[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0782087A - Production of oxide single crystal - Google Patents

Production of oxide single crystal

Info

Publication number
JPH0782087A
JPH0782087A JP22702093A JP22702093A JPH0782087A JP H0782087 A JPH0782087 A JP H0782087A JP 22702093 A JP22702093 A JP 22702093A JP 22702093 A JP22702093 A JP 22702093A JP H0782087 A JPH0782087 A JP H0782087A
Authority
JP
Japan
Prior art keywords
crystal
solution
oxide single
growth
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22702093A
Other languages
Japanese (ja)
Inventor
Chiyun Zen Houa
ホゥア・チュン・ゼン
Tau Chiyon Chiyon
チョン・タウ・チョン
Chiyuu Rimu Reon
レオン・チュウ・リム
Hirohiko Kumagai
博彦 熊谷
Masahiro Hirano
正浩 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP22702093A priority Critical patent/JPH0782087A/en
Publication of JPH0782087A publication Critical patent/JPH0782087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the growing shape of a perovskite-type oxide single crystal for elements such as optical wavelength conversion element and to improve the processing yield of the element. CONSTITUTION:A perovskite-type oxide single crystal having a general formula ABO3 (A is Li, K or Na and B is Nb or Ta or A is Ba and B is Ti) is produced by TSSG process by growing the crystal in a specific direction, pulling up the most part of the grown crystal until the crystal is brought into contact with the hot solution at a part of the bottom of the crystal, and continuing the growth of new crystal from the contacting part of the crystal and the solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般式ABO3 で表さ
れるペロブスカイト型酸化物単結晶の製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a perovskite type oxide single crystal represented by the general formula ABO 3 .

【0002】[0002]

【従来の技術】近年、波長変換用の非線形光学結晶、あ
るいはフォトリフラクティブ結晶として、KNbO3
晶やBaTiO3 結晶などのペロブスカイト型酸化物単
結晶が注目を集めている。これらの結晶はTSSG法
(Top Seeded Solution Grow
th Method)と呼ばれる方法で育成される。T
SSG法は、種結晶を高温の溶液につけたまま融液温度
を徐々に下げ、種結晶の周りに結晶を析出させる溶液成
長の一つであり、種結晶を0.2mm/h程度で引き上
げる場合と、種結晶を引き上げない場合とがある。
2. Description of the Related Art In recent years, perovskite type oxide single crystals such as KNbO 3 crystals and BaTiO 3 crystals have been attracting attention as nonlinear optical crystals for wavelength conversion or photorefractive crystals. These crystals are TSSG (Top Seeded Solution Grow).
It is cultivated by a method called “th method”. T
The SSG method is one of solution growth in which the melt temperature is gradually lowered while the seed crystal is kept in a high temperature solution, and the crystal is precipitated around the seed crystal. When the seed crystal is pulled up at about 0.2 mm / h In some cases, the seed crystal may not be pulled up.

【0003】一般に溶液成長の結晶がそうであるよう
に、TSSG法によると結晶は晶癖と呼ばれる特定の結
晶面で囲まれたような形で成長することが多い。これ
は、結晶成長機構が沿面成長と呼ばれる特定の結晶面に
沿って原子が配列していく機構をとるためである。特
に、育成温度において立方晶系ペロブスカイト型構造を
とるものは、{100}pc(立方晶系ペロブスカイト型
構造における(100)面およびこれと等価な面)で囲
まれた立方体、あるいは直方体の形状に成長する。
In general, as in the case of solution-grown crystals, according to the TSSG method, crystals often grow in a form surrounded by a specific crystal plane called a crystal habit. This is because the crystal growth mechanism takes a mechanism called creeping growth in which atoms are arranged along a specific crystal plane. In particular, those having a cubic perovskite structure at the growth temperature have a cubic or rectangular parallelepiped shape surrounded by {100} pc ((100) plane in the cubic perovskite structure and a plane equivalent thereto). grow up.

【0004】この方法により製造された結晶は以下のよ
うな特徴を有する。 (1)成長する際の形状を自由に制御することが難し
く、前記晶癖によって規制された形状を呈する。 (2)常に特定の結晶面で囲まれた形で成長し、異なる
成長面の接合部はセクターバウンダリーと呼ばれ、他の
部分と光学的性質が異なる。 したがって、実際の光学素子を製作するうえで、大型素
子作製の困難性、歩留の低下、素子性能の低下などの問
題があった。
The crystal produced by this method has the following features. (1) It is difficult to freely control the shape at the time of growth, and the shape is restricted by the crystal habit. (2) Always grow in a form surrounded by a specific crystal plane, and a junction of different growth planes is called a sector boundary, and has different optical properties from other portions. Therefore, in manufacturing an actual optical element, there are problems such as difficulty in manufacturing a large-sized element, reduction in yield, and deterioration in element performance.

【0005】前記(1)及び(2)について、より具体
的にKNbO3 結晶の育成を例にとって説明する。TS
SG法によるKNbO3 単結晶の育成の難しさと問題点
は、ウ・キンらによる文献”Progress in
KNbO3 Growth”、Journal of
Crystal Growth,Vol.78(198
6)pp431−437などに詳しい。
The above (1) and (2) will be described more specifically by taking the growth of a KNbO 3 crystal as an example. TS
The difficulty and problems of growing a KNbO 3 single crystal by the SG method are described in the article “Progress in
KNbO 3 Growth ”, Journal of
Crystal Growth, Vol. 78 (198
6) Details on pp 431-437 and the like.

【0006】KNbO3 結晶は、結晶成長温度1050
℃付近では前記の立方晶系ペロブスカイト型構造をと
る。したがって、KNbO3 結晶は基本的には{10
0}pc面で囲まれた形に成長する。TSSG法の場合
は、種結晶の方位[100]、[110]、[111]
によって図8に示すような形状に結晶は成長するため、
結晶の形状を制御するのは難しい。
KNbO 3 crystal has a crystal growth temperature of 1050
The above-mentioned cubic perovskite structure is formed at around ° C. Therefore, the KNbO 3 crystal is basically {10
0} It grows in the form surrounded by pc faces. In the case of the TSSG method, the seed crystal orientations [100], [110], and [111]
As a result, the crystal grows into the shape shown in FIG.
It is difficult to control the crystal shape.

【0007】また、セクターバウンダリーには屈折率の
不均一が生じるため、良質な光学素子は切り出せない。
例えば、従来の方法で種子結晶を[110]pc方位とし
て育成した結晶は、図9に示すようにセクターバウンダ
リー6が複雑で、このセクターバウンダリー6を避けよ
うとすると加工の工程が複雑になること、加工中の無駄
が多くなること、大きな素子を作製するのが難しいこと
等の問題があった。
In addition, since the sector boundary has a non-uniform refractive index, a good quality optical element cannot be cut out.
For example, the crystal grown by the conventional method with the seed crystal oriented in the [110] pc direction has a complicated sector boundary 6 as shown in FIG. 9, and if the sector boundary 6 is avoided, the processing steps become complicated. However, there are problems such as that, it becomes wasteful during processing, and it is difficult to manufacture a large element.

【0008】ここで、以下の図1〜図10の全ての図に
おいて同様の部品及び部位には同じ符号を付しており、
個々の図における説明は省略する。図1〜図9におい
て、1は種子結晶で、2は種子結晶1より結晶がわずか
に成長してできた首状部で、3は第1段階育成結晶で、
4は第2段階育成結晶で、5は結晶欠陥で、6はセクタ
ーバウンダリーで、7は溶液表面である。また図10に
おいて、8は種子結晶1のホルダーとしてのアルミナセ
ラミック管で、9は結晶原料を収納する白金ルツボで、
10は白金ルツボ9を載置するセラミック耐火物で、1
1は結晶原料を加熱溶融させる抵抗加熱ヒーターで、1
2は原料溶液で、13は結晶である。
Here, in all the drawings shown in FIGS. 1 to 10 below, the same parts and portions are designated by the same reference numerals,
The description in each figure is omitted. In FIGS. 1 to 9, 1 is a seed crystal, 2 is a neck-like portion formed by slightly growing crystals from the seed crystal 1, 3 is a first stage grown crystal,
Reference numeral 4 is a second stage grown crystal, 5 is a crystal defect, 6 is a sector boundary, and 7 is a solution surface. Further, in FIG. 10, 8 is an alumina ceramic tube as a holder for the seed crystal 1, 9 is a platinum crucible for containing the crystal raw material,
10 is a ceramic refractory on which the platinum crucible 9 is mounted.
Reference numeral 1 is a resistance heater for heating and melting the crystal raw material.
Reference numeral 2 is a raw material solution, and 13 is a crystal.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来技術の
有する前述の欠点を解消することを目的とするものであ
り、TSSG法による酸化物単結晶製造技術において結
晶を望ましい形状に制御育成する方法を新規に提供し、
さらに結晶中のセクターバウンダリーを最小にし、大型
素子の作製と歩留の向上を可能とする酸化物単結晶の製
造技術を新規に提供するものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks of the prior art, and in the oxide single crystal manufacturing technique by the TSSG method, the crystal is controlled and grown in a desired shape. Provide a new method,
Further, the present invention newly provides a technology for producing an oxide single crystal that minimizes the sector boundary in the crystal and enables the production of a large element and the improvement of the yield.

【0010】また、本発明によれば、KNbO3 結晶や
BaTiO3 結晶などの、結晶成長温度から室温に冷却
されるまでに構造が変化する結晶において発生していた
徐冷時の結晶の割れ、双晶の発生等の問題点を解消する
ことが可能となる。
Further, according to the present invention, cracks of crystals during slow cooling which have occurred in crystals such as KNbO 3 crystals and BaTiO 3 crystals whose structure changes from the crystal growth temperature to the room temperature, It is possible to solve the problems such as twin formation.

【0011】[0011]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、一般式ABO3 (A=
Li、K、Na、B=Nb、Ta、あるいはA=Ba、
B=Ti)で表されるペロブスカイト型酸化物単結晶
を、原料の高温溶液に種子結晶を接触させ、前記種子結
晶を回転させながら徐々に結晶成長させて製造する方法
であって、結晶を特定方向に成長させた後、成長した結
晶が高温溶液と底部の一部分で接触する状態となるまで
結晶の大部分を高温溶液より引き上げ、その後結晶と高
温溶液の接触部分より新たに結晶成長を開始させること
を特徴とする酸化物単結晶の製造方法を提供するもので
ある。
The present invention has been made to solve the above-mentioned problems, and has the general formula ABO 3 (A =
Li, K, Na, B = Nb, Ta, or A = Ba,
A method for producing a perovskite type oxide single crystal represented by B = Ti) by bringing a seed crystal into contact with a high temperature solution of a raw material, and gradually growing the crystal while rotating the seed crystal. After growing in the direction, most of the crystal is pulled up from the hot solution until the grown crystal comes into contact with the hot solution at a part of the bottom, and then crystal growth is newly started from the contact portion between the crystal and the hot solution. The present invention provides a method for producing an oxide single crystal characterized by the above.

【0012】また、本発明における好ましい態様として
は、前記一般式ABO3 がKTaxNb1-x3 (0≦
x≦1)で表されるペロブスカイト型酸化物単結晶であ
ることを特徴とする。
In a preferred embodiment of the present invention, the general formula ABO 3 is KTa x Nb 1-x O 3 (0 ≦
It is characterized in that it is a perovskite type oxide single crystal represented by x ≦ 1).

【0013】さらに、本発明における好ましい態様とし
て、種子結晶の方位を立方晶系ペロブスカイト型構造に
おける[110]方位である[110]pcとすることを
特徴とする。また、前記特定方向を立方晶系ペロブスカ
イト型構造における[001]方位と[00−1]方位
である[001]pc方位と[00−1]pc方位としたこ
とを特徴とする。ここで、本発明において[00−1]
方位は[001]方位と正反対の方位を意味するもので
ある。
Further, as a preferred embodiment of the present invention, the orientation of the seed crystal is [110] pc which is the [110] orientation in the cubic perovskite type structure. Further, the specific direction is characterized by [001] pc orientation and [00-1] pc orientation which are [001] orientation and [00-1] orientation in the cubic perovskite structure. Here, in the present invention, [00-1]
The azimuth means an azimuth opposite to the [001] azimuth.

【0014】他の本発明における好ましい態様として、
種子結晶を原料の高温溶液に接触させた後、0.06〜
0.10mm/hの速度で種子結晶を引き上げ、種子結
晶より細い結晶部分を1〜3mm形成することを特徴と
する。また、種子結晶の原料の高温溶液からの引き上げ
を停止した状態で、結晶を特定方向に成長させるように
してもよい。さらに、特定方向に所定長の結晶を育成し
た後、結晶の底部の一部分と高温溶液とが接触する状態
となるまで1〜20mm/hの速度で結晶の大部分を溶
液より引き上げ、結晶と高温溶液の接触部分より新たに
結晶を成長させることにより、前記特定方向の所定長を
厚みとする結晶を育成するようにしてもよい。
As another preferred embodiment of the present invention,
After contacting the seed crystal with the high temperature solution of the raw material, 0.06 ~
The seed crystal is pulled up at a speed of 0.10 mm / h to form a crystal part thinner than the seed crystal in a thickness of 1 to 3 mm. Further, the crystals may be grown in a specific direction while the pulling of the seed crystal raw material from the high temperature solution is stopped. Furthermore, after growing a crystal of a predetermined length in a specific direction, most of the crystal is pulled out of the solution at a rate of 1 to 20 mm / h until a part of the bottom of the crystal and the high temperature solution come into contact with each other. It is also possible to grow a crystal newly from the contact portion of the solution to grow a crystal having a thickness of a predetermined length in the specific direction.

【0015】前記0.06〜0.10mm/hの速度
は、結晶成長速度が遅くなるように溶液の過飽和度を小
さく、すなわち溶液の徐冷速度を0.1℃/h以下に保
ち、この成長速度でも種子結晶が溶液から離れず結晶成
長を維持できる低速という意味で好ましい。前記1〜3
mmの細い結晶部分は、種子結晶から伝播する欠陥が成
長すべき結晶にまで及ぶのを防ぐのに充分な長さとして
好ましい。前記1〜20mm/hの速度は、結晶の成長
速度が引き上げ速度に追いつかず、かつ溶液からの急激
な引き抜き、急冷による熱歪みを結晶に与えない速度と
いう意味で好ましい。
The above rate of 0.06 to 0.10 mm / h reduces the supersaturation degree of the solution so that the crystal growth rate becomes slow, that is, the slow cooling rate of the solution is kept at 0.1 ° C./h or less. Even at the growth rate, the seed crystal is preferable in the sense that it is a low speed at which crystal growth can be maintained without leaving the solution. 1 to 3
A crystal part with a thickness of mm is preferable as a length long enough to prevent defects propagated from the seed crystal to reach the crystal to be grown. The speed of 1 to 20 mm / h is preferable in the sense that the growth rate of the crystal cannot catch up with the pulling rate, and the crystal is not subjected to thermal strain due to rapid withdrawal from the solution or rapid cooling.

【0016】[0016]

【作用】一般に溶液成長の結晶がそうであるように、T
SSG法によると結晶は晶癖と呼ばれる特定の結晶面で
囲まれたような形で成長することが多い。これは、結晶
成長機構が沿面成長と呼ばれる特定の結晶面に沿って原
子が配列していく機構をとるためである。特に、育成温
度において立方晶系ペロブスカイト型構造をとるもの
は、{100}pcで囲まれた立方体あるいは直方体の形
状に成長する。
Function: As is the case with solution-grown crystals, T
According to the SSG method, crystals often grow in a form surrounded by a specific crystal plane called a crystal habit. This is because the crystal growth mechanism takes a mechanism called creeping growth in which atoms are arranged along a specific crystal plane. In particular, those having a cubic perovskite structure at the growth temperature grow into a cubic or rectangular parallelepiped shape surrounded by {100} pc .

【0017】本発明者らの実験によると、各成長面の平
均線成長速度は、炉内の温度分布、成長面の向き、引き
上げ速度によって影響を受けることが分かった。
According to the experiments by the present inventors, it was found that the average linear growth rate of each growth surface is influenced by the temperature distribution in the furnace, the orientation of the growth surface, and the pulling rate.

【0018】特に、本発明者らの実験によると、種子結
晶を[110]pcとする場合、引き上げを行わずに溶液
温度を下げて行くと、4面が等価な面であるにもかかわ
らず、図5のように[001]と[00−1]の2方向
に結晶が成長しやすいことが分かった。反対に、引き上
げ速度がある程度速くなると、この2方向の成長は抑制
され、[100]と[010]の2面の成長が促進され
ることが分かった。
In particular, according to the experiments by the present inventors, when the seed crystal is [110] pc , when the solution temperature is lowered without pulling up, the four planes are equivalent planes. As shown in FIG. 5, it was found that crystals were likely to grow in two directions of [001] and [00-1]. On the contrary, it has been found that when the pulling speed is increased to some extent, the growth in the two directions is suppressed and the growth of the two surfaces of [100] and [010] is promoted.

【0019】したがって、この[001]と[00−
1]の2方向に結晶を成長させた後、結晶の引き上げを
開始することにより、結晶の厚さをこの2面間の長さと
できる。
Therefore, [001] and [00-
After the crystal is grown in the two directions [1], the crystal thickness can be made the length between the two surfaces by starting the pulling of the crystal.

【0020】また、図6に示すように、[001]と
[00−1]2方向に成長させた結晶の大部分を溶液よ
り引き上げ、溶液と結晶底部の一部分とが接触する状態
にする。その後図7に示すように、結晶と溶液の接触部
分より新たに結晶の引き上げ成長を開始すると、図1に
示すような形状の結晶が得られる。すなわち、図2に示
すように、種子結晶との接合部より発生した結晶欠陥
が、次の段階で成長させる結晶に伝播するのを防ぐ。
Further, as shown in FIG. 6, most of the crystals grown in the [001] and [00-1] 2 directions are pulled out from the solution so that the solution and a part of the crystal bottom are in contact with each other. Then, as shown in FIG. 7, when crystal pulling growth is newly started from the contact portion between the crystal and the solution, a crystal having a shape as shown in FIG. 1 is obtained. That is, as shown in FIG. 2, the crystal defects generated at the junction with the seed crystal are prevented from propagating to the crystal grown in the next stage.

【0021】図4に示すように第1段階の結晶を成長さ
せる前に種子結晶1より細い首状部2を作れば、さらに
結晶欠陥の伝播を防ぐ効果を高めることができる。ま
た、2段目の結晶成長において結晶の成長面を2面に限
定できるので、図3に示すように成長面と成長面に挟ま
れたセクターバウンダリーが、結晶の中央縦方向の1枚
になる。
As shown in FIG. 4, if the neck portion 2 thinner than the seed crystal 1 is formed before growing the first-stage crystal, the effect of preventing the propagation of crystal defects can be further enhanced. Further, since the crystal growth planes can be limited to two planes in the second-stage crystal growth, the sector boundary sandwiched between the growth planes as shown in FIG. Become.

【0022】[0022]

【実施例】【Example】

(実施例1)以下に、KNbO3 結晶の育成を例にし
て、本発明の実施例を詳細に説明する。
(Embodiment 1) Hereinafter, an embodiment of the present invention will be described in detail by taking growth of a KNbO 3 crystal as an example.

【0023】図10はTSSG法による結晶製造装置の
基本構成を示す側断面図である。抵抗加熱ヒーター11
を内蔵する炉は内径約10cmで、1500℃までの加
熱が可能である。白金ルツボ9は内径6cm、深さ7c
mで容積約150cm3 であり、セラミック耐火物10
上に置かれる。
FIG. 10 is a side sectional view showing the basic structure of a crystal production apparatus by the TSSG method. Resistance heater 11
The internal furnace has an inner diameter of about 10 cm and can heat up to 1500 ° C. Platinum crucible 9 has an inner diameter of 6 cm and a depth of 7 c
Ceramic refractory 10 with a volume of about 150 cm 3 in m
Placed on top.

【0024】出発原料は純度99.5%の無水K2 CO
3 を195.51g、純度99.99%の無水Nb2
5 を340.25g混合する。この混合比は、K2 CO
3 とNb25 のモル比で、52.5モル%対47.5
モル%である。
The starting material is anhydrous K 2 CO with a purity of 99.5%.
195.51 g of 3 and anhydrous Nb 2 O having a purity of 99.99%
340.25 g of 5 is mixed. This mixing ratio is K 2 CO
The molar ratio of 3 and Nb 2 O 5 is 52.5 mol% to 47.5.
Mol%.

【0025】前記混合原料を150cm3 白金ルツボ9
に入れる。種子結晶1は、3mm×3mm×16mmの
各柱状[110]pc方位のKNbO3 を用いる。それを
アルミナセラミック管8製の種子結晶ホルダーに固定
し、白金ルツボ9上に位置させる。
A 150 cm 3 platinum crucible 9 was added to the mixed raw material.
Put in. As the seed crystal 1, KNbO 3 having a columnar [110] pc orientation of 3 mm × 3 mm × 16 mm is used. It is fixed in a seed crystal holder made of alumina ceramic tube 8 and positioned on a platinum crucible 9.

【0026】電気炉を昇温して原料を溶解し、1060
℃から1065℃の種付け温度に調節する。溶液温度が
種付けに適当な温度になったら、種子結晶1を10rp
mで回転させながら、徐々に下げて原料溶液12の表面
に接触させる。種付け後は接触したKNbO3 種子結晶
1が、溶けて溶液から離れもせず明らかな成長もしない
温度になるように調節し、6時間保持する。
The temperature of the electric furnace is raised to melt the raw material, and 1060
Adjust seeding temperature from 0 ° C to 1065 ° C. When the solution temperature reaches an appropriate temperature for seeding, add 10 rp of seed crystal 1
While rotating at m, it is gradually lowered and brought into contact with the surface of the raw material solution 12. After seeding, the KNbO 3 seed crystal 1 contacted is adjusted to a temperature at which the KNbO 3 seed crystal 1 melts, does not separate from the solution, and does not grow obviously, and is held for 6 hours.

【0027】0.1℃/hで冷却しながら0.08mm
/hで引き上げ、長さ2mmの首状部分を育成する。首
作り終了後、冷却速度は一定のまま引き上げを停止し、
第1段階の育成を始める。引き上げを行わないで長時間
置くことにより、[001]および[00−1]方向を
優先的に成長させることができる。[001]、[00
−1]方向に20mm程度(結晶の厚み)に成長した
ら、温度一定のまま溶液12より9mm/hの速度で引
き上げる。この際、結晶13と溶液12の接触を保ちな
がら、結晶13と溶液12の接触面積を最小にする。
0.08 mm while cooling at 0.1 ° C./h
/ H, and a neck-shaped part having a length of 2 mm is grown. After making the neck, stop pulling up with the cooling rate kept constant,
Begin the first stage of training. By keeping it for a long time without pulling it up, it is possible to preferentially grow the [001] and [00-1] directions. [001], [00
After growing to about 20 mm (crystal thickness) in the −1] direction, the solution 12 is pulled up at a rate of 9 mm / h with the temperature kept constant. At this time, the contact area between the crystal 13 and the solution 12 is minimized while maintaining the contact between the crystal 13 and the solution 12.

【0028】結晶13と溶液12の接触面積を最小にし
た後、第2段階の育成を始める。第1段階の成長と同じ
冷却速度、回転速度を保ちながら、引き上げ速度を0.
14mm/hにする。これにより結晶は[001]、
[00−1]方向の成長を抑制しながら、[100]、
[010]方向のみの結晶成長が可能になる。第2段階
成長で[100]、[010]方向に30mmになった
とき、第1段階と同じ9mm/hで溶液12より結晶1
3を完全に引き抜き、結晶成長を終了する。
After the contact area between the crystal 13 and the solution 12 is minimized, the second stage growth is started. While keeping the same cooling rate and rotation speed as in the growth in the first stage, the pulling rate was set to 0.
14 mm / h. As a result, the crystals are [001],
While suppressing the growth in the [00-1] direction, [100],
Crystal growth only in the [010] direction is possible. When the second stage growth reached 30 mm in the [100] and [010] directions, crystals 1 were obtained from solution 12 at the same 9 mm / h as in the first stage
3 is completely drawn out, and the crystal growth is completed.

【0029】結晶の徐冷は、結晶成長温度から550℃
まで15℃/h、550℃から室温まで8℃/hで行
う。冷却後第2段階結晶部分の大きさ20mm×30m
m×30mm、80g程度の結晶が得られた。この結晶
から、これまでセクターバウンダリーの存在により切り
出せなかった、最大12mm×12mm×20mmの光
学素子用の結晶に加工できた。
The crystal is gradually cooled from the crystal growth temperature to 550 ° C.
Up to 15 ° C / h, from 550 ° C to room temperature at 8 ° C / h. After cooling, the size of the 2nd stage crystal part is 20mm × 30m
Crystals of m × 30 mm and about 80 g were obtained. From this crystal, it was possible to process into a crystal for an optical element having a maximum size of 12 mm × 12 mm × 20 mm, which could not be cut out due to the existence of a sector boundary.

【0030】(実施例2)実施例1と同じ炉を用いたK
Tax Nb1-x3 結晶の育成について以下に説明す
る。
(Example 2) K using the same furnace as in Example 1
The growth of the Ta x Nb 1-x O 3 crystal will be described below.

【0031】出発原料は純度99.5%の無水K2 CO
3 を195.51gと、純度99.99%の無水Ta2
5 を282.83gと、純度99.99%の無水Nb
25 を170.13gを混合する。この混合比はK2
CO3 とTa25 とNb25 のモル比で、52.5
モル%対27.75モル%対27.75モル%である。
これは、KTa0.5 Nb0.53 (x=0.5)にフラ
ックスとしてK2 Oを5モル%添加したことになる。
The starting material is anhydrous K 2 CO with a purity of 99.5%.
195.51 g of 3 and anhydrous Ta 2 having a purity of 99.99%
282.83 g of O 5 and anhydrous Nb having a purity of 99.99%
170.13 g of 2 O 5 is mixed. This mixing ratio is K 2
The molar ratio of CO 3 , Ta 2 O 5 and Nb 2 O 5 is 52.5.
Mol% to 27.75 mol% to 27.75 mol%.
This means that 5 mol% of K 2 O was added as a flux to KTa 0.5 Nb 0.5 O 3 (x = 0.5).

【0032】混合原料を150cm3 白金ルツボに入れ
る。種子結晶は、3mm×3mm×16mmの角柱状
[110]pc方位のKTaO3 を用いる。アルミナセラ
ミック管製種子結晶ホルダーに固定し、ルツボ上に位置
させる。電気炉を1400℃まで昇温して原料を溶解
し、1250℃から1255℃の種付け温度に調節す
る。溶液温度が種付けに適当な温度になったら、種子結
晶を10rpmで回転させながら徐々に下げて、溶液表
面に接触させる。
The mixed raw materials are put into a 150 cm 3 platinum crucible. As the seed crystal, 3 mm × 3 mm × 16 mm prismatic [110] pc oriented KTaO 3 is used. It is fixed in a seed crystal holder made of alumina ceramic tube and placed on the crucible. The electric furnace is heated to 1400 ° C. to melt the raw materials, and the seeding temperature is adjusted from 1250 ° C. to 1255 ° C. When the solution temperature reaches an appropriate temperature for seeding, the seed crystal is gradually lowered while rotating at 10 rpm to bring it into contact with the solution surface.

【0033】種子結晶に用いるKTaO3 は成長させよ
うとする結晶組成より高い溶解温度を持つので、実施例
1のKNbO3 結晶を育成するためにKNbO3 を種子
結晶とした場合と異なり、種付け後結晶が溶けて溶液か
ら離れることは少ない。この場合は、種付け後種となる
KTaO3 結晶から明らかなる成長をしない温度になる
ように調節し、2時間保持する。
Since KTaO 3 used for the seed crystal has a higher melting temperature than the crystal composition to be grown, unlike the case of using KNbO 3 as the seed crystal for growing the KNbO 3 crystal of Example 1, after seeding, Crystals rarely dissolve and leave the solution. In this case, the temperature is adjusted so that the KTaO 3 crystal that becomes the seed after seeding does not grow, and the temperature is maintained for 2 hours.

【0034】種子結晶を引き上げずに0.2℃/hで冷
却しながら、結晶が成長し始めるのを待つ。種子結晶か
ら結晶が成長を開始したら、0.1℃/hで冷却しなが
ら、0.08mm/hで引き上げ、長さ2mmの首状部
分を育成する。
While the seed crystal is not pulled up, it is cooled at 0.2 ° C./h while waiting for the crystal to start growing. When the crystals start to grow from the seed crystals, while cooling at 0.1 ° C./h, the crystals are pulled up at 0.08 mm / h to grow a neck portion having a length of 2 mm.

【0035】首状部分の育成終了後冷却速度は一定のま
ま、引き上げを停止し、第1段階の育成を開始する。引
き上げを行わないで長時間置くことにより、[001]
及び[00−1]方向を優先的に成長させることができ
る。[001]、[00−1]方向に10mm程度(結
晶の厚み)に成長したら、温度一定のまま溶液より9m
m/hの速度で引き上げる。この際、結晶と溶液の接触
を保ちながら結晶と溶液の接触面積を最小にする。
After the neck-shaped portion has been grown, the pulling is stopped and the first-stage growing is started with the cooling rate kept constant. By putting it for a long time without pulling it up, [001]
And the [00-1] direction can be preferentially grown. After growing to about 10 mm (crystal thickness) in the [001] and [00-1] directions, the temperature was kept constant at 9 m from the solution.
Pull up at a speed of m / h. At this time, the contact area between the crystal and the solution is minimized while maintaining the contact between the crystal and the solution.

【0036】結晶と溶液の接触面積を最小にした後、第
2段階の育成を始める。第1段階の成長と同じ冷却速
度、回転速度を保ちながら、引き上げ速度を0.14m
m/hにする。これにより結晶は[001]、[00−
1]方向の成長を抑制しながら、[100]、[01
0]方向のみの結晶成長が可能になる。第2段階成長で
[100]、[010]方向に25mmになったとき、
第1段階と同じ9mm/hで溶液より結晶を完全に引き
抜き、結晶成長を終了する。
After the contact area between the crystal and the solution is minimized, the second stage growth is started. The pulling speed is 0.14 m while maintaining the same cooling speed and rotation speed as in the first stage growth.
m / h As a result, the crystals are [001], [00-
[100], [01] while suppressing the growth in the 1] direction.
Crystal growth only in the [0] direction becomes possible. In the second stage growth, when it became 25 mm in the [100] and [010] directions,
The crystal is completely pulled out from the solution at 9 mm / h, which is the same as in the first step, and the crystal growth is completed.

【0037】結晶の徐冷は、結晶成長温度から室温まで
10℃/hで行う。これにより、第2段階結晶部分の大
きさ10mm×25mm×25mm、70g程度の結晶
が得られた。結晶組成は、ほぼKTa0.8 Nb0.23
(x=0.2)であった。この結晶から、最大5mm×
5mm×10mmの光学素子が加工できた。
The gradual cooling of the crystal is performed from the crystal growth temperature to room temperature at 10 ° C./h. As a result, a crystal having a size of the second stage crystal portion of 10 mm × 25 mm × 25 mm and about 70 g was obtained. The crystal composition is approximately KTa 0.8 Nb 0.2 O 3
(X = 0.2). From this crystal, up to 5 mm ×
A 5 mm × 10 mm optical element could be processed.

【0038】[0038]

【発明の効果】本発明による結晶製造は、以上のように
2方向に結晶を成長させた後、結晶の引き上げを開始
し、結晶の厚さ、長さ等形状を制御できるので結晶原料
の無駄が少ない。
In the crystal production according to the present invention, after the crystal is grown in two directions as described above, the crystal pulling can be started and the crystal thickness, length and other shapes can be controlled, so that the crystal raw material is wasted. Less is.

【0039】最初に成長する部分と2段階目で成長する
部分の接触面積が小さいので、種子結晶から発生した結
晶欠陥を最初の結晶で止め、2段階目で成長させる結晶
に伝播させずに済み良質な結晶が得られる。したがっ
て、たとえば結晶の種付け時に導入された結晶欠陥によ
って結晶が割れても、割れは一段目の結晶で食い止めら
れ、2段目の結晶には伝播しない。また、双晶なども伝
播しにくい。
Since the contact area between the first growing portion and the second growing portion is small, it is not necessary to stop the crystal defect generated from the seed crystal at the first crystal and propagate it to the crystal grown at the second step. Good quality crystals can be obtained. Therefore, even if the crystal cracks due to a crystal defect introduced at the time of seeding the crystal, the crack is stopped by the first-stage crystal and does not propagate to the second-stage crystal. In addition, twins are difficult to propagate.

【0040】第1段階の結晶を成長させる前に種子結晶
より細い首状の部分を作れば、さらに結晶の結果の伝播
を防ぐ効果を高めることができる。
If a neck-like portion thinner than the seed crystal is formed before growing the first-stage crystal, the effect of preventing the propagation of the crystal result can be further enhanced.

【0041】また、第2段階目の結晶成長において結晶
の成長面を2面に限定できるので、図3に示すように成
長面と成長面に挟まれたセクターバウンダリーが結晶の
中央縦方向の1枚になり、結晶を加工する工程が単純化
できる。その結果、結晶を利用した光学素子の歩留が向
上し、大型素子の切り出しが可能となる等の優れた効果
が生じる。
Further, since the crystal growth planes can be limited to two in the second stage crystal growth, the sector boundary sandwiched between the growth planes and the growth planes is located in the central longitudinal direction of the crystal as shown in FIG. The number of crystals becomes one, and the process of processing the crystal can be simplified. As a result, the yield of the optical element using crystals is improved, and excellent effects such as the ability to cut out a large element are produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示し、育成される結晶の斜視
図。
FIG. 1 is a perspective view of a crystal grown according to an embodiment of the present invention.

【図2】本発明の実施例を示し、育成される結晶におけ
る結晶欠陥の伝播を説明するための側断面図。
FIG. 2 is a side sectional view for explaining the propagation of crystal defects in a grown crystal according to the embodiment of the present invention.

【図3】本発明の実施例を示し、育成される結晶中に形
成されるセクターバウンダリーを説明するための斜視
図。
FIG. 3 is a perspective view showing an example of the present invention and illustrating a sector boundary formed in a grown crystal.

【図4】本発明の実施例を示し、育成工程における首状
部結晶の正面図(a)と側面図(b)。
FIG. 4 is a front view (a) and a side view (b) of a neck-shaped crystal in a growing step, showing an embodiment of the present invention.

【図5】本発明の実施例を示し、第1段階の結晶育成工
程における結晶の正面図(a)と側面図(b)。
FIG. 5 shows an embodiment of the present invention, and is a front view (a) and a side view (b) of the crystal in the first-stage crystal growing step.

【図6】本発明の実施例を示し、第1段階の結晶引き抜
き工程における結晶の正面図(a)と側面図(b)。
FIG. 6 shows an embodiment of the present invention, and is a front view (a) and a side view (b) of the crystal in the first-step crystal drawing step.

【図7】本発明の実施例を示し、第2段階の結晶育成工
程における結晶の正面図(a)と側面図(b)。
FIG. 7 shows an embodiment of the present invention, and is a front view (a) and a side view (b) of a crystal in a second-stage crystal growing step.

【図8】TSSG法によるKNbO3 結晶育成における
種子結晶の方位と結晶形状を説明するための斜視図。
FIG. 8 is a perspective view for explaining the orientation and crystal shape of a seed crystal in growing a KNbO 3 crystal by the TSSG method.

【図9】従来法により[110]pc方位で育成した結晶
中に形成されるセクターバウンダリーを説明するための
斜視図。
FIG. 9 is a perspective view for explaining a sector boundary formed in a crystal grown in a [110] pc orientation by a conventional method.

【図10】TSSG法による結晶製造装置の基本構成の
断面図。
FIG. 10 is a cross-sectional view of the basic structure of a crystal manufacturing apparatus by the TSSG method.

【符号の説明】[Explanation of symbols]

1:種子結晶 2:首状部 3:第1段階育成結晶 4:第2段階育成結晶 5:結晶欠陥 6:セクターバウンダリー 7:溶液表面 8:アルミナセラミック管 9:白金ルツボ 10:セラミック耐火物 11:抵抗加熱ヒーター 12:原料溶液 13:結晶 1: Seed crystal 2: Neck part 3: First stage grown crystal 4: Second stage grown crystal 5: Crystal defect 6: Sector boundary 7: Solution surface 8: Alumina ceramic tube 9: Platinum crucible 10: Ceramic refractory 11: Resistance heater 12: Raw material solution 13: Crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊谷 博彦 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 平野 正浩 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hirohiko Kumagai 1150, Hazawa-machi, Kanagawa-ku, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory (72) Masahiro Hirano 1150, Hazawa-machi, Kanagawa-ku, Yokohama Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Center

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】一般式ABO3 (A=Li、K、Na、B
=Nb、Ta、あるいはA=Ba、B=Ti)で表され
るペロブスカイト型酸化物単結晶を、原料の高温溶液に
種子結晶を接触させ、前記種子結晶を回転させながら徐
々に結晶成長させて製造する方法であって、結晶を特定
方向に成長させた後、成長した結晶が高温溶液と底部の
一部分で接触する状態となるまで結晶の大部分を高温溶
液より引き上げ、その後結晶と高温溶液の接触部分より
新たに結晶成長を開始させることを特徴とする酸化物単
結晶の製造方法。
1. The general formula ABO 3 (A = Li, K, Na, B
= Nb, Ta, or A = Ba, B = Ti), a perovskite type oxide single crystal is brought into contact with a high temperature solution of a raw material, and the seed crystal is gradually grown while rotating the seed crystal. A method of manufacturing, after growing a crystal in a specific direction, most of the crystal is pulled up from the hot solution until the grown crystal comes into contact with the hot solution at a part of the bottom, and then the crystal and the hot solution A method for producing an oxide single crystal, characterized in that crystal growth is newly started from a contact portion.
【請求項2】前記一般式ABO3 がKTax Nb1-x
3 (0≦x≦1)で表されるペロブスカイト型酸化物単
結晶である請求項1記載の酸化物単結晶の製造方法。
2. The general formula ABO 3 is KTa x Nb 1-x O.
The method for producing an oxide single crystal according to claim 1, which is a perovskite-type oxide single crystal represented by 3 (0 ≦ x ≦ 1).
【請求項3】種子結晶の方位を立方晶系ペロブスカイト
型構造における[110]方位である[110]pcとす
る請求項1記載の酸化物単結晶の製造方法。
3. The method for producing an oxide single crystal according to claim 1, wherein the orientation of the seed crystal is [110] pc which is the [110] orientation in the cubic perovskite structure.
【請求項4】前記特定方向を立方晶系ペロブスカイト型
構造における[001]方位と[00−1]方位である
[001]pc方位と[00−1]pc方位とした請求項1
記載の酸化物単結晶の製造方法。
4. The specific directions are [001] pc orientation and [00-1] pc orientation which are [001] orientation and [00-1] orientation in a cubic perovskite structure.
A method for producing the oxide single crystal described.
【請求項5】種子結晶を原料の高温溶液に接触させた
後、0.06〜0.10mm/hの速度で種子結晶を引
き上げ、種子結晶より細い結晶部分を1〜3mm形成す
る請求項1記載の酸化物単結晶の製造方法。
5. The seed crystal is brought into contact with a high temperature solution of a raw material, and then the seed crystal is pulled up at a rate of 0.06 to 0.10 mm / h to form a crystal portion 1 to 3 mm thinner than the seed crystal. A method for producing the oxide single crystal described.
【請求項6】種子結晶の原料の高温溶液からの引き上げ
を停止した状態で、結晶を前記特定方向に成長させる請
求項5記載の酸化物単結晶の製造方法。
6. The method for producing an oxide single crystal according to claim 5, wherein the crystal is grown in the specific direction while the pulling of the seed crystal raw material from the high temperature solution is stopped.
【請求項7】前記特定方向に所定長の結晶を育成した
後、結晶の底部の一部分と高温溶液とが接触する状態と
なるまで1〜20mm/hの速度で結晶の大部分を溶液
より引き上げ、結晶と高温溶液の接触部分より新たに結
晶を成長させることにより、前記特定方向の所定長を厚
みとする結晶を育成する請求項6記載の酸化物単結晶の
製造方法。
7. After growing a crystal having a predetermined length in the specific direction, most of the crystal is pulled out of the solution at a rate of 1 to 20 mm / h until a part of the bottom of the crystal comes into contact with the high temperature solution. The method for producing an oxide single crystal according to claim 6, wherein a crystal having a thickness of a predetermined length in the specific direction is grown by newly growing the crystal from a contact portion between the crystal and the high temperature solution.
JP22702093A 1993-09-13 1993-09-13 Production of oxide single crystal Pending JPH0782087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22702093A JPH0782087A (en) 1993-09-13 1993-09-13 Production of oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22702093A JPH0782087A (en) 1993-09-13 1993-09-13 Production of oxide single crystal

Publications (1)

Publication Number Publication Date
JPH0782087A true JPH0782087A (en) 1995-03-28

Family

ID=16854260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22702093A Pending JPH0782087A (en) 1993-09-13 1993-09-13 Production of oxide single crystal

Country Status (1)

Country Link
JP (1) JPH0782087A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056391A1 (en) * 1998-04-28 1999-11-04 Tdk Corporation Piezoelectric bulk vibrator
US6436208B1 (en) * 2001-04-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Process for preparing aligned in-situ two phase single crystal composites of titanium-niobium alloys
WO2005124398A1 (en) 2004-06-22 2005-12-29 Nippon Telegraph And Telephone Corporation Optical material, optical lens and prism
JP2012036015A (en) * 2010-08-03 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method
WO2019052210A1 (en) * 2017-09-15 2019-03-21 福建晶安光电有限公司 Crystal growing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056391A1 (en) * 1998-04-28 1999-11-04 Tdk Corporation Piezoelectric bulk vibrator
US6259187B1 (en) 1998-04-28 2001-07-10 Tdk Corporation Piezoelectric bulk acoustic wave device
US6436208B1 (en) * 2001-04-19 2002-08-20 The United States Of America As Represented By The Secretary Of The Navy Process for preparing aligned in-situ two phase single crystal composites of titanium-niobium alloys
WO2005124398A1 (en) 2004-06-22 2005-12-29 Nippon Telegraph And Telephone Corporation Optical material, optical lens and prism
JPWO2005124398A1 (en) * 2004-06-22 2008-04-10 日本電信電話株式会社 Optical materials, optical lenses and prisms
CN100399058C (en) * 2004-06-22 2008-07-02 日本电信电话株式会社 An optical medium, an optical lens and a prism
US7674737B2 (en) 2004-06-22 2010-03-09 Nippon Telegraph And Telephone Corporation Optical medium, an optical lens and a prism
JP2012036015A (en) * 2010-08-03 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Crystal growth method
WO2019052210A1 (en) * 2017-09-15 2019-03-21 福建晶安光电有限公司 Crystal growing method
US11486054B2 (en) 2017-09-15 2022-11-01 Fujian Jing'an Optoelectronics Co., Ltd. Method for growing crystal boule

Similar Documents

Publication Publication Date Title
KR101353277B1 (en) C-plane sapphire method
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
JPH07106960B2 (en) Single crystal manufacturing method
JP4465481B2 (en) Single crystal material manufacturing method, seed substrate, die, and single crystal material manufacturing apparatus
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JP4174086B2 (en) Seed and fluoride crystals for crystal growth
JPH0782087A (en) Production of oxide single crystal
CN100465357C (en) Fluoride crystal manufacturing equipment
JP7310339B2 (en) Method for growing lithium niobate single crystal
JP3128173B2 (en) Method and apparatus for producing bismuth germanate single crystal
JP2010248003A (en) Method for producing SiC single crystal
JP2000247793A (en) Preparation of langacite type crystal
JP3659693B2 (en) Method for producing lithium borate single crystal
JP4146829B2 (en) Crystal manufacturing equipment
JP2686662B2 (en) Oxide single crystal manufacturing equipment
JPH1095688A (en) Production of single crystal
JPH05117072A (en) Production of single crystal
CN1514046A (en) Method for growing near-stoichiometric lithium niobate single crystal by crucible drop method
JP3208603B2 (en) How to make a single crystal
JPS59107996A (en) Single crystal growing up method of solid solution composition of inorganic compound oxide
JP2004292179A (en) MANUFACTURING METHOD OF LARGE-SIZED KNbO3 SINGLE CRYSTAL
JP2002220295A (en) Method of growing crystal
JP2001106597A (en) Method and device for producing single crystal
JP2002137985A (en) Crucible for growing oxide single crystal and growing device of oxide single crystal using it
JPS58176197A (en) Preparation of silicon single crystal and preparation apparatus