim 2 is
The resistance between both electrodes A and A is easily measured, which is carried out in corresponding steps C2 to H22.

【0015】[0015]

【実施例】【Example】

<第1実施例>次に、請求項1及び請求項3の発明を具
体化した実施例を図3〜図7に基づいて説明する。図3
及び図4に示すように、電極間抵抗検出回路はCPU1
0に接続されており(図3)、各種の回路12,14,
16等を有している(図4)。そのうちの抵抗溶接機4
0(図3及び図4中符号なし)は、図5に示すように、
1対のアーム42a,42bを有し、その先端には電極
44a,44b(電極A,Aに該当する)が設けられて
いる(図3及び図4も参照)。そして、図3中の電源回
路30及びスイッチング回路32によって、アーム42
aから電極44a,44b間を経てアーム42bに溶接
用電流iが流され、両電極44a,44b間に挟まれた
ワークW,Wにおいて発生したジュール熱によって両ワ
ークW,Wが溶接されるのである。
<First Embodiment> Next, an embodiment in which the inventions of claims 1 and 3 are embodied will be described with reference to FIGS. Figure 3
As shown in FIG. 4 and FIG.
0 (FIG. 3) and various circuits 12, 14,
16 etc. (Fig. 4). Resistance welding machine 4 of them
0 (no reference numeral in FIGS. 3 and 4) is as shown in FIG.
It has a pair of arms 42a and 42b, and electrodes 44a and 44b (corresponding to electrodes A and A) are provided at the tips thereof (see also FIGS. 3 and 4). Then, by the power supply circuit 30 and the switching circuit 32 in FIG.
A welding current i is applied to the arm 42b from a through the electrodes 44a and 44b, and the workpieces W and W are welded by the Joule heat generated in the workpieces W and W sandwiched between the electrodes 44a and 44b. is there.

【0016】まず、図3中の電源回路30及びスイッチ
ング回路32について、図6に基づいて説明する。交流
電源50からの電流は、整流回路52によって整流され
て脈流とされ、コンデンサ54によって平滑化され、ト
ランジスタ回路56を流れる。トランジスタ回路56の
トランジスタ58a及びトランジスタ58bには、イン
バータ制御のためのパルス状のスイッチング信号を出力
するスイッチング回路32が接続されている。スイッチ
ング回路32では、両信号出力線60a,60bからと
もにオフ信号が出力される時間を挟んで、各信号出力線
60a,60bから交互にオン信号が出力される。これ
によって、順に、トランジスタ58aがオン,両トラン
ジスタ58a,58bがオフ,トランジスタ58bがオ
ン,両トランジスタ58a,58bがオフとされ(以
下、トランジスタ58a,58bの一方がオン状態のこ
とをトランジスタ58がオン状態であるといい、両トラ
ンジスタ58a,58bともオフ状態のことをトランジ
スタ58がオフ状態であるという)、変圧器62の1次
コイル64側では、どちらの方向へも電流が流れない時
間を挟んで各方向へ交互へ電流が流れる。そして、その
変圧器62及びダイオード66を経て、電極44a,4
4b間には、図7(1) に示すように、変圧され整流され
かつかなり平滑化された溶接用電流iが流れる。すなわ
ち、トランジスタ58がオン状態とされると徐々に電流
iが増加していき、オフ状態とされると徐々に電流iが
減少していくのであり、電流iの値は図示のように三角
波状となるのである。このように、溶接用電流iは時間
的に変化するのである。なお、この図7(1) のグラフ
は、以下のようにして、図7(2) のグラフから算出され
るのである。
First, the power supply circuit 30 and the switching circuit 32 in FIG. 3 will be described with reference to FIG. The current from the AC power supply 50 is rectified by the rectifier circuit 52 into a pulsating current, smoothed by the capacitor 54, and flows through the transistor circuit 56. The switching circuit 32 that outputs a pulsed switching signal for controlling the inverter is connected to the transistors 58a and 58b of the transistor circuit 56. In the switching circuit 32, ON signals are alternately output from the signal output lines 60a and 60b with a time interval in which the OFF signals are output from both the signal output lines 60a and 60b. As a result, the transistor 58a is turned on, the transistors 58a and 58b are turned off, the transistor 58b is turned on, and the transistors 58a and 58b are turned off (hereinafter, the transistor 58a indicates that one of the transistors 58a and 58b is on. It is said that the transistors 58a and 58b are in the on state, and the fact that both transistors 58a and 58b are in the off state means that the transistor 58 is in the off state.) On the primary coil 64 side of the transformer 62, the time during which no current flows in either direction An electric current flows alternately in each direction sandwiching it. Then, through the transformer 62 and the diode 66, the electrodes 44a, 4
As shown in Fig. 7 (1), a welding current i that has been transformed, rectified, and considerably smoothed flows between 4b. That is, when the transistor 58 is turned on, the current i gradually increases, and when the transistor 58 is turned off, the current i gradually decreases, and the value of the current i is triangular as shown in the figure. It becomes. In this way, the welding current i changes with time. The graph of FIG. 7 (1) is calculated from the graph of FIG. 7 (2) as follows.

【0017】図3に示すように、一方の電極44aには
トロイダルコイル70が設けられており、それに基づい
て電流微分値検出回路12(電流微分値検出手段Dに該
当する)によって、電極44a,44b間を流れる溶接
用電流iを時間的に微分した値(電流微分値)di/d
tが検出される。その検出結果は図7(2) のとおりであ
る。そして、電極44a,44b間に溶接用電流iが通
電中であると通電検出回路17によって検出されている
間にわたって、この図7(2) の電流微分値di/dtが
積分回路16(電流値算出手段E1に該当する)によっ
て積分され、前述した図7(1) の溶接用電流iの値が算
出される。
As shown in FIG. 3, one electrode 44a is provided with a toroidal coil 70. Based on the toroidal coil 70, the current differential value detecting circuit 12 (corresponding to the current differential value detecting means D) causes the electrodes 44a, A value (current differential value) di / d obtained by temporally differentiating the welding current i flowing between 44b.
t is detected. The detection result is shown in Fig. 7 (2). Then, while the welding current i is being conducted between the electrodes 44a and 44b by the energization detection circuit 17, the current differential value di / dt in FIG. The value of the welding current i shown in FIG. 7 (1) is calculated by the integration by the calculation means E1).

【0018】また、図3〜図6に示すように、各電極4
4a,44bにはリード線72a,72bが接続されて
おり、各リード線72a,72bは各アーム42a,4
2bを這わせられ、その検出端74a,74bは電圧検
出回路14(電圧検出手段Cに該当する)に接続されて
いる。その検出端間電圧Vは次式で表され、その検出結
果は図7(3) のとおりである。 V=V0 +M・di/dt ここで、V0 は電極間電圧であり、V0 =R・iと表さ
れる(Rは電極間抵抗である)。また、Mはリード線7
2a,72bとアーム42a,42bとの間の相互イン
ダクタンスである。すなわち、リード線72a,72b
においてはアーム42a,42bを流れる溶接用電流i
によって誘導電圧M・di/dtが生じるため、両リー
ド線72a,72bの検出端74a,74b間には、電
極間電圧V0 にその誘導成分が加算された電圧が検出さ
れるのである。
Further, as shown in FIGS. 3 to 6, each electrode 4
Lead wires 72a and 72b are connected to the wires 4a and 44b, and the lead wires 72a and 72b are connected to the arms 42a and 4b.
2b, and its detection ends 74a and 74b are connected to the voltage detection circuit 14 (corresponding to the voltage detection means C). The detection terminal voltage V is expressed by the following equation, and the detection result is as shown in FIG. 7 (3). V = V 0 + M · di / dt Here, V 0 is an inter-electrode voltage, and is expressed as V 0 = R · i (R is an inter-electrode resistance). Also, M is a lead wire 7.
It is the mutual inductance between 2a, 72b and the arms 42a, 42b. That is, the lead wires 72a, 72b
, The welding current i flowing through the arms 42a and 42b
As a result, an induced voltage M · di / dt is generated, so that a voltage obtained by adding the induced component to the inter-electrode voltage V 0 is detected between the detection ends 74a and 74b of the lead wires 72a and 72b.

【0019】一方、検出レベル設定回路20からは、図
7(1) 中に破線で示すような基準電流isが出力され
る。基準電流isは、図示のように、溶接用電流iの複
数の極大値及び複数の極小値のほぼ中間の値となるよう
にされている。そして、レベル判定回路21によって、
溶接用電流iと基準電流isとの値が比較され、両者の
大きさが一致するタイミングt1 ,t2 ,t3 ,…,t
2n-1,t2n,…が検出される。そして、溶接用電流iが
基準電流isよりも大きな値となる隣り合うタイミング
間(タイミングt1 ・t2 間,t3 ・t4 間,…,t
2n-1・t2n間,…)が電流一致タイミング間T1,T
2,…,Tn,…とされ、各電流一致タイミング間の始
期(タイミングt1 ,t3 ,…,t2n-1,…)にタイミ
ング発生回路22から積分開始信号が各積分回路24,
25に出力され、各電流一致タイミング間の終期(タイ
ミングt2 ,t4 ,…,t2n,…)に積分終了信号が出
力される。この各信号に基づいて、積分回路24(電圧
積分手段F11に該当する)によって、検出端間電圧V
が各電流一致タイミング間ごとに積分(定積分)され、
数1に示す電圧積分値SV1,SV2,…,SVn,…
が出力される。その電圧積分値SV1,SV2,…,S
Vn,…の検出結果は図7(6) のとおりである。なお、
以下、定積分に関する値については、添字がnのものを
適宜代表値として表現する。
On the other hand, the detection level setting circuit 20 outputs a reference current is as shown by a broken line in FIG. 7 (1). As shown in the figure, the reference current is is set to be an intermediate value between a plurality of maximum values and a plurality of minimum values of the welding current i. Then, by the level determination circuit 21,
The values of the welding current i and the reference current is are compared, and the timings t 1 , t 2 , t 3 , ...
2n-1 , t 2n , ... Are detected. Then, between the adjacent timings (the timings t 1 and t 2, the times t 3 and t 4 , ..., T) where the welding current i has a larger value than the reference current is
Between 2n-1 and t2n , ...) is T1, T during the current coincidence timing.
, ..., Tn, ..., At the beginning of each current coincidence timing (timing t 1 , t 3 , ..., T 2n-1 , ...), the integration start signal from the timing generation circuit 22 is given to each integration circuit 24 ,.
25, and the integration end signal is output at the end of each current coincidence timing (timing t 2 , t 4 , ..., T 2n , ...). Based on each of these signals, the integrating circuit 24 (corresponding to the voltage integrating means F11) causes a voltage V between the detection terminals.
Is integrated (constant integration) for each current matching timing,
The voltage integrated values SV1, SV2, ..., SVn, ...
Is output. The voltage integrated values SV1, SV2, ..., S
The detection result of Vn, ... Is as shown in FIG. 7 (6). In addition,
Hereinafter, as for the value related to the definite integral, the one having the subscript n is appropriately expressed as a representative value.

【数1】 ここで、電流一致タイミング間Tnの始期(タイミング
2n-1)及び終期(タイミングt2n)における溶接用電
流iが、前述したようにi=isで同値であるため、そ
の微分値であるdi/dtをその電流一致タイミング間
で定積分した値はゼロとなり、数1のSVnについて数
2が成立する。
[Equation 1] Here, since the welding current i at the start (timing t 2n-1 ) and the end (timing t 2n ) of the current matching timing Tn is the same value at i = is as described above, it is the differential value di. The value obtained by definite integration of / dt during the current coincidence timing becomes zero, and Equation 2 holds for SVn of Equation 1.

【数2】 すなわち、検出端間電圧Vが電流一致タイミング間Tn
において定積分されることによって、検出端間電圧Vか
ら誘導成分M・di/dtに関する値が除去されるので
ある。
[Equation 2] That is, the voltage V between the detection ends is Tn during the current coincidence timing.
The value relating to the inductive component M · di / dt is removed from the inter-detection-end voltage V by the definite integration at.

【0020】また、同様に、積分回路25(電流積分手
段G11に該当する)によって溶接用電流iが各電流一
致タイミング間Tnごとに積分され、数3に示す電流積
分値SI1,SI2,…,SIn,…が出力される。そ
の電流積分値SI1,SI2,…,SIn,…の検出結
果は図7(7) のとおりである。
Similarly, the integrator circuit 25 (corresponding to the current integrator G11) integrates the welding current i at each current coincidence timing Tn, and the integrated current values SI1, SI2, ... SIn, ... Are output. The detection result of the integrated current values SI1, SI2, ..., SIn, ... Is as shown in FIG. 7 (7).

【数3】 そして、電圧積分値SVn及び電流積分値SInの値が
各サンプルホールド回路26,27において一旦保持さ
れ、除算回路28(除算手段H11に該当する)によっ
て電圧積分値SVnが電流積分値SInによって除算さ
れ、数4に示す除算値D1,D2,…,Dn,…が算出
される。
[Equation 3] Then, the values of the voltage integrated value SVn and the current integrated value SIn are temporarily held in the sample hold circuits 26 and 27, and the voltage integrated value SVn is divided by the current integrated value SIn by the division circuit 28 (corresponding to the dividing means H11). , Divided values D1, D2, ..., Dn, ... Shown in Equation 4 are calculated.

【数4】 すなわち、この除算値Dnは、電極間電圧V0 を電流一
致タイミング間Tnで積分した値SVnを、溶接用電流
iを電流一致タイミング間Tnで積分した値で除算した
ものであり、電流一致タイミング間Tnにおける平均的
な電極間抵抗Rとなるのである。そして、前述したよう
に、電圧積分値SVnからは誘導成分に関する値が除去
されているため、この抵抗Rは、誘導成分に関する値を
含まない正確な電極間抵抗なのである。
[Equation 4] That is, the divided value Dn is obtained by dividing the value SVn obtained by integrating the inter-electrode voltage V 0 at the current matching timing Tn by the value obtained by integrating the welding current i at the current matching timing Tn. The average inter-electrode resistance R in the interval Tn is obtained. As described above, since the value related to the inductive component is removed from the voltage integrated value SVn, the resistance R is an accurate interelectrode resistance that does not include the value related to the inductive component.

【0021】以上のように、この装置及び方法によれ
ば、誘導成分に関する値を含まない電極間抵抗を容易に
測定することができるのである。
As described above, according to this apparatus and method, it is possible to easily measure the interelectrode resistance that does not include the value related to the inductive component.

【0022】なお、請求項1及び3に係る発明における
電流一致タイミング間は、この第1実施例のように溶接
用電流iが基準電流isよりも大きな値となる隣り合う
タイミング間(タイミングt1 ・t2 間,t3 ・t
4 間,…,t2n-1・t2n間,…)に限らず、タイミング
1 ・t3 間,タイミングt1 ・t4 間,タイミングt
2・t3 間のように、溶接用電流iが基準電流isと一
致するタイミング間はすべて電流一致タイミング間に該
当する。また、基準電流という概念を用いなくても、電
流値が相互に一致するタイミング間であれば、電流一致
タイミング間に該当する。
During the current coincidence timings in the inventions according to claims 1 and 3, between the adjacent timings (timing t 1 where the welding current i is larger than the reference current is as in the first embodiment). between · t 2, t 3 · t
4) , ..., Between t 2n-1 and t 2n , ...), but also between timings t 1 and t 3, between timings t 1 and t 4 , and timing t
Every time the welding current i matches the reference current is, such as 2 · t 3, it corresponds to the current matching timing. Further, even if the concept of the reference current is not used, it corresponds to the current coincidence timing as long as the current values coincide with each other.

【0023】<第2実施例>次に、請求項2及び請求項
4の発明を具体化した実施例を、図3,図5〜図8に基
づいて、第1実施例との相違点を中心に説明する。この
実施例は、第1実施例における定積分をするタイミング
間の求め方に以下のような違いがある。そのために、図
3中の電極間抵抗検出回路102において、図4中の検
出レベル設定回路20及びレベル判定回路21のかわり
に、図8に示すように、積分回路90及びタイミング検
出回路91が設けられている。
<Second Embodiment> Next, an embodiment in which the inventions of claims 2 and 4 are embodied will be described with reference to FIG. 3 and FIGS. I will explain mainly. In this embodiment, there are the following differences in the method of obtaining the timing between the definite integration in the first embodiment. Therefore, in the interelectrode resistance detection circuit 102 in FIG. 3, an integration circuit 90 and a timing detection circuit 91 are provided as shown in FIG. 8 instead of the detection level setting circuit 20 and the level determination circuit 21 in FIG. Has been.

【0024】まず、溶接用電流iが通電中である間にわ
たって図7(2) の電流微分値di/dtの値が積分回路
16によって積分されて、図7(1) の溶接用電流iが求
められる。この点は第1実施例と同様である。一方、図
7(3) に示すように、溶接用電流iが増加中である際の
タイミング(タイミングt1 ,t3 ,…t2n-1,…)か
ら、積分回路90によって電流微分値di/dtの値が
積分され、数5に示す電流微積分値Inが算出される
(この値は溶接用電流iの値と所定の定数値だけ異なる
のみである)。
First, the value of the current differential value di / dt shown in FIG. 7 (2) is integrated by the integrating circuit 16 while the welding current i is being supplied, and the welding current i shown in FIG. 7 (1) is obtained. Desired. This point is similar to the first embodiment. On the other hand, as shown in FIG. 7 (3), the timing when the welding current i is increasing (time t 1, t 3, ... t 2n-1, ...) from the current by the integrating circuit 90 differential values di The value of / dt is integrated to calculate the current differential integration value In shown in Equation 5 (this value only differs from the value of the welding current i by a predetermined constant value).

【数5】 そして、この電流微積分値Iがゼロとなる初めてのタイ
ミング(タイミングt 2 ,t4 ,…t2n,…)がタイミ
ング検出回路91によって検出され、この積分開始タイ
ミングから電流微積分値Iがゼロとなるまでのタイミン
グ間(タイミングt1 ・t2 間,t3 ・t4 間,…,t
2n-1・t2n間,…)が積分値ゼロタイミング間T1,T
2,…,Tn,…とされる。そして、この積分値ゼロタ
イミング間は数学的に第1実施例の電流一致タイミング
間と一致し、積分回路24,25,サンプルホールド回
路26,27,除算回路28における処理も第1実施例
と同様であるため、適宜、第1実施例と同じ記号を用い
て説明する。
[Equation 5]Then, the first tie when this current calculus value I becomes zero
Ming (timing t 2, TFour, ... t2n,…) Is Taimi
Detected by the ringing detection circuit 91, and the integration start timing is detected.
Timing until the current calculus I becomes zero
Interval (timing t1・ T2Between, t3・ TFourBetween, ..., t
2n-1・ T2n,) Is the integration value zero timing T1, T
2, ..., Tn ,. And this integrated value zero
During the imming, the current matching timing of the first embodiment is mathematically
Coincides with the interval between the integration circuits 24 and 25, and sample and hold times.
The processing in the paths 26 and 27 and the division circuit 28 is also the first embodiment.
Therefore, the same symbols as those in the first embodiment are used as appropriate.
Explain.

【0025】すなわち、タイミング発生回路92によっ
て、その積分値ゼロタイミング間Tnの始期(タイミン
グt1 ,t3 ,…,t2n-1,…)に積分開始信号が出力
され、積分値ゼロタイミング間Tnの終期(タイミング
2 ,t4 ,…,t2n,…)に積分終了信号が出力され
る。この各信号に基づいて、第1実施例と同様に積分回
路24(電圧積分手段F12)によって検出端間電圧V
が各積分値ゼロタイミング間Tnごとに積分されて、数
6に示す電圧積分値SVnが算出される。その検出結果
は第1実施例と同様に図7(6) のようになる。
That is, the timing generation circuit 92 outputs an integration start signal at the beginning of the integration value zero timing Tn (timing t 1 , t 3 , ..., T 2n-1 , ...), and during the integration value zero timing. An integration end signal is output at the end of Tn (timing t 2 , t 4 , ..., T 2n , ...). Based on each of these signals, the integrator circuit 24 (voltage integrator F12) causes the inter-detector voltage V to be detected, as in the first embodiment.
Are integrated for each integration value zero timing Tn, and the voltage integration value SVn shown in Expression 6 is calculated. The detection result is as shown in FIG. 7 (6) as in the first embodiment.

【数6】 ここで、積分値ゼロタイミング間Tnにおける電流微積
分値Inが前述したようにゼロであることから、第1実
施例と同様に、数6のSVnについて数7が成立し、検
出端間電圧Vから誘導成分M・di/dtが除去される
のである。
[Equation 6] Here, since the current differential integration value In in the integrated value zero timing Tn is zero as described above, the expression 7 holds for the SVn of the expression 6 as in the first embodiment, and the detection end voltage V The induction component M · di / dt is removed.

【数7】 [Equation 7]

【0026】また、積分回路25(電流積分手段G1
2)によって溶接用電流iが各積分値ゼロタイミング間
Tnごとに積分されて、数8に示す電圧積分値SInが
算出される。その検出結果も第1実施例と同様に図7
(7) のようになる。
Further, the integrating circuit 25 (current integrating means G1
By 2), the welding current i is integrated for each integrated value zero timing Tn, and the voltage integrated value SIn shown in Expression 8 is calculated. The detection result is also shown in FIG.
It becomes like (7).

【数8】 [Equation 8]

【0027】そして、第1実施例と同様に、除算回路2
8(除算手段H12)によって電圧積分値SVnが電流
積分値SInによって除算され、誘導成分に関する値を
含まない電極間抵抗Rが、R=SVn/SInとして求
められるのである。
Then, similarly to the first embodiment, the division circuit 2
The voltage integration value SVn is divided by the current integration value SIn by 8 (dividing means H12), and the interelectrode resistance R that does not include the value related to the inductive component is obtained as R = SVn / SIn.

【0028】なお、請求項2及び4に係る発明における
積分値ゼロタイミング間は、この第2実施例のように溶
接用電流iが増加中である際のタイミングから、電流微
分値di/dtが定積分された電流微積分値がゼロとな
る初めてのタイミングまでのタイミング間に限らず、積
分開始タイミングから積分された電流微積分値が2度目
またはそれ以上においてゼロとなったタイミング
(t3 ,t4 ,…,t2n-1,t2n,…)が積分値ゼロタ
イミング間の終期とされてもよし、溶接用電流iが減少
中のタイミング(t2 ,t4 ,…,t2n,…)から積分
されてもよい。
During the integrated value zero timing in the inventions according to claims 2 and 4, the current differential value di / dt changes from the timing when the welding current i is increasing as in the second embodiment. current calculus values definite integral is not limited to between the timing until the first timing becomes zero, the timing of integrated current calculus value becomes zero at the second time or more from the integration start timing (t 3, t 4 , ..., t 2n-1 , t 2n , ...) may be the end of the integration value zero timing, and the timing (t 2 , t 4 , ..., t 2n , ...) during which the welding current i is decreasing. May be integrated from

【0029】[0029]

【発明の効果】本発明によれば、誘導成分に関する値を
含まない両電極A,A間の正確な抵抗を容易に測定する
ことができる。このため、その抵抗によって溶接がどの
段階まで進んでいるかがわかり、それに応じて電極A,
Aの加圧等を適宜行うことによって、ワークWを良好に
溶接することができることとなる。
According to the present invention, it is possible to easily measure an accurate resistance between the electrodes A and A which does not include a value related to the induction component. For this reason, it is possible to know to what stage welding has progressed due to the resistance, and the electrode A,
The work W can be satisfactorily welded by appropriately applying the pressure of A or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1及び請求項2の発明の内容を模式的に
示したブロック図である。
FIG. 1 is a block diagram schematically showing the contents of the inventions of claims 1 and 2.

【図2】請求項3及び請求項4の発明の内容を模式的に
示したブロック図である。
FIG. 2 is a block diagram schematically showing the contents of the inventions of claims 3 and 4.

【図3】本発明の第1・第2実施例の装置の全体を示す
ブロック図である。
FIG. 3 is a block diagram showing an entire apparatus according to first and second embodiments of the present invention.

【図4】第1実施例における図3のうちの電極間検出回
路を詳しく示すブロック図である。
FIG. 4 is a block diagram showing in detail the inter-electrode detection circuit of FIG. 3 in the first embodiment.

【図5】図3における抵抗溶接機40の要部を示す図で
ある。従来の一般的な抵抗溶接機40の説明図を兼ね
る。
5 is a diagram showing a main part of the resistance welding machine 40 in FIG. It also serves as an explanatory view of a conventional general resistance welding machine 40.

【図6】図3における電源回路30及びスイッチング回
路32の具体的内容を示す配線図である。
6 is a wiring diagram showing specific contents of a power supply circuit 30 and a switching circuit 32 in FIG.

【図7】図3中の各回路における検出値を示すグラフで
ある。
FIG. 7 is a graph showing detected values in each circuit in FIG.

【図8】第2実施例における図3のうちの電極間検出回
路を詳しく示すブロック図である。
FIG. 8 is a block diagram showing in detail the inter-electrode detection circuit of FIG. 3 in the second embodiment.

【符号の説明】[Explanation of symbols]

12 電流微分値検出回路(電流微分値検出手段D1) 14 電圧検出回路(電圧検出手段C1) 16 積分回路(電流値算出手段E1) 24 積分回路(電圧積分手段F11,F12) 25 積分回路(電流積分手段G11,G12) 28 除算回路(除算手段H11,H12) 44a,44b 電極(A,A) W ワーク 12 current differential value detection circuit (current differential value detection means D1) 14 voltage detection circuit (voltage detection means C1) 16 integration circuit (current value calculation means E1) 24 integration circuit (voltage integration means F11, F12) 25 integration circuit (current Integrating means G11, G12) 28 Dividing circuit (dividing means H11, H12) 44a, 44b Electrode (A, A) W Work

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ワークを挟んだ2つの電極間に時間的に
変化する電流を流してそのジュール熱によってそのワー
クの溶接を行う抵抗溶接機における前記両電極間の抵抗
を測定する装置であって、 前記両電極間の電圧を検出する電圧検出手段と、 前記両電極間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出手段と、 前記電流微分値を時間的に積分して前記両電極間を流れ
る電流値を算出する電流値算出手段と、 前記電流値の大きさが相互に一致する2つのタイミング
間である電流一致タイミング間で、前記電圧検出手段で
検出された電圧を時間的に積分する電圧積分手段と、 前記電流一致タイミング間で前記電流値を時間的に積分
する電流積分手段と、 前記電圧積分手段による積分値を前記電流積分手段によ
る積分値によって除算する除算手段とを有することを特
徴とする抵抗溶接機の電極間抵抗測定装置。
1. A device for measuring a resistance between both electrodes of a resistance welding machine, wherein a current that changes with time is passed between two electrodes sandwiching a work, and the work is welded by its Joule heat. A voltage detection means for detecting a voltage between the electrodes, a current differential value detection means for detecting a current differential value which is a value obtained by temporally differentiating a current flowing between the electrodes, and the current differential value with time. Current value calculating means for calculating the value of the current flowing between the electrodes by integrating the voltage and the voltage detecting means between the two current matching timings at which the magnitudes of the current values are mutually matched. A voltage integrating unit that temporally integrates the detected voltage, a current integrating unit that temporally integrates the current value between the current coincidence timings, and an integrated value obtained by the voltage integrating unit by the current integrating unit. And an inter-electrode resistance measuring device of a resistance welding machine.
【請求項2】 ワークを挟んだ2つの電極間に時間的に
変化する電流を流してそのジュール熱によってそのワー
クの溶接を行う抵抗溶接機における前記両電極間の抵抗
を測定する装置であって、 前記両電極間の電圧を検出する電圧検出手段と、 前記両電極間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出手段と、 前記電流微分値を時間的に積分して前記両電極間を流れ
る電流値を算出する電流値算出手段と、 前記電流微分値を時間的に積分し始める積分開始タイミ
ングからその積分値がゼロとなるタイミングまでの間で
ある積分値ゼロタイミング間で、前記電圧検出手段で検
出された電圧を時間的に積分する電圧積分手段と、 前記積分値ゼロタイミング間で前記電流値を時間的に積
分する電流積分手段と、 前記電圧積分手段による積分値を前記電流積分手段によ
る積分値によって除算する除算手段とを有することを特
徴とする抵抗溶接機の電極間抵抗測定装置。
2. A device for measuring the resistance between both electrodes in a resistance welding machine for welding the work by means of Joule heat by passing a time-varying current between two electrodes sandwiching the work. A voltage detection means for detecting a voltage between the electrodes, a current differential value detection means for detecting a current differential value which is a value obtained by temporally differentiating a current flowing between the electrodes, and the current differential value with time. Current value calculating means for calculating a current value flowing between the both electrodes by integrating the current, and an integration start timing at which the current differential value starts to be integrated temporally to a timing at which the integrated value becomes zero. Between integration timing zero timing, voltage integration means for temporally integrating the voltage detected by the voltage detection means, and current integration means for temporally integrating the current value between the integration value zero timing, An inter-electrode resistance measuring device for a resistance welding machine, comprising: a dividing unit that divides an integrated value by the voltage integrating unit by an integrated value by the current integrating unit.
【請求項3】 ワークを挟んだ2つの電極間に時間的に
変化する電流を流してそのジュール熱によってそのワー
クの溶接を行う抵抗溶接機における前記両電極間の抵抗
を測定する方法であって、 前記両電極間の電圧を検出する電圧検出段階と、 前記両電極間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出段階と、 前記電流微分値を時間的に積分して前記両電極間を流れ
る電流値を算出する電流値算出段階と、 前記電流値の大きさが相互に一致する2つのタイミング
間である電流一致タイミング間で、前記電圧検出段階で
検出された電圧を時間的に積分する電圧積分段階と、 前記電流一致タイミング間で前記電流値を時間的に積分
する電流積分段階と、 前記電圧積分段階による積分値を前記電流積分段階によ
る積分値によって除算する除算段階とを有することを特
徴とする抵抗溶接機の電極間抵抗測定方法。
3. A method for measuring the resistance between both electrodes in a resistance welding machine in which a time-varying electric current is passed between two electrodes sandwiching a work to weld the work by its Joule heat. A voltage detection step of detecting a voltage between the electrodes, a current differential value detection step of detecting a current differential value that is a value obtained by temporally differentiating a current flowing between the electrodes, and the current differential value with time. Between the current value calculation step of calculating the current value flowing between the two electrodes by performing the integral integration and the current matching timing between the two timings at which the magnitudes of the current values match each other in the voltage detection step. A voltage integration step of temporally integrating the detected voltage, a current integration step of temporally integrating the current value between the current coincidence timings, and an integration value of the voltage integration step by the current integration step. And a division step of dividing by an integral value.
【請求項4】 ワークを挟んだ2つの電極間に時間的に
変化する電流を流してそのジュール熱によってそのワー
クの溶接を行う抵抗溶接機における前記両電極間の抵抗
を測定する方法であって、 前記両電極間の電圧を検出する電圧検出段階と、 前記両電極間を流れる電流を時間的に微分した値である
電流微分値を検出する電流微分値検出段階と、 前記電流微分値を時間的に積分して前記両電極間を流れ
る電流値を算出する電流値算出段階と、 前記電流微分値を時間的に積分し始める積分開始タイミ
ングからその積分値がゼロとなるタイミングまでの間で
ある積分値ゼロタイミング間で、前記電圧検出段階で検
出された電圧を時間的に積分する電圧積分段階と、 前記積分値ゼロタイミング間で前記電流値を時間的に積
分する電流積分段階と、 前記電圧積分段階による積分値を前記電流積分段階によ
る積分値によって除算する除算段階とを有することを特
徴とする抵抗溶接機の電極間抵抗測定方法。
4. A method for measuring the resistance between both electrodes of a resistance welding machine, wherein a current that changes with time is passed between two electrodes sandwiching a work, and the work is welded by its Joule heat. A voltage detection step of detecting a voltage between the electrodes, a current differential value detection step of detecting a current differential value that is a value obtained by temporally differentiating a current flowing between the electrodes, and the current differential value with time. Between a current value calculation step of calculating a current value flowing between the two electrodes by integrating the current, and an integration start timing when the current differential value starts to be integrated temporally to a timing when the integration value becomes zero. Between the integration value zero timing, a voltage integration step of temporally integrating the voltage detected in the voltage detection step, a current integration step of temporally integrating the current value between the integration value zero timing, And a division step of dividing the integrated value of the voltage integration step by the integrated value of the current integration step.
JP15726193A 1993-06-28 1993-06-28 Apparatus and method for measuring resistance between electrodes of resistance welding machine Expired - Lifetime JP3586473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15726193A JP3586473B2 (en) 1993-06-28 1993-06-28 Apparatus and method for measuring resistance between electrodes of resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15726193A JP3586473B2 (en) 1993-06-28 1993-06-28 Apparatus and method for measuring resistance between electrodes of resistance welding machine

Publications (2)

Publication Number Publication Date
JPH079164A true JPH079164A (en) 1995-01-13
JP3586473B2 JP3586473B2 (en) 2004-11-10

Family

ID=15645789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15726193A Expired - Lifetime JP3586473B2 (en) 1993-06-28 1993-06-28 Apparatus and method for measuring resistance between electrodes of resistance welding machine

Country Status (1)

Country Link
JP (1) JP3586473B2 (en)

Also Published As

Publication number Publication date
JP3586473B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JPH1133743A (en) Resistance welding system using accumulated heating value per unit cubage as index
US8497454B2 (en) Induction hardening monitoring apparatus
US4798925A (en) Method for measuring effective heating power for high frequency heating
JPH079164A (en) Instrument and method for measuring resistance between electrodes of resistance welding machine
KR100650611B1 (en) apparatus and method for weld-time control
RU2493944C2 (en) Method and device to measure voltage at electrodes of spot-welding gun
EP3232557B1 (en) Power-source device, joining system, and conductive processing method
JP3421387B2 (en) Apparatus and method for measuring voltage between electrodes of resistance welding machine
WO2016038756A1 (en) Welding current measuring device, resistance welding monitoring device, and resistance welding control device
JP3172847B2 (en) Method and apparatus for detecting voltage between chips of resistance welding machine
JP3112429B2 (en) Non-contact type two-dimensional position measuring device and measuring method
JPS6142900A (en) X-ray generator
JP3562204B2 (en) Impedance sensor
JPH02300670A (en) Inductance measuring instrument
KR100443167B1 (en) Inverter Resistance Welding Power Supply
KR920007552B1 (en) Resistance measuring mechanism in a resistance welding machine
JP2001058277A (en) Resistance welding equipment with enhanced accuracy of detection of timewise fluctuation of work resistance and method therefor
JPH0127392B2 (en)
JPS63150110A (en) Electric discharge machine
JP2002324716A (en) Device and method for measuring dc superimposing characteristic of inductor for choke coil
JPS6015434B2 (en) Welding electrode voltage detection device
JP4013385B2 (en) Welding equipment
JPS62101386A (en) Voltage measuring instrument between electrodes for resistance welding machine
JPS6150708B2 (en)
SU653061A1 (en) Method of determining the mechanical impedance of microjoint at ultrasonic welding and apparatus for performing same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040210

A521 Written amendment

Effective date: 20040409

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Effective date: 20040809

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130813

EXPY Cancellation because of completion of term