JPH078839B2 - Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine - Google Patents
Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamineInfo
- Publication number
- JPH078839B2 JPH078839B2 JP61124298A JP12429886A JPH078839B2 JP H078839 B2 JPH078839 B2 JP H078839B2 JP 61124298 A JP61124298 A JP 61124298A JP 12429886 A JP12429886 A JP 12429886A JP H078839 B2 JPH078839 B2 JP H078839B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- water
- methanol
- hydrogen
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は貴金属触媒の存在下、1,6−ヘキサンジアミン
(以下、HAと略す)にホルミル化剤と水素とを反応させ
て、N,N,N′,N′−テトラメチル−1,6−ヘキサンジアミ
ン(以下、TMHAと略す)を製造する方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention comprises reacting a 1,6-hexanediamine (hereinafter abbreviated as HA) with a formylating agent and hydrogen in the presence of a noble metal catalyst to produce N, The present invention relates to a method for producing N, N ', N'-tetramethyl-1,6-hexanediamine (hereinafter abbreviated as TMHA).
TMHAは分散剤、乳化剤および発泡促進剤などの原料とし
て有用である。TMHA is useful as a raw material for dispersants, emulsifiers and foaming accelerators.
従来、TMHAの製造方法としては、HAにホルマリンとギ酸
並びに塩基性有機酸とを反応させる方法(特開昭56-166
152号公報)が知られている。Conventionally, as a method for producing TMHA, a method in which HA is reacted with formalin, formic acid and a basic organic acid (Japanese Patent Laid-Open No. 56-166).
No. 152) is known.
一方、水素圧下、液相に維持された水素添加触媒を含有
する脂肪族第1級アミン並びに脂肪族第2級アミンにホ
ルムアルデヒドを徐々に加える脂肪族第3級アミンの製
造において、反応に対する追加的な触媒として、脂肪族
第1級アミンまたは脂肪族第2級アミンに対して約0.5
〜3重量%の塩基性有機酸を使用する脂肪族第3級メチ
ルアミンの改良製造法(特公昭39-17905号公報)および
第1級アミンまたは第2級アミンにパラジウムまたは白
金触媒の存在下、3〜50kg/cm2(ゲージ圧)の水素圧
下、温度80〜180℃で、ホルムアルデヒドを反応させる
第3級アミンの製造方法(特開昭60-130551号公報)な
ど長鎖脂肪族第1級または第2級アミンを水素添加触媒
の存在下、ホルミル化剤と水素と反応させて、第3級ア
ミンを製造する方法は知られている。On the other hand, in the production of an aliphatic primary amine containing a hydrogenation catalyst maintained in a liquid phase under hydrogen pressure and an aliphatic tertiary amine in which formaldehyde is gradually added to an aliphatic secondary amine, an additional reaction is added to the reaction. As a catalyst, about 0.5 is used for the aliphatic primary amine or the aliphatic secondary amine.
Method for producing aliphatic tertiary methylamine using 3 to 3% by weight of basic organic acid (JP-B-39-17905) and primary amine or secondary amine in the presence of palladium or platinum catalyst A long-chain aliphatic primary method such as a method for producing a tertiary amine (JP-A-60-130551) in which formaldehyde is reacted under a hydrogen pressure of 3 to 50 kg / cm 2 (gauge pressure) at a temperature of 80 to 180 ° C. A method for producing a tertiary amine by reacting a secondary or secondary amine with a formylating agent and hydrogen in the presence of a hydrogenation catalyst is known.
しかしながら、従来のTMHAの製造方法において、まずHA
にホルマリンとギ酸並びに塩基性有機酸とを反応させる
方法はアミノ基のジメチル化に際し、還元剤として作用
するギ酸(1モルのHAに対して約4モルのギ酸が必要で
ある)のほかに、造塩剤として作用する塩基性有機酸が
1モルのHAに対して約2当量必要である。さらに、反応
生成物から遊離のTMHAを取得するために、1モルのTMHA
に対して約2当量のアルカリを用いて、造塩剤を中和す
る工程が必要である。However, in the conventional manufacturing method of TMHA, HA
The method of reacting formalin with formic acid and basic organic acid is, in addition to formic acid that acts as a reducing agent when dimethylating an amino group (about 4 mol of formic acid is necessary for 1 mol of HA), About 2 equivalents of basic organic acid which acts as a salt forming agent are required for 1 mol of HA. Furthermore, in order to obtain free TMHA from the reaction product, 1 mol of TMHA is used.
Therefore, a step of neutralizing the salt-forming agent with about 2 equivalents of alkali is required.
すなわち、この方法の欠点は還元剤として高価なギ酸を
用いるほかに、さらに多量の塩基性有機酸とアルカリを
使用する点にある。このため、中和工程から多量の塩基
性有機酸のアルカリ塩を含む排水が発生し、排水処理費
が高くつく欠点を有している。That is, a drawback of this method is that, in addition to using expensive formic acid as a reducing agent, a larger amount of basic organic acid and alkali are used. For this reason, wastewater containing a large amount of alkaline salts of basic organic acids is generated from the neutralization step, and there is a drawback that wastewater treatment costs are high.
一方、長鎖脂肪族第1級アミンまたは第2級アミンに水
素添加触媒の存在下、ホルマリンと水素とを反応させ
て、長鎖脂肪族第3級アミンを製造する従来の方法はい
ずれも特殊な溶媒を使用せず、原料長鎖脂肪族第1級ア
ミンまたは第2級アミンをほとんど無溶媒に近い状態で
反応器に仕込み、ホルマリンを供給して、還元ジメチル
化する方法である。On the other hand, conventional methods for producing long-chain aliphatic tertiary amines by reacting long-chain aliphatic primary amines or secondary amines with formalin and hydrogen in the presence of a hydrogenation catalyst are all special methods. It is a method in which a raw material long-chain aliphatic primary amine or secondary amine is charged into a reactor in an almost solvent-free state, a formalin is supplied, and reductive dimethylation is performed without using any solvent.
このように、ほとんど無溶媒に近い状態で長鎖脂肪族第
1級アミンまたは第2級アミンを還元ジメチル化して、
TMHAを製造する方法は、十分な反応成績を達成するため
に、高圧の水素を必要とする。かかる方法を工業的規模
で実施する場合、耐圧反応器が必要になり、設備費が高
くつく欠点を有している。また、運転管理面でも高度な
技術が要求される。In this way, the long-chain aliphatic primary amine or secondary amine is reductively dimethylated in a nearly solvent-free state,
The method of producing TMHA requires high pressure hydrogen to achieve sufficient reaction performance. When such a method is carried out on an industrial scale, a pressure resistant reactor is required, which has a drawback that the equipment cost is high. Also, advanced technology is required in terms of operation management.
本発明者らは、前記従来技術の欠点を解決するため、鋭
意検討を重ねた結果、貴金属触媒の存在下、ホルムアル
デヒドおよび/またはパラホルムアルデヒド並びに水素
を用いて、HAを還元ジメチル化する反応を炭素数1〜4
の脂肪族アルコール溶媒中または前記アルコールを30重
量%以上含む水とアルコールの混合溶媒中で行なわしめ
ることによつて、低圧の水素を用いた場合でも、高品位
のTMHAを高収率で製造できることを見い出し、本発明に
到達した。The present inventors have conducted extensive studies to solve the above-mentioned drawbacks of the prior art, and as a result, in the presence of a noble metal catalyst, formaldehyde and / or paraformaldehyde and hydrogen were used to reduce the reaction for reducing dimethylation of HA to carbon. Number 1-4
The high-quality TMHA can be produced in a high yield even when low-pressure hydrogen is used, by carrying out in the aliphatic alcohol solvent or in a mixed solvent of water and alcohol containing 30% by weight or more of the alcohol. They have found the present invention and reached the present invention.
すなわち、本発明は、HAを炭素数1〜4の脂肪族アルコ
ール溶媒中または前記アルコールを30重量%以上含む水
とアルコールの混合溶媒中において、貴金属触媒の存在
下、ホルムアルデヒドおよび/またはパラホルムアルデ
ヒド並びに水素と反応せしめることを特徴とするTMHAの
製造方法である。That is, the present invention provides a formaldehyde and / or paraformaldehyde and HA in an aliphatic alcohol solvent having 1 to 4 carbon atoms or a mixed solvent of water and alcohol containing 30% by weight or more of the alcohol in the presence of a noble metal catalyst. A method for producing TMHA characterized by reacting with hydrogen.
以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
本発明に供される主原料のHAは、アジピン酸法、アクリ
ロニトリル電解2量化法、ブタジエン法およびε−カプ
ロラクタム法など、公知の方法で製造できる。本発明は
これらいずれの方法で製造されるHAを使用しても円滑に
実施できる。また反応に供されるHAは無水の形態および
水溶液の形態など、どのような形態であつても本発明に
使用できる。The main raw material HA used in the present invention can be produced by a known method such as an adipic acid method, an acrylonitrile electrolytic dimerization method, a butadiene method, and an ε-caprolactam method. The present invention can be smoothly carried out using HA produced by any of these methods. The HA used in the reaction may be used in the present invention in any form such as anhydrous form and aqueous solution form.
本発明においては、反応系におけるHAの初期濃度が通常
5〜50重量%であり、好ましくは10〜40重量%となるよ
うにHAを供給する。ここでいうHAの初期濃度とは、反応
初期に、液相に存在するHA、水および炭素数1〜4の脂
肪族アルコールの合計量に対して、液相に存在するHAの
量を重量%で表わした値である。HAの初期濃度が5重量
%以下の場合は生産性が低いので実用的でなく、一方、
HAの初期濃度が50重量%以上の場合は、反応成績が低下
する傾向が認められるので好ましくない。なお本発明に
おいて反応系へHAを供給する方式としては、回分および
連続式のいずれの方式も採用できる。In the present invention, HA is supplied so that the initial concentration of HA in the reaction system is usually 5 to 50% by weight, preferably 10 to 40% by weight. The initial concentration of HA here means the amount of HA present in the liquid phase in% by weight relative to the total amount of HA, water and the aliphatic alcohol having 1 to 4 carbon atoms present in the liquid phase at the initial stage of the reaction. It is the value expressed by. When the initial concentration of HA is less than 5% by weight, productivity is low and it is not practical. On the other hand,
When the initial concentration of HA is 50% by weight or more, the reaction results tend to deteriorate, which is not preferable. In the present invention, as a system for supplying HA to the reaction system, either a batch system or a continuous system can be adopted.
本発明で使用するホルムアルデヒドおよび/またはパラ
ホルムアルデヒドはホルミル化剤として作用する。本発
明においては、通常、ホルムアルデヒドとパラホルムア
ルデヒドはそれぞれ単独で用いられるが、場合によつて
は、ホルムアルデヒドとパラホルムアルデヒドの混合物
を用いてもよい。またこれらのホルミル化剤は、通常、
例えば水および/またはアルコールとの混合物の形態と
なつている市販品をそのまま使用できる。特に本発明に
おいては、アルコールとの混合物の形態となつているホ
ルムアルデヒドおよび/またはパラホルムアルデヒドの
使用が好ましい。The formaldehyde and / or paraformaldehyde used in the present invention acts as a formylating agent. In the present invention, formaldehyde and paraformaldehyde are usually used alone, but in some cases, a mixture of formaldehyde and paraformaldehyde may be used. Further, these formylating agents are usually
Commercially available products, for example in the form of a mixture with water and / or alcohol, can be used as such. In particular, according to the invention, the use of formaldehyde and / or paraformaldehyde in the form of a mixture with alcohol is preferred.
本発明においては、ホルムアルデヒドおよび/またはパ
ラホルムアルデヒドの使用量は、通常HA1モル当り3.5〜
5.0モル当量である。ここでパラホルムアルデヒド1モ
ル当量とは、パラホルムアルデヒドを構成するホルムア
ルデヒド1単位をいう。In the present invention, the amount of formaldehyde and / or paraformaldehyde used is usually 3.5 to 1 mol of HA.
It is 5.0 molar equivalents. Here, 1 molar equivalent of paraformaldehyde means 1 unit of formaldehyde constituting paraformaldehyde.
本発明においては、ホルムアルデヒドおよび/またはパ
ラホルムアルデヒドの使用量がHA1モル当り3.5モル当量
未満の場合は、未反応HAが反応液中に残存する傾向とな
り、特に工業的に本発明を実施する際には、未反応HAの
回収費が増大し、経済的なTMHAの製造方法とはいえな
い。In the present invention, when the amount of formaldehyde and / or paraformaldehyde used is less than 3.5 molar equivalents per mole of HA, unreacted HA tends to remain in the reaction solution, which is especially advantageous when industrially carrying out the present invention. However, the recovery cost of unreacted HA increases, and it cannot be said to be an economical method for producing TMHA.
一方、使用量がHA1モル当り5.0モル当量を越えると、高
沸化合物の副生が増大し、製品TMHAの品質を低下させる
傾向となる。最も好ましいホルムアルデヒドおよび/ま
たはパラホルムアルデヒドの使用量はHA1モル当り3.9〜
4.5モル当量、すなわち4.0モル当量近辺である。On the other hand, when the amount used exceeds 5.0 molar equivalents per mole of HA, the by-products of high boiling compounds increase and the quality of the product TMHA tends to deteriorate. The most preferable amount of formaldehyde and / or paraformaldehyde used is 3.9 to 1 mol of HA.
It is around 4.5 molar equivalents, that is, 4.0 molar equivalents.
本発明においては、反応系へのホルムアルデヒドおよび
/またはパラホルムアルデヒドの供給方式は任意であ
る。ホルムアルデヒドの供給方式は、通常、ホルムアル
デヒドの形態が液状であることから、間歇または連続式
のいずれの方式にも適している。一方、パラホルムアル
デヒドの供給方式は、通常パラホルムアルデヒドの形態
が粉末であることから、回分式に適している。In the present invention, the method of supplying formaldehyde and / or paraformaldehyde to the reaction system is arbitrary. The formaldehyde supply system is suitable for either the intermittent system or the continuous system because the formaldehyde form is usually liquid. On the other hand, the paraformaldehyde supply system is suitable for the batch system since the form of paraformaldehyde is usually powder.
本発明においては、HAの還元ジメチル化を炭素数1〜4
の脂肪族アルコール溶媒中または水と前記アルコールと
の混合溶媒中で行なうことが重要である。ここで用いる
炭素数1〜4の脂肪族アルコールとしては、例えば、メ
タノール、エタノール、n−プロパノール、iso−プロ
パノール、n−ブタノール、iso−ブタノール、sec−ブ
タノール、tert−ブタノールなどが挙げられる。これら
のアルコールは単独または混合して使用できる。工業的
には安価なメタノールを使用するのが好ましい。In the present invention, the reductive dimethylation of HA has 1 to 4 carbon atoms.
It is important to carry out in the aliphatic alcohol solvent mentioned above or in a mixed solvent of water and the alcohol. Examples of the aliphatic alcohol having 1 to 4 carbon atoms used here include methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol, tert-butanol and the like. These alcohols can be used alone or as a mixture. It is preferable to use methanol which is industrially inexpensive.
また本発明においては、HAの還元ジメチル化を水と炭素
数1〜4の脂肪族アルコールの混合溶媒中で行なう場
合、溶媒が炭素数1〜4の脂肪族アルコールを30重量%
以上含むものであることが重要である。Further, in the present invention, when the reductive dimethylation of HA is carried out in a mixed solvent of water and an aliphatic alcohol having 1 to 4 carbon atoms, the solvent is 30% by weight of the aliphatic alcohol having 1 to 4 carbon atoms.
It is important to include the above.
すなわち、本発明においては、溶媒が実質的に炭素数1
〜4の脂肪族アルコールからなる単独溶媒か、または炭
素数1〜4の脂肪族アルコールを30重量%以上含む水と
の混合溶媒であることが必要である。That is, in the present invention, the solvent has substantially 1 carbon atom.
It is necessary that the solvent is a single solvent consisting of an aliphatic alcohol of 4 to 4 or a mixed solvent with water containing 30% by weight or more of an aliphatic alcohol having 1 to 4 carbon atoms.
本発明においては、水とアルコールの混合溶媒が30重量
%以上の炭素数1〜4の脂肪族アルコールを含むとは、
反応系中の液相に実質的に存在する水と実質的に存在す
る炭素数1〜4の脂肪族アルコールの合計量(これらは
反応系中で溶媒として作用している)に対する実質的に
存在する炭素数1〜4の脂肪族アルコールの量を重量%
で表わした時、それが30%以上であることを意味してい
る。In the present invention, the mixed solvent of water and alcohol contains 30% by weight or more of an aliphatic alcohol having 1 to 4 carbon atoms,
Substantially present relative to the total amount of water and the aliphatic alcohol having 1 to 4 carbon atoms substantially present in the liquid phase in the reaction system (these are acting as a solvent in the reaction system) The amount of the aliphatic alcohol having 1 to 4 carbon atoms by weight
When expressed by, it means that it is 30% or more.
本発明においては、水との混合溶媒中の炭素数1〜4の
脂肪族アルコールの量が30重量%未満の場合は、TMHAの
生成率が著しく低下するので好ましくない。In the present invention, when the amount of the aliphatic alcohol having 1 to 4 carbon atoms in the mixed solvent with water is less than 30% by weight, the production rate of TMHA is significantly reduced, which is not preferable.
本発明に用いられる貴金属触媒は通常の水素添加触媒と
して用いられるものが使用でき、例えば、パラジウム、
白金およびルテニウムが挙げられる。本発明では通常、
市販されている木炭系活性炭やヤシガラ活性炭に担持さ
れたパラジウム−活性炭触媒および白金−活性炭触媒が
好ましく用いられる。貴金属触媒における貴金属の担持
量は特に制限はないが、通常、担体に対して0.1〜10重
量%の貴金属が担持されたものが用いられる。The noble metal catalyst used in the present invention may be one used as a usual hydrogenation catalyst, for example, palladium,
Platinum and ruthenium are mentioned. In the present invention,
Palladium-activated carbon catalyst and platinum-activated carbon catalyst supported on commercially available charcoal-based activated carbon or coconut husk activated carbon are preferably used. The amount of the noble metal supported on the noble metal catalyst is not particularly limited, but usually, a noble metal supported on the carrier in an amount of 0.1 to 10% by weight is used.
本発明においては、貴金属触媒は、通常、反応系の液相
に懸濁させて使用される。HAの還元ジメチル化を円滑に
進行させるために、反応系の液相をよく攪拌し、貴金属
触媒をできる限り均一になるよう分散させることが重要
である。HAに対する貴金属触媒の使用量は、より多く使
用すれば反応が円滑に進行し、一方、少量すぎるとTMHA
の生成率が低下する傾向となる。通常、例えば5重量%
パラジウムを含む活性炭触媒を使用した場合、原料HA10
0重量部に対して5重量%パラジウム−活性炭触媒の使
用量は約1〜50重量部の範囲であり、好ましくは約3〜
30重量部である。一度使用された反応生成液中の触媒は
固液分離され、必要に応じて水、アルコールまたは水と
アルコールの混合溶媒で洗浄された後、循環再使用され
ることができる。In the present invention, the noble metal catalyst is usually used by suspending it in the liquid phase of the reaction system. In order to promote the reductive dimethylation of HA smoothly, it is important to stir the liquid phase of the reaction system well and to disperse the noble metal catalyst as uniformly as possible. Regarding the amount of precious metal catalyst used with respect to HA, the reaction proceeds smoothly if it is used in excess, while TMHA is used if it is too small.
Will tend to decrease the production rate of. Usually, for example, 5% by weight
When using an activated carbon catalyst containing palladium, the raw material HA10
The amount of 5% by weight of palladium-activated carbon catalyst used relative to 0 parts by weight is in the range of about 1 to 50 parts by weight, preferably about 3 to
30 parts by weight. The catalyst in the reaction product liquid once used can be solid-liquid separated, and if necessary, washed with water, alcohol or a mixed solvent of water and alcohol, and then recycled.
本発明においては、水素の加圧下に反応を行なう。すな
わち、反応系は水素で加圧される。圧力の範囲は副反応
が喚起されない限り制限されないが、全圧で10気圧(ゲ
ージ圧)以下で十分であり、通常、全圧は3〜9気圧
(ゲージ圧)で行なわれる。反応系への水素の供給は、
圧力計の変化を監視しながら、間歇または連続式のいず
れかの方式で行なわれる。In the present invention, the reaction is carried out under the pressure of hydrogen. That is, the reaction system is pressurized with hydrogen. The range of pressure is not limited as long as side reactions are not evoked, but a total pressure of 10 atm (gauge pressure) or less is sufficient, and the total pressure is usually 3 to 9 atm (gauge pressure). Supply of hydrogen to the reaction system
It is performed either intermittently or continuously while observing changes in the pressure gauge.
本発明における反応温度は、通常、室温から150℃の範
囲であり、好ましくは50〜120℃である。反応温度が高
温すぎると副反応が喚起される傾向が認められ、一方、
低温すぎると満足できる反応速度が得られず、実用的で
ない。The reaction temperature in the present invention is usually in the range of room temperature to 150 ° C, preferably 50 to 120 ° C. If the reaction temperature is too high, side reactions tend to be evoked, while
If the temperature is too low, a satisfactory reaction rate cannot be obtained, which is not practical.
本発明において、反応液から目的物のTMHAを取得する方
法としては、通常、反応液中の触媒を固液分離した後、
アルコールと水を蒸発させて、得られた濃縮液中のTMHA
を減圧蒸留で留出させる方法が採用される。In the present invention, as a method for obtaining the target TMHA from the reaction solution, usually, after solid-liquid separation of the catalyst in the reaction solution,
TMHA in the concentrate obtained by evaporating the alcohol and water
The method of distilling off by vacuum distillation is adopted.
以下の実施例により、本発明を更に具体的に詳細に説明
するが、本発明は以下の実施例により限定されるもので
ない。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
実施例1 還流冷却管、攪拌装置、ホルマリン供給ポンプ、温度
計、ガス導入口およびガス排出口を設けた容積1のオ
ートクレーブに65%HA水溶液58.0g(0.32モル)、メタ
ノール111.0gおよび5%パラジウム−カーボン粉末(50
%含水品)1.25g〔HA100重量部に対し、5%パラジウム
−カーボン粉末(50%含水品)として3.3重量部〕を仕
込んだ。仕込み時のHA濃度は22%(仕込んだHA、水およ
びメタノールの合計量に対し)であり、仕込み時の混合
溶媒中のメタノール量は84重量%(仕込んだ水およびメ
タノールの合計量に対し)であつた。Example 1 An autoclave having a volume of 1 equipped with a reflux condenser, a stirrer, a formalin supply pump, a thermometer, a gas inlet and a gas outlet was provided with 58.0 g (0.32 mol) of 65% HA aqueous solution, 111.0 g of methanol and 5% palladium. -Carbon powder (50
% Water product) 1.25 g [3.3 parts by weight of 5% palladium-carbon powder (50% water product) per 100 parts by weight of HA] were charged. The HA concentration at the time of charging was 22% (based on the total amount of HA, water and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 84% by weight (based on the total amount of water and methanol charged). It was.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液113.0g〔水溶液組成:HCHO4
1.8g(1.39モル)、水63.3g、メタノール(安定剤)7.9
g〕を1.33時間で添加し、還元アルキル化反応を行なつ
た。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). Meanwhile, 113.0 g of 37% formalin aqueous solution [aqueous solution composition: HCHO4
1.8g (1.39mol), water 63.3g, methanol (stabilizer) 7.9
g] was added over 1.33 hours to carry out a reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をガスクロマトグラフィー(G
C)法により分析した結果、HA転化率および仕込みHAに
対するTMHA生成率は共に100%であつた。After completion of the reaction, the mixture was aged for 0.5 hours, cooled to 40 ° C, and the reaction liquid obtained by separating the catalyst was subjected to gas chromatography (G
As a result of analysis by the method C), both the HA conversion rate and the TMHA production rate with respect to the charged HA were 100%.
実施例2 実施例1と同じ装置にHA結晶(無水)25.0g(0.22モ
ル)、95%パラホルムアルデヒド粉末28.6g(0.90モ
ル)、メタノール225.0gおよび5%パラジウム−カーボ
ン粉末(50%含水品)3.75gを仕込んだ。仕込み時のHA
濃度は10%(仕込んだHA、水およびメタノールの合計量
に対し)であり、仕込み時の混合溶媒中のメタノールの
量は99%(仕込んだ水およびメタノールの合計量に対
し)であつた。Example 2 In the same apparatus as in Example 1, HA crystals (anhydrous) 25.0 g (0.22 mol), 95% paraformaldehyde powder 28.6 g (0.90 mol), methanol 225.0 g and 5% palladium-carbon powder (50% hydrous product). 3.75g was charged. HA during preparation
The concentration was 10% (based on the total amount of HA, water, and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 99% (based on the total amount of water and methanol charged).
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、3時間還元アルキル化反応を行なつた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, the reductive alkylation reaction was carried out for 3 hours.
反応終了後、40℃まで冷却し、触媒を別して得た反応
液をGC法で分析した結果、HA転化率は100%、TMHA生成
率は95.5%であつた。After completion of the reaction, the reaction liquid obtained by cooling to 40 ° C. and separating the catalyst was analyzed by the GC method. As a result, the HA conversion was 100% and the TMHA production rate was 95.5%.
実施例3 実施例1と同じ装置に65%HA水溶液70.0g(0.39モ
ル)、メタノール80.0gおよび5%パラジウム−カーボ
ン粉末(50%含水品)4.50gを仕込んだ。仕込み時のHA
濃度は30%(仕込んだHA、水およびメタノールの合計量
に対し)であり、仕込み時の混合溶媒中のメタノールの
量は75%(仕込んだ水およびメタノールの合計量に対
し)であつた。Example 3 The same apparatus as in Example 1 was charged with 70.0 g (0.39 mol) of 65% HA aqueous solution, 80.0 g of methanol and 4.50 g of 5% palladium-carbon powder (50% hydrous product). HA during preparation
The concentration was 30% (based on the total amount of HA, water and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 75% (based on the total amount of water and methanol charged).
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、80℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液140.0g〔水溶液組成:HCHO5
1.8g(1.72モル)、水78.4gおよびメタノール(安定
剤)9.8g〕を1.25時間で添加し、還元アルキル化反応を
行なつた。The autoclave was replaced with nitrogen twice and replaced with hydrogen once, then heated to 80 ° C and hydrogen gas was introduced so that the hydrogen pressure was maintained at 8 to 9 kg / cm 2 -G (gauge pressure). However, 140.0 g of 37% formalin aqueous solution [aqueous solution composition: HCHO5
1.8 g (1.72 mol), water 78.4 g and methanol (stabilizer) 9.8 g] were added over 1.25 hours to carry out the reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し触媒
は別回収した。After completion of the reaction, the mixture was aged for 0.5 hours, cooled to 40 ° C., and the catalyst was separately collected.
以後、触媒以外は初回反応条件で、触媒は回収触媒に仕
込み量の1/36(0.125g)の新品触媒を補充してリサイク
ル使用する方式で、初回反応も含め計5回還元アルキル
化反応を行なつた。反応成績はHA転化率およびTMHA生成
率は共に全て100%であり、触媒活性の失活傾向は認め
られなかつた。After that, except for the catalyst, the initial reaction conditions were used, and the catalyst was recycled by replenishing the recovered catalyst with 1/36 (0.125 g) of the charged amount of new catalyst. Done. As for the reaction results, the HA conversion rate and TMHA production rate were all 100%, and no deactivation tendency of the catalyst activity was observed.
次に前記5回の還元アルキル化反応、即ち、初回反応と
触媒リサイクル反応の第1〜4回目までの反応液を混合
し、減圧下ロータリー・エバポレーターを用いて濃縮
し、得られた濃縮液をさらに減圧下分別蒸留して、121
℃/60mmHgの主留分290.1gを得た。得られた主留分の純
度は100%(GC法)であり、仕込みHAに対するTMHA生成
率は86.0%であつた。尚、混合した反応液中の水分をカ
ールフイシヤー法で測定した結果、メタノールと水分の
重量比は40対60であつた。Next, the reaction liquids of the above-mentioned five times of reductive alkylation reaction, that is, the first reaction to the first to fourth reaction of the catalyst recycling reaction are mixed and concentrated under reduced pressure using a rotary evaporator, and the obtained concentrated liquid is Further fractional distillation under reduced pressure, 121
290.1 g of a main distillate of ℃ / 60 mmHg was obtained. The purity of the obtained main fraction was 100% (GC method), and the TMHA production rate to the charged HA was 86.0%. The water content in the mixed reaction solution was measured by the Karl Fisher method, and as a result, the weight ratio of methanol to water was 40:60.
実施例4 実施例1と同じ装置にHA結晶(無水)50.0g(0.43モ
ル)、エタノール95.0gおよび5%白金−カーボン粉末
1.25gを仕込んだ。仕込み時のHA濃度は35%(仕込んだH
Aおよびエタノールの合計量に対し)であり、反応溶媒
は実質的にエタノール100%であつた。Example 4 HA crystal (anhydrous) 50.0 g (0.43 mol), ethanol 95.0 g and 5% platinum-carbon powder were placed in the same apparatus as in Example 1.
Charged 1.25g. HA concentration at the time of preparation was 35% (prepared H
(Based on the total amount of A and ethanol), and the reaction solvent was essentially 100% ethanol.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液138.0g〔水溶液組成:HCHO5
1.1g(1.70モル)、水77.2gおよびメタノール(安定
剤)9.7g〕を1.75時間で添加し、還元アルキル化反応を
行なつた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, 138.0 g of 37% formalin aqueous solution [aqueous solution composition: HCHO5
1.1 g (1.70 mol), water 77.2 g and methanol (stabilizer) 9.7 g] were added over 1.75 hours to carry out the reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC法で分析した結果、HA転化
率およびTMHA生成率は共に100%であつた。After completion of the reaction, the mixture was aged for 0.5 hour, cooled to 40 ° C., and the reaction solution obtained by separating the catalyst was analyzed by GC. As a result, both the HA conversion rate and the TMHA production rate were 100%.
実施例5 実施例1と同じ装置に65%HA水溶液58.0g(0.32モ
ル)、メタノール55.0gおよび5%パラジウム−カーボ
ン粉末(50%含水品)2.50gを仕込んだ。仕込み時のHA
濃度は33%(仕込んだHA、水およびメタノールの合計量
に対し)であり、仕込み時の混合溶媒中のメタノールの
量は72%(仕込んだ水およびメタノールの合計量に対
し)であつた。Example 5 The same apparatus as in Example 1 was charged with 58.0 g (0.32 mol) of 65% HA aqueous solution, 55.0 g of methanol and 2.50 g of 5% palladium-carbon powder (50% hydrous product). HA during preparation
The concentration was 33% (based on the total amount of HA, water, and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 72% (based on the total amount of water and methanol charged).
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液をメタノールで希釈し濃度
調整した25%ホルマリン−水−メタノール溶液167.6g
〔HCHO41.9g(1.40モル)、水63.4gおよびメタノール6
2.3g〕を、1.33時間で添加し還元アルキル化反応を行な
つた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). Meanwhile, 167.6 g of 25% formalin-water-methanol solution whose concentration was adjusted by diluting 37% formalin aqueous solution with methanol
[HCHO 41.9 g (1.40 mol), water 63.4 g and methanol 6
2.3 g] was added for 1.33 hours to carry out a reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC分析した結果、HA転化率お
よびTMHA生成率は共に100%であつた。After completion of the reaction, the mixture was aged for 0.5 hour, cooled to 40 ° C., and the reaction solution obtained by separating the catalyst was analyzed by GC. As a result, both the HA conversion rate and the TMHA production rate were 100%.
比較例1 実施例1と同じ装置に65%HA水溶液76.9g(0.43モ
ル)、水64.0gおよび5%パラジウム−カーボン粉末(5
0%含水品)2.50gを仕込んだ。仕込み時のHA濃度は35%
(仕込んだHAおよび水の合計量に対し)であり、反応溶
媒中にはアルコールは存在していなかつた。Comparative Example 1 In the same apparatus as in Example 1, 76.9 g (0.43 mol) of 65% HA aqueous solution, 64.0 g of water and 5% palladium-carbon powder (5
2.50 g (0% water content) was charged. HA concentration at the time of preparation is 35%
(Relative to the total amount of HA and water charged), no alcohol was present in the reaction solvent.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液154.0g〔水溶液組成:HCHO5
7.0g(1.90モル)、水86.2gおよびメタノール(安定
剤)10.8g〕を1.5時間で添加し、還元アルキル化反応を
行なつた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, 154.0 g of 37% formalin aqueous solution [aqueous solution composition: HCHO5
7.0 g (1.90 mol), 86.2 g of water and 10.8 g of methanol (stabilizer) were added over 1.5 hours to carry out a reductive alkylation reaction.
反応終了後、1.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC分析した結果、HA転化率は
100%、TMHA生成率は44.2%であつた。After completion of the reaction, the mixture was aged for 1.5 hours, cooled to 40 ° C, and the reaction mixture obtained by separating the catalyst was analyzed by GC.
The production rate was 100% and the TMHA production rate was 44.2%.
比較例2 実施例1と同じ装置に65%HA水溶液60.0g(0.34モル)
および5%パラジウム−カーボン粉末(50%含水品)2.
50gを仕込んだ。仕込み時のHA濃度は64%(仕込んだHA
および水の合計量に対し)であり、反応溶媒中にはアル
コールは存在していなかつた。Comparative Example 2 60.0 g (0.34 mol) of 65% HA aqueous solution in the same apparatus as in Example 1
And 5% palladium-carbon powder (50% hydrous product) 2.
Charged 50g. HA concentration at the time of preparation was 64% (prepared HA
And the total amount of water) and no alcohol was present in the reaction solvent.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液をメタノールで希釈し濃度
調整した19%ホルマリン−水−メタノール溶液228.0g
〔HCHO43.4g(1.45モル)、水65.7gおよびメタノール11
8.9g〕を、1.92時間で添加し還元アルキル化反応を行な
つた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, 228.0 g of 19% formalin-water-methanol solution in which the concentration was adjusted by diluting 37% aqueous formalin solution with methanol
[HCHO 43.4 g (1.45 mol), water 65.7 g and methanol 11
8.9 g] was added for 1.92 hours to carry out a reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC分析した結果、HA転化率は
100%、TMHA生成率は69.0%であつた。After completion of the reaction, the mixture was aged for 0.5 hour, cooled to 40 ° C, and the reaction solution obtained by separating the catalyst was analyzed by GC.
The production rate was 100% and the TMHA production rate was 69.0%.
比較例3 実施例1と同じ装置にHA結晶(無水)100g(0.86モル)
および5%パラジウム−カーボン粉末(50%含水品)2.
50gだけを仕込み、反応溶媒としてアルコールおよび水
は仕込まなかつた。Comparative Example 3 HA crystal (anhydrous) 100 g (0.86 mol) in the same apparatus as in Example 1.
And 5% palladium-carbon powder (50% hydrous product) 2.
Only 50 g was charged, and alcohol and water were not charged as reaction solvents.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液307.0g〔水溶液組成:HCHO1
13.6g(3.78モル)、水171.9gおよびメタノール(安定
剤)21.5g〕を4.0時間で添加し、還元アルキル化反応を
行なつた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, 307.0 g of 37% formalin aqueous solution [aqueous solution composition: HCHO1
13.6 g (3.78 mol), water 171.9 g and methanol (stabilizer) 21.5 g] were added for 4.0 hours to carry out the reductive alkylation reaction.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC法で分析した結果、HA転化
率は100%、TMHA生成率は51.8%であつた。After completion of the reaction, the mixture was aged for 0.5 hours, cooled to 40 ° C., and the reaction solution obtained by separating the catalyst was analyzed by GC. As a result, the HA conversion was 100% and the TMHA production rate was 51.8%.
比較例4 実施例1と同じ装置に65%HA水溶液70.0g(0.39モ
ル)、メタノール32.0g、水48.0gおよび5%パラジウム
−カーボン粉末(50%含水品)4.50gを仕込んだ。仕込
み時のHA濃度は30%(仕込んだHA、水およびメタノール
の合計量に対し)であり、仕込み時の混合溶媒中のメタ
ノールの量は30%(仕込んだ水およびメタノールの合計
量に対し)であつた。Comparative Example 4 The same apparatus as in Example 1 was charged with 70.0 g (0.39 mol) of 65% HA aqueous solution, 32.0 g of methanol, 48.0 g of water and 4.50 g of 5% palladium-carbon powder (50% water-containing product). HA concentration at the time of charging was 30% (based on the total amount of HA, water and methanol charged), and the amount of methanol in the mixed solvent at the time of charging was 30% (based on the total amount of water and methanol charged). It was.
オートクレーブの窒素置換を2回、水素置換を1回それ
ぞれ行なつた後、100℃まで昇温し8〜9kg/cm2‐G(ゲ
ージ圧)の水素圧を維持するように水素ガスを導入しな
がら、37%ホルマリン水溶液133.5g〔水溶液組成:HCHO4
9.4g(1.65モル)、水74.8gおよびメタノール(安定
剤)9.3g〕を1.50時間で添加し、還元アルキル化反応を
行なつた。After performing nitrogen replacement twice and hydrogen replacement once in the autoclave, raise the temperature to 100 ° C. and introduce hydrogen gas so as to maintain the hydrogen pressure of 8 to 9 kg / cm 2 -G (gauge pressure). However, 133.5 g of 37% formalin aqueous solution [aqueous solution composition: HCHO4
The reductive alkylation reaction was carried out by adding 9.4 g (1.65 mol), water 74.8 g and methanol (stabilizer) 9.3 g] over 1.50 hours.
反応終了後、0.5時間熟成した後、40℃まで冷却し、触
媒を別して得た反応液をGC法で分析した結果、HA転化
率は100%、TMHA生成率は61.2%であつた。又、カール
フイシヤー法で水分測定した結果、反応液中のメタノー
ルと水分の重量比は19対81であつた。After completion of the reaction, the mixture was aged for 0.5 hours, cooled to 40 ° C., and the reaction solution obtained by separating the catalyst was analyzed by GC. As a result, the HA conversion was 100% and the TMHA production rate was 61.2%. As a result of measuring the water content by the Karl Fisher method, the weight ratio of methanol to water in the reaction solution was 19:81.
本発明によれば、高価なギ酸の代りに安価な水素を還元
剤に用い、かつ過剰な塩基性有機酸およびアルカリを使
用することなく、さらに従来、公知の貴金属触媒、ホル
ミル化剤および水素を用いる還元ジメチル化によるTMHA
の製造方法に比べて、低い反応圧力でも高品位のTMHAを
高収率で取得できる。従つて、本発明は工業的に実用化
することの可能な優れたTMHA製造方法である。According to the present invention, inexpensive hydrogen is used as a reducing agent instead of expensive formic acid, and a conventionally known noble metal catalyst, formylating agent, and hydrogen are further used without using an excessive basic organic acid and alkali. TMHA by reductive dimethylation used
Compared with the production method of, high-quality TMHA can be obtained in high yield even at a low reaction pressure. Therefore, the present invention is an excellent TMHA production method that can be industrially put to practical use.
Claims (1)
の脂肪族アルコール溶媒中または前記アルコールを30重
量%以上含む水とアルコールの混合溶媒中において、貴
金属触媒の存在下、ホルムアルデヒドおよび/またはパ
ラホルムアルデヒド並びに水素と反応せしめることを特
徴とするN,N,N′,N′−テトラメチル−1,6−ヘキサンジ
アミンの製造方法。1. 1,6-Hexanediamine having 1 to 4 carbon atoms
In an aliphatic alcohol solvent or a mixed solvent of water and alcohol containing 30% by weight or more of the alcohol in the presence of a noble metal catalyst, N, N, N, N, characterized by reacting with formaldehyde and / or paraformaldehyde and hydrogen. Process for producing N ', N'-tetramethyl-1,6-hexanediamine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61124298A JPH078839B2 (en) | 1986-05-29 | 1986-05-29 | Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61124298A JPH078839B2 (en) | 1986-05-29 | 1986-05-29 | Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62281846A JPS62281846A (en) | 1987-12-07 |
JPH078839B2 true JPH078839B2 (en) | 1995-02-01 |
Family
ID=14881870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61124298A Expired - Lifetime JPH078839B2 (en) | 1986-05-29 | 1986-05-29 | Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH078839B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4923698B2 (en) * | 2006-04-24 | 2012-04-25 | 宇部興産株式会社 | Method for producing 4-aminotetrahydropyran compound |
FR2934172B1 (en) * | 2008-07-28 | 2011-10-28 | Inst Francais Du Petrole | ABSORBENT SOLUTION BASED ON N, N, N'N'-TETRAMETHYLHEXANE -1,6-DIAMINE AND PROCESS FOR REMOVING ACIDIC COMPOUNDS FROM A GASEOUS EFFLUENT |
JP5555917B2 (en) * | 2010-02-22 | 2014-07-23 | 公益財団法人名古屋産業科学研究所 | Process for monomethylation of aliphatic primary amines |
CN110627654B (en) * | 2019-09-28 | 2022-05-06 | 四川之江高新材料股份有限公司 | Process for the methylation of amines |
-
1986
- 1986-05-29 JP JP61124298A patent/JPH078839B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62281846A (en) | 1987-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4871875A (en) | Process for producing diphenylamines or N,N'-diphenylphenylenediamines | |
US6696609B2 (en) | Process for producing diamines | |
US6232500B1 (en) | Process for preparing a ketimine | |
JP3001685B2 (en) | Diamine production method | |
JP2598848B2 (en) | Bis (3-cyano-3,5,5-trimethyl-cyclohexylidene) -azine, a method for producing the compound and a method for producing 3- (aminomethyl) -3,5,5-trimethylcyclohexylamine | |
JPH078839B2 (en) | Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine | |
JP3974198B2 (en) | Method for producing bis (aminomethyl) cyclohexane | |
JP2740828B2 (en) | Method for producing N, N-diisopropylethylamine | |
EP0190667B1 (en) | Process for the preparation of methyl n-methylanthranilate | |
JP3544701B2 (en) | Method for producing N, N-disubstituted benzylamine | |
JPH0414096B2 (en) | ||
RU2240301C2 (en) | Method for preparing fluorinated compound of benzenedimethanol | |
JP2851274B2 (en) | Method for producing N, N-diisopropylethylamine | |
US6340773B1 (en) | Preparation of halogenated primary amines | |
JPS6311346B2 (en) | ||
JPH0246022B2 (en) | ||
JP2727359B2 (en) | 4,4'-Difluorodibenzylamine and process for producing the same | |
JP4378488B2 (en) | Process for producing 2-aminomethylpyrimidine and its salt | |
US6362372B2 (en) | Process for producing trifluoromethylbenzylamines | |
JPS62234075A (en) | Production of alpha-(n,n-dimethylamino)-epsilon-caprolactam | |
JPH08109170A (en) | Production of hexahydropyridazine | |
JPH0229067B2 (en) | ||
JP2537204B2 (en) | Method for producing hydantoins | |
JP2558480B2 (en) | Method for producing N-ethylpiperazine | |
GB2149790A (en) | Process for producing aminobenzylamines |