[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0789703A - Production of crystalline silicon nitride powder - Google Patents

Production of crystalline silicon nitride powder

Info

Publication number
JPH0789703A
JPH0789703A JP6021434A JP2143494A JPH0789703A JP H0789703 A JPH0789703 A JP H0789703A JP 6021434 A JP6021434 A JP 6021434A JP 2143494 A JP2143494 A JP 2143494A JP H0789703 A JPH0789703 A JP H0789703A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
crystalline silicon
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6021434A
Other languages
Japanese (ja)
Other versions
JP3350907B2 (en
Inventor
Tetsuo Yamada
哲夫 山田
Hiroshi Yanagisawa
浩 柳沢
Yukio Yoshida
吉田  幸生
Toshihiro Fujita
俊啓 藤田
Akio Ejima
亜企雄 江嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP02143494A priority Critical patent/JP3350907B2/en
Publication of JPH0789703A publication Critical patent/JPH0789703A/en
Application granted granted Critical
Publication of JP3350907B2 publication Critical patent/JP3350907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To control the oxygen content of crystalline silicon nitride powder and the distribution of oxygen in the particles and to produce crystalline silicon nitride powder excellent in sintering characteristics with high productivity in large quantities. CONSTITUTION:Amorphous silicon nitride powder and/or crystalline silicon nitride powder obtd. by firing a nitrogen-contg. silane compd. is milled in an atmosphere consisting of 5-40% oxygen and the balance inert. gas or further contg. 0.001-2.0% moisture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温構造用材料として
有用な窒化珪素質焼結体の製造用原料として好適な結晶
質窒化珪素粉末の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a crystalline silicon nitride powder suitable as a raw material for producing a silicon nitride sintered material useful as a material for a high temperature structure.

【0002】[0002]

【従来技術及びその問題点】従来、非晶質窒化珪素粉末
及び/又は含窒素シラン化合物を不活性ガス雰囲気下に
焼成して、結晶質窒化珪素粉末を製造する方法は、既に
知られている。この結晶質窒化珪素粉末の焼結性を向上
させるためには粉末の表面積及び酸素含有量が適当な範
囲にあることが必要である。結晶質窒化珪素粉末の表面
積と酸素含有量とは密接な関係があり、表面積が高いと
酸素含有量が高くなり、酸素含有量が高いと表面積が高
くなることがわかっている。これは、結晶質窒化珪素粉
末の粒子表面に酸化物又は酸窒化物層が形成されている
ためである。したがって、窒化珪素粉末中の酸素含有量
及び酸素の分布を制御することは、表面積を制御する上
でも重要なことである。
2. Description of the Related Art Conventionally, a method for producing a crystalline silicon nitride powder by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in an inert gas atmosphere is already known. . In order to improve the sinterability of this crystalline silicon nitride powder, it is necessary that the surface area of the powder and the oxygen content are within appropriate ranges. It is known that there is a close relationship between the surface area of crystalline silicon nitride powder and the oxygen content, that is, the higher the surface area, the higher the oxygen content, and the higher the oxygen content, the higher the surface area. This is because the oxide or oxynitride layer is formed on the particle surface of the crystalline silicon nitride powder. Therefore, controlling the oxygen content and the oxygen distribution in the silicon nitride powder is also important in controlling the surface area.

【0003】しかしながら、原料の非晶質窒化珪素粉末
をイミドの熱分解により製造する際には、酸素を極力排
除する必要があるため、非晶質窒化珪素粉末の酸素含有
量を大幅に変化させることは困難であった。これは、イ
ミドが反応性が高く、酸素と容易に反応して二酸化珪素
を生成し、この二酸化珪素がそのまま結晶質窒化珪素粉
末中の不純物として残留してしまうためである。
However, when producing the raw material amorphous silicon nitride powder by thermal decomposition of imide, it is necessary to eliminate oxygen as much as possible, so that the oxygen content of the amorphous silicon nitride powder is significantly changed. It was difficult. This is because imide has a high reactivity and easily reacts with oxygen to generate silicon dioxide, and this silicon dioxide remains as an impurity in the crystalline silicon nitride powder as it is.

【0004】一方、窒化珪素粉末から良好な焼結体を製
造するためには、原料の窒化珪素粉末と焼結助剤とをで
きるだけ均一に混合することが望ましい。そのために、
焼結助剤を粒子表面に均一に被覆することができる表面
改質された窒化珪素粉末が望まれている。
On the other hand, in order to produce a good sintered body from the silicon nitride powder, it is desirable to mix the raw material silicon nitride powder and the sintering aid as uniformly as possible. for that reason,
A surface-modified silicon nitride powder capable of uniformly coating the surface of particles with a sintering aid is desired.

【0005】[0005]

【発明の目的】本発明の目的は、前記問題点を解決し、
結晶質窒化珪素粉末中の酸素含有量及び粒子内の酸素の
分布を制御することができ、さらに焼結助剤を粒子表面
に容易に均一に被覆できる窒化珪素粉末の製造法を提供
するものである。
The object of the present invention is to solve the above problems,
The present invention provides a method for producing a silicon nitride powder, which can control the oxygen content in the crystalline silicon nitride powder and the distribution of oxygen in the particles, and further can easily and uniformly coat the surface of the particles with a sintering aid. is there.

【0006】[0006]

【問題点を解決するための手段】本発明は、非晶質窒化
珪素粉末及び/又は含窒素シラン化合物を焼成して得ら
れる結晶質窒化珪素粉末を、酸素を5〜40%、あるい
はさらに水分を0.001〜2.0%含有し、残部が不
活性ガスからなる雰囲気中でミル処理することを特徴と
する結晶質窒化珪素粉末の製造法に関するものである。
According to the present invention, a crystalline silicon nitride powder obtained by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound is mixed with oxygen in an amount of 5 to 40%, or further a moisture content. Of 0.001 to 2.0%, and the rest is milled in an atmosphere of an inert gas, to a method for producing crystalline silicon nitride powder.

【0007】本発明においては、まず非晶質窒化珪素粉
末及び/又は含窒素シラン化合物を窒素含有不活性ガス
雰囲気下又は窒素含有還元性ガス雰囲気下に焼成して、
結晶質窒化珪素粉末を製造する。含窒素シラン化合物と
しては、シリコンジイミド、シリコンテトラアミド、シ
リコンニトロゲンイミド、シリコンクロルイミド等が用
いられる。これらは、公知方法、例えば、四弗化ケイ
素、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハ
ロゲン化ケイ素とアンモニアとを気相で反応させる方
法、液状の前記ハロゲン化ケイ素と液体アンモニアとを
反応させる方法などによって製造される。また、非晶質
窒化珪素粉末は、公知方法、例えば、前記含窒素シラン
化合物を窒素又はアンモニアガス雰囲気下に600〜1
200℃の範囲の温度で加熱分解する方法、四弗化ケイ
素、四塩化ケイ素、四臭化ケイ素、四沃化ケイ素等のハ
ロゲン化ケイ素とアンモニアとを高温で反応させる方法
などによって製造されたものが用いられる。非晶質窒化
珪素粉末及び含窒素シラン化合物の平均粒子径は、通
常、0.002〜0.05μmである。
In the present invention, first, the amorphous silicon nitride powder and / or the nitrogen-containing silane compound is fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere,
A crystalline silicon nitride powder is produced. As the nitrogen-containing silane compound, silicon diimide, silicon tetraamide, silicon nitrogen imide, silicon chlorimide or the like is used. These are known methods, for example, a method of reacting a silicon halide such as silicon tetrafluoride, silicon tetrachloride, silicon tetrabromide, and silicon tetraiodide with ammonia in a gas phase, a liquid silicon halide and a liquid. It is produced by a method of reacting with ammonia. The amorphous silicon nitride powder may be obtained by a known method, for example, by using the nitrogen-containing silane compound in a nitrogen or ammonia gas atmosphere in an amount of 600 to 1
Produced by a method of thermally decomposing at a temperature in the range of 200 ° C., a method of reacting silicon halide such as silicon tetrafluoride, silicon tetrachloride, silicon tetrabromide and silicon tetraiodide with ammonia at a high temperature. Is used. The average particle size of the amorphous silicon nitride powder and the nitrogen-containing silane compound is usually 0.002 to 0.05 μm.

【0008】窒素含有不活性ガスとしては、窒素又は窒
素とアルゴン、ヘリウム等の混合ガスが挙げられる。ま
た、窒素含有還元性ガスとしては、アンモニア、ヒドラ
ジン等の高温での熱分解により窒素ガスを放出するもの
又は窒素と水素、一酸化炭素等の混合ガスが挙げられ
る。また、焼成温度は1400〜1700℃の範囲であ
る。焼成温度が1400℃よりも低いと、窒化珪素の結
晶化が十分に進行しない。また、焼成温度が1700℃
を越えると、粗大結晶からなる結晶質窒化珪素粉末が生
成し易いので好ましくない。
Examples of the nitrogen-containing inert gas include nitrogen or a mixed gas of nitrogen and argon, helium or the like. Further, examples of the nitrogen-containing reducing gas include a gas that releases nitrogen gas by thermal decomposition of ammonia, hydrazine and the like at high temperature, or a mixed gas of nitrogen and hydrogen, carbon monoxide and the like. The firing temperature is in the range of 1400 to 1700 ° C. If the firing temperature is lower than 1400 ° C, crystallization of silicon nitride does not proceed sufficiently. Also, the firing temperature is 1700 ° C.
If it exceeds, crystalline silicon nitride powder composed of coarse crystals is likely to be generated, which is not preferable.

【0009】非晶質窒化珪素粉末及び/又は含窒素シラ
ン化合物の加熱に使用される加熱炉としては、高周波誘
導加熱方式又は抵抗加熱方式によるバッチ炉、プッシャ
ー炉、ロータリーキルン炉、シャフトキルン炉、流動化
焼成炉等が用いられる。特に連続焼成炉は非晶質窒化珪
素の結晶化反応に伴う発熱の効率的な放散に対して、有
効な手段である。
As a heating furnace used for heating the amorphous silicon nitride powder and / or the nitrogen-containing silane compound, a batch furnace by a high frequency induction heating method or a resistance heating method, a pusher furnace, a rotary kiln furnace, a shaft kiln furnace, a flow furnace A chemical firing furnace or the like is used. In particular, the continuous firing furnace is an effective means for efficiently dissipating the heat generated by the crystallization reaction of amorphous silicon nitride.

【0010】本発明においては、前記焼成により得られ
た結晶質窒化珪素粉末を、酸素を5〜40%含有し、残
部が不活性ガスからなる雰囲気中でミル処理する。雰囲
気ガスとしては、酸素を5〜40%含有し、残部が窒
素、ヘリウム、アルゴン等の不活性ガスからなる雰囲気
であればよく、例えば、空気雰囲気が好ましく用いられ
る。ミル処理方法としては、特に制限はなく、通常用い
られるミル処理装置、例えば、振動ミル、アトライタ等
が用いられる。このミル処理により焼成時に起こった粒
子間の融着や凝集をこわすことができ、その結果、窒化
珪素粉末の表面酸素量が増加するので、窒化珪素粉末の
表面積も高くなり、焼結性を著しく向上させることがで
きる。ミル処理の雰囲気中の酸素含有量が5%よりも少
ない場合には、窒化珪素粉末がミル内壁にコ−ティング
してしまい、ミル処理が困難となる。また、酸素含有量
が40%よりも多くなるとミル材質(モノマーキャステ
ィングナイロン等の樹脂)が損耗するので好ましくな
い。
In the present invention, the crystalline silicon nitride powder obtained by the above-mentioned firing is milled in an atmosphere containing 5 to 40% oxygen and the balance being inert gas. The atmosphere gas may be an atmosphere containing oxygen in an amount of 5 to 40% and the balance being an inert gas such as nitrogen, helium, or argon. For example, an air atmosphere is preferably used. The milling method is not particularly limited, and a commonly used milling apparatus such as a vibration mill or an attritor may be used. This milling process can break the fusion and agglomeration between particles that occur during firing, and as a result, the surface oxygen amount of the silicon nitride powder increases, so that the surface area of the silicon nitride powder also increases and the sinterability remarkably increases. Can be improved. If the oxygen content in the milling atmosphere is less than 5%, the silicon nitride powder coats the inner wall of the mill, making milling difficult. Further, if the oxygen content is more than 40%, the mill material (resin such as monomer casting nylon) is worn, which is not preferable.

【0011】本発明においては、前記ミル処理の雰囲気
中に水分を0.001〜2.0%含有させることが好ま
しい。この際、雰囲気中に含有される水分と窒化珪素粒
子表面が反応することにより、粒子表面がシラノール基
(Si−OH)で覆われる。これにより、粒子表面に適
度な量のシラノール基が存在する窒化珪素粉末と焼結助
剤を混合する場合には、窒化珪素粒子表面に焼結助剤を
均一に被覆させることができるので、これを焼結して得
られる焼結体の特性を向上させることができる。ミル処
理の雰囲気中の水分量が0.001%よりも少ない場合
には、焼結体特性の向上効果が小さく、また、水分量が
2.0%よりも多くなると水分結露のために窒化珪素粉
末がミル内壁にコ−ティングしてしまい、ミル処理が困
難となるので好ましくない。
In the present invention, it is preferable that 0.001 to 2.0% of water is contained in the atmosphere of the mill treatment. At this time, the moisture contained in the atmosphere reacts with the surface of the silicon nitride particles, so that the particle surfaces are covered with silanol groups (Si—OH). Thereby, when the silicon nitride powder having an appropriate amount of silanol groups on the particle surface and the sintering additive are mixed, the surface of the silicon nitride particle can be uniformly coated with the sintering additive. The characteristics of the sintered body obtained by sintering can be improved. When the water content in the milling atmosphere is less than 0.001%, the effect of improving the characteristics of the sintered body is small, and when the water content exceeds 2.0%, silicon nitride is formed due to water condensation. The powder coats the inner wall of the mill, which makes milling difficult, which is not preferable.

【0012】[0012]

【実施例】以下に実施例及び比較例を示し、本発明をさ
らに具体的に説明する。 実施例1 シリコンジイミドを窒素ガス雰囲気下に1000℃で加
熱分解して得られた非晶質窒化珪素粉末(酸素含有量
0.55wt%)を、内径280mm、高さ150mm
のカーボン製ルツボに充填し、バッチ式電気炉にセット
した。次に、電気炉内を0.1torr以下に真空脱気
後、窒素ガスを導入し、窒素ガス流通下で加熱を開始し
た。室温から1550℃まで50〜100℃/hrで昇
温し、同温度に1時間保持した。
EXAMPLES The present invention will be described more specifically by showing Examples and Comparative Examples below. Example 1 Amorphous silicon nitride powder (oxygen content 0.55 wt%) obtained by thermally decomposing silicon diimide at 1000 ° C. in a nitrogen gas atmosphere was used to prepare an inner diameter of 280 mm and a height of 150 mm.
The carbon crucible of No. 1 was filled and set in a batch type electric furnace. Next, after degassing the inside of the electric furnace under vacuum to 0.1 torr or less, nitrogen gas was introduced and heating was started under the flow of nitrogen gas. The temperature was raised from room temperature to 1550 ° C. at 50 to 100 ° C./hr, and the temperature was maintained for 1 hour.

【0013】得られた結晶質窒化珪素粉末の酸素含有量
は0.75wt%、そのうち表面酸素量は0.10wt
%、比表面積は8.0m2/gであった。この結晶質窒
化珪素粉末を振動ミルに入れ、水分を0.04%含有す
る空気雰囲気下室温で30分間ミル処理を行なった。ミ
ル処理後の結晶質窒化珪素粉末の酸素含有量は1.20
wt%、そのうち表面酸素量は0.55wt%、比表面
積は9.5m2/gであった。
The obtained crystalline silicon nitride powder has an oxygen content of 0.75 wt%, of which the surface oxygen content is 0.10 wt.
%, The specific surface area was 8.0 m 2 / g. The crystalline silicon nitride powder was placed in a vibration mill and milled for 30 minutes at room temperature in an air atmosphere containing 0.04% of water. The oxygen content of the crystalline silicon nitride powder after milling is 1.20.
wt%, of which the surface oxygen content was 0.55 wt% and the specific surface area was 9.5 m 2 / g.

【0014】得られた結晶質窒化珪素粉末92wt%
に、イットリア(信越化学(株)製)5wt%及びアル
ミナ(住友化学(株)製:AKP−30)3wt量%を
添加した配合粉を、媒体としてエタノールを用いて48
時間湿式混合した後、減圧乾燥した。得られた混合物を
断面が50×80mm角の金型を用いて矩形状に予備成形
した後、圧力1.5ton/cm2 でラバープレスした。得ら
れた成形体を電気炉を用いて窒素ガス雰囲気下1780
℃で2時間焼結した。
92 wt% of the obtained crystalline silicon nitride powder
The compounded powder obtained by adding 5 wt% of yttria (manufactured by Shin-Etsu Chemical Co., Ltd.) and 3 wt% of alumina (manufactured by Sumitomo Chemical Co., Ltd .: AKP-30) to ethanol was used as a medium, and 48
After wet mixing for an hour, it was dried under reduced pressure. The obtained mixture was preformed into a rectangular shape by using a mold having a cross section of 50 × 80 mm and then rubber-pressed at a pressure of 1.5 ton / cm 2 . The obtained molded body was subjected to 1780 under an atmosphere of nitrogen gas using an electric furnace.
Sintered for 2 hours at ° C.

【0015】得られた焼結体の嵩密度及び曲げ強度の測
定結果を表2に示す。嵩密度はアルキメデス法により測
定した。また、曲げ強度は、作製した焼結体から3×4
×40mmのテストピースを切り出し、これを外スパン3
0mm、内スパン10mmの4点曲げ試験治具にセットし
て、室温及び1200℃における曲げ強度を測定した。
室温における曲げ強度はテストピース40本の平均値、
1200℃おける曲げ強度はテストピース10本の平均
値で求めた。
Table 2 shows the measurement results of the bulk density and bending strength of the obtained sintered body. The bulk density was measured by the Archimedes method. The bending strength is 3 × 4 from the produced sintered body.
Cut out a test piece of × 40mm and use it for outer span 3
The bending strength was measured at room temperature and 1200 ° C. by setting it in a 4-point bending test jig having 0 mm and an inner span of 10 mm.
The bending strength at room temperature is the average value of 40 test pieces,
The bending strength at 1200 ° C. was calculated as the average value of 10 test pieces.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】実施例2〜3 ミル処理時の雰囲気を表1に記載の雰囲気に変えたほか
は、実施例1と同様にして、ミル処理を行なった。その
結果を表1に示す。得られた結晶質窒化珪素粉末を用い
て実施例1と同様にして、焼結体を製造した。得られた
焼結体の嵩密度及び曲げ強度の測定結果を表2に示す。
Examples 2 to 3 Milling was performed in the same manner as in Example 1 except that the atmosphere during milling was changed to the atmosphere shown in Table 1. The results are shown in Table 1. A sintered body was manufactured in the same manner as in Example 1 using the obtained crystalline silicon nitride powder. Table 2 shows the measurement results of the bulk density and bending strength of the obtained sintered body.

【0019】比較例1 実施例1で得られたミル処理を行っていない酸素含有量
0.75wt%、比表面積8.0m2/gの結晶質窒化
珪素粉末92wt%に、イットリア(信越化学(株)
製)5wt%及びアルミナ(住友化学(株)製:AKP
−30)3wt量%を添加した配合粉を、媒体としてエ
タノールを用いて48時間湿式混合した後、減圧乾燥し
た。得られた混合物を断面が50×80mm角の金型を用
いて矩形状に予備成形した後、圧力1.5ton/cm2 でラ
バープレスした。得られた成形体を電気炉を用いて窒素
ガス雰囲気下1780℃で2時間焼結した。得られた焼
結体の嵩密度及び曲げ強度の測定結果を表2に示す。
Comparative Example 1 92 wt% of crystalline silicon nitride powder having an oxygen content of 0.75 wt% and a specific surface area of 8.0 m 2 / g obtained in Example 1 and not subjected to milling was added to yttria (Shin-Etsu Chemical ( stock)
5 wt% and alumina (Sumitomo Chemical Co., Ltd .: AKP)
-30) The compounded powder to which 3 wt% was added was wet mixed using ethanol as a medium for 48 hours and then dried under reduced pressure. The obtained mixture was preformed into a rectangular shape by using a mold having a cross section of 50 × 80 mm and then rubber-pressed at a pressure of 1.5 ton / cm 2 . The obtained molded body was sintered in an electric furnace in a nitrogen gas atmosphere at 1780 ° C. for 2 hours. Table 2 shows the measurement results of the bulk density and bending strength of the obtained sintered body.

【0020】実施例4〜6 ミル処理時の水分量を表1に記載の通りにかえたほか
は、実施例1と同様にして、ミル処理を行なった。その
結果を表1に示す。表1において、シラノール基のピー
ク強度は、拡散反射法によるFT−IRスペクトルにお
いてSi−OHの吸収(3750cm-1)強度をSi−
N−Siの吸収(950cm-1)強度で割った値であ
る。得られた結晶質窒化珪素粉末を用いて実施例1と同
様にして、焼結体を製造した。得られた焼結体の嵩密度
及び曲げ強度の測定結果を表2に示す。
Examples 4 to 6 Milling was carried out in the same manner as in Example 1 except that the water content at the time of milling was changed as shown in Table 1. The results are shown in Table 1. In Table 1, the peak intensity of the silanol group is the absorption (3750 cm −1 ) intensity of Si—OH in the FT-IR spectrum by the diffuse reflection method and the Si-
It is a value divided by the absorption (950 cm -1 ) intensity of N-Si. A sintered body was manufactured in the same manner as in Example 1 using the obtained crystalline silicon nitride powder. Table 2 shows the measurement results of the bulk density and bending strength of the obtained sintered body.

【0021】比較例2 実施例1で得られた結晶質窒化珪素粉末を振動ミルに入
れ、水分を3.1%含有する空気雰囲気下室温でミル処
理を行なった。水分量が多く、露点が25℃のため水分
が結露し、窒化珪素粉末がミル内壁にコ−ティングして
しまい、ミル処理が困難であった。
Comparative Example 2 The crystalline silicon nitride powder obtained in Example 1 was placed in a vibration mill and milled at room temperature in an air atmosphere containing 3.1% of water. Since the amount of water is large and the dew point is 25 ° C., the water is condensed and the silicon nitride powder is coated on the inner wall of the mill, which makes the milling process difficult.

【0022】[0022]

【発明の効果】本発明によれば、結晶質窒化珪素粉末中
の酸素含有量及び粒子内部の酸素の分布を制御すること
ができ、さらに焼結助剤を粒子表面に容易に均一に被覆
できる焼結特性等に優れた結晶質窒化珪素粉末を生産性
良く大量に製造することができる。
According to the present invention, the oxygen content in the crystalline silicon nitride powder and the distribution of oxygen inside the particles can be controlled, and furthermore, the sintering aid can be easily and uniformly coated on the surface of the particles. It is possible to mass-produce crystalline silicon nitride powder having excellent sintering characteristics and the like with high productivity.

フロントページの続き (72)発明者 藤田 俊啓 山口県宇部市大字小串1978番地の10 宇部 興産株式会社内 (72)発明者 江嶋 亜企雄 山口県宇部市大字小串1978番地の10 宇部 興産株式会社内Front page continuation (72) Inventor Toshihiro Fujita 10 Ube Kosan Co., Ltd., Ojikoshi, Ube, Ube City, Yamaguchi Prefecture (72) In Ube Kosan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質窒化珪素粉末及び/又は含窒素シ
ラン化合物を焼成して得られる結晶質窒化珪素粉末を、
酸素を5〜40%含有し、残部が不活性ガスからなる雰
囲気中でミル処理することを特徴とする結晶質窒化珪素
粉末の製造法。
1. A crystalline silicon nitride powder obtained by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound,
A method for producing a crystalline silicon nitride powder, which comprises milling in an atmosphere containing oxygen in an amount of 5 to 40% and the balance being an inert gas.
【請求項2】 非晶質窒化珪素粉末及び/又は含窒素シ
ラン化合物を焼成して得られる結晶質窒化珪素粉末を、
酸素を5〜40%及び水分を0.001〜2.0%含有
し、残部が不活性ガスからなる雰囲気中でミル処理する
ことを特徴とする結晶質窒化珪素粉末の製造法。
2. A crystalline silicon nitride powder obtained by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound,
A process for producing a crystalline silicon nitride powder, which comprises milling in an atmosphere containing oxygen of 5 to 40% and water of 0.001 to 2.0% and the balance of inert gas.
JP02143494A 1993-05-18 1994-02-18 Method for producing crystalline silicon nitride powder Expired - Lifetime JP3350907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02143494A JP3350907B2 (en) 1993-05-18 1994-02-18 Method for producing crystalline silicon nitride powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-116010 1993-05-18
JP11601093 1993-05-18
JP02143494A JP3350907B2 (en) 1993-05-18 1994-02-18 Method for producing crystalline silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH0789703A true JPH0789703A (en) 1995-04-04
JP3350907B2 JP3350907B2 (en) 2002-11-25

Family

ID=26358493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02143494A Expired - Lifetime JP3350907B2 (en) 1993-05-18 1994-02-18 Method for producing crystalline silicon nitride powder

Country Status (1)

Country Link
JP (1) JP3350907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595718A (en) * 1993-05-18 1997-01-21 Ube Industries Ltd. Process for producing a crystalline silicon nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595718A (en) * 1993-05-18 1997-01-21 Ube Industries Ltd. Process for producing a crystalline silicon nitride powder

Also Published As

Publication number Publication date
JP3350907B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JPS5891005A (en) Production of silicon nitride powder
JP3636370B2 (en) Aluminum nitride powder and method for producing the same
US4284432A (en) Ceramic powder material and method for manufacturing the same
JP2907366B2 (en) Method for producing crystalline silicon nitride powder
WO2021200830A1 (en) Silicon nitride powder, and method for producing silicon nitride sintered body
JP3438928B2 (en) Method for producing silicon nitride powder
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JP3475614B2 (en) Silicon diimide
JPH0789703A (en) Production of crystalline silicon nitride powder
JP2907367B2 (en) Method for producing crystalline silicon nitride powder
JP3900589B2 (en) Magnesium siliconitride powder and method for producing the same
JP2022080053A (en) Silicon nitride powder and its production method, and method for producing sintered silicon nitride body
WO2020241700A1 (en) Silicon nitride powder and method for producing same, and method for producing silicon nitride sintered body
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JP7536747B2 (en) Silicon nitride powder and its manufacturing method, and method for manufacturing sintered silicon nitride
JP2000302421A (en) Silicon nitride powder
JPH09221308A (en) Nitrogen-containing silane compound
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPH01264914A (en) Production of aluminum nitride powder and powder composition
JPH06263410A (en) Method for increasing beta-fraction of powdery silicon nitride
JP2846375B2 (en) Aluminum nitride powder and method for producing the same
KR20240073335A (en) Method for controlling for residual oxygen content of aluminium nitride powder
JPH0218285B2 (en)
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term