[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0781819B2 - High precision interferometer - Google Patents

High precision interferometer

Info

Publication number
JPH0781819B2
JPH0781819B2 JP4102003A JP10200392A JPH0781819B2 JP H0781819 B2 JPH0781819 B2 JP H0781819B2 JP 4102003 A JP4102003 A JP 4102003A JP 10200392 A JP10200392 A JP 10200392A JP H0781819 B2 JPH0781819 B2 JP H0781819B2
Authority
JP
Japan
Prior art keywords
light
optical path
interference
calculated
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4102003A
Other languages
Japanese (ja)
Other versions
JPH05272913A (en
Inventor
弘一 松本
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4102003A priority Critical patent/JPH0781819B2/en
Publication of JPH05272913A publication Critical patent/JPH05272913A/en
Publication of JPH0781819B2 publication Critical patent/JPH0781819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子工業・機械工業な
どの精密生産分野及び計量・測量などの校正技術におい
て課題となっている位置決め・寸法の計測法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positioning / dimension measuring method, which is a problem in the field of precision production such as in the electronics industry and machinery industry, and in the calibration technology such as weighing and surveying.

【0002】[0002]

【従来の技術】最近、長さを精密に測定するために、多
くの種類の光波干渉測長計が開発され、その測定の分解
能が1ナノメートルに達しているが、数十ミリメートル
以上の長さにおいては、これらの測長計は大気のゆらぎ
の影響によってその測定精度が数ppm程度に限定され
ていた。このために、2色法といって、光波干渉測長計
の光源として、波長が異なる2色のパルス状レーザ光
発射する2色レーザを用いて測定することによって、光
波干渉による光学的測長値における大気の補正を実時間
で行うことが提案されている。
2. Description of the Related Art Recently, many kinds of light wave interferometers have been developed to measure the length accurately, and the resolution of the measurement has reached 1 nanometer, but the length is several tens of millimeters or more. In the above, the measurement accuracy of these length measuring instruments was limited to about several ppm due to the influence of atmospheric fluctuations . For this, 2-color method as saying, as a light source of the optical interference measuring meter, by measuring using a two-color laser wavelength emits a pulsed laser beam of two different colors, the optical length-measuring by optical interference It has been proposed to correct the atmosphere for the values in real time.

【0003】いま、波長λ1 の光と波長λ2 の光による
干渉を考えると、多数分割された1つの要素に対する光
学的測長値Dは、 D=D1 −A×(D1 −D2………(1) によって算出できる。ここで、D1 ,D2 はそれぞれ
λ1 ,λ2による光学的測定値、いわば生データ
であり、また、上式(1)における係数Aは A= {(n1 −1)/(n1 −n2 )} ………(2) によって与えられる定数 である。ここに、n 1 ,n 2
は、波長λ 1 ,λ 2 の光の光路中の大気の屈折率を示し
ている。上記の光学的測長値Dに、分割要数を乗ずれ
ば、被測長物の幾何学的測長値が計算できる。しかしな
がら、上記従来の「2色法」による測長法では、上式
(1)の係数Aが数十ないし数百程度の値となるので、
上式(1)から分かるように、たとえ生データD 1 ,D
2 の値の精度が 良くても、(D 1 −D 2 )の値が数十倍
ないし数百倍された値が差し引かれるので、最終的な測
長値Dの値の精度が低下して分解能がその分だけ悪くな
り、「2色法」の利点が十分に活かせない、という問題
があった。
Now, considering the interference between the light having the wavelength λ1 and the light having the wavelength λ2 , the light for one element divided into a large number is divided.
The geometrical measurement value D can be calculated by D = D 1 −A × (D 1 −D 2 ) ... (1) . Where D 1 and D 2 are waves
Length lambda 1, lambda 2 of the optical measurements by the light, as it were a raw data <br/>, The coefficient A is in the above formula (1), A = {( n 1 -1) / (n 1 - n 2 )} is a constant given by (2) . Where n 1 and n 2
Is the refractive index of the atmosphere in the optical path of light of wavelengths λ 1 and λ 2.
ing. The optical measurement value D described above Jozure the division necessity prime number
For example, it is possible to calculate the geometrical measurement value of the measured object. However, in the above-mentioned conventional “two-color method” , the above-mentioned formula is used.
Since the coefficient A in (1) is a value of several tens to several hundreds ,
As can be seen from the above equation (1) , even if the raw data D 1 , D
Even if the accuracy of 2 is good , the value of (D 1 -D 2 ) is several tens of times
Or the value multiplied by several hundred is subtracted, so the final measurement
The problem that the accuracy of the value of the long value D decreases and the resolution deteriorates accordingly, and the advantage of the "two-color method" cannot be fully utilized.
was there.

【0004】[0004]

【発明が解決しようとする課題】本発明は、2色法によ
る干渉測長計における、係数Aの値による測長分解能の
低下を解消するために、大気の補正に関係する干渉縞計
数値と長さに関係する干渉縞計数値とを同時であるが、
別々に計算処理することによって、分解能を落とさない
で、長さを測定することを目的とする。
SUMMARY OF THE INVENTION In order to solve the deterioration of the measurement resolution due to the value of the coefficient A in the interferometer using the two-color method, the present invention is to solve the problem of the interference fringe count value and the length of the interference fringe related to the correction of the atmosphere. Simultaneously with the interference fringe count value related to
The purpose is to measure the length without reducing the resolution by performing the calculation processing separately .

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
には、上述の議論より、2色法における係数Aが小さい
ことが重要であると同時に、干渉縞の測定の分解能を上
げることが必要である。本発明は、これらの課題を直接
解決するのではなく、他の方法で高分解能・高精度測長
を実現するものであり、大気の影響は空間的に1ミリメ
ートル以下の領域においては均質となる、つまり光が数
μm程度の距離を進む場合には大気の影響は一定とみな
せることを利用するものである。すなわち、図1に示す
ように、2色による干渉縞を従来通り別々に同時に計数
するが、これらの計数値を2つの経路に分離し、一方の
経路においては、長さに関係する干渉縞計数値からの測
定された生データが従来通りそのままパーソナルコンピ
ュータに入力されるが、もう一方の経路においては、
気の屈折率に対する補正に関係する干渉縞計数値は、多
数分割された要素のうちの1つの分割要素ごとに測定さ
れた生データが所定数N(例えばN=100〜1000
0)個積され、数Nで平均された平均値が算出され、
パーソナルコンピュータに入力され、幾何学的長さが計
算される。この平均化されたデータの分解能は、いわゆ
る「平均化効果」により、干渉縞の分割によって規定さ
れる分解能の√Nの1(例えば、N=100〜100
00の場合は1/10〜1/100)となる。この時、
データは平均を行っている間だけ数μmの空間的屈折率
の変化の情報が無くなるが、量子化誤差などによる分解
能の限界が√N(N=100〜10000の場 合は10
〜100)倍良くなり、係数Aによる分解能の低下を解
消することができる。この結果、ナノメートルのオーダ
での高精度測長が実現される。
In order to solve the above problems, it is important from the above discussion that the coefficient A in the two-color method is small, and at the same time it is necessary to improve the resolution of interference fringe measurement. Is. The present invention does not directly solve these problems but realizes high resolution and high precision measurement by another method , and the influence of the atmosphere becomes uniform in a spatial region of 1 mm or less. , That is, the number of lights
the influence of the atmosphere in the case of advance a distance of about μm is constant and everyone
It is what makes use of. That is, as shown in FIG. 1, the interference fringes of two colors are separately counted at the same time as in the conventional method, but these count values are separated into two paths, and in one path, the interference fringe meter related to the length is measured. Measurement from numerical values
Although constant is raw data is input in a conventional manner as a personal computer, in the other path, the large
The interference fringe count value, which is related to the correction for the refractive index of air, is
It is measured for each one of the divided elements.
A predetermined number N of the raw data obtained ( for example, N = 100 to 1000).
0) are pieces product min, mean values averaged by the number N is calculated,
It is input to a personal computer and the geometric length is calculated. Resolution of the averaged data, so-called
That the "averaging effect" of √N amount of resolution is defined by the division of the interference fringes 1 (e.g., N = 100 to 100
In the case of 00, it becomes 1/10 to 1/100) . At this time,
Data no information as many μm the change in the spatial refractive index between doing an average, but if the limit of resolution due to quantization errors √N (N = 100~10000 10
.About.100) times better, and the reduction in resolution due to the coefficient A can be eliminated. As a result, high-precision measurement on the order of nanometers is realized.

【0006】[0006]

【作用】現在、光波干渉測長計は多くの科学・工業の分
野において、利用されており、先端的電子・機械工業に
おける部品の高精度化に利用できることのほか、測定環
境の安定でない場所や長い光路での使の要求も増えてき
ている。この場合、問題となるのが大気ゆらぎとその屈
折率の補正である。本発明では、大気の屈折率を実時間
的に自動補正することによって、大気中における光波干
渉測長の精度が容易に高くなるので、光計測に関連・熟
知していない研究者・技術者でも有効に利用することが
できる。
[Function] At present, the light wave interferometer is used in many fields of science and industry, and it can be used for high precision of parts in the advanced electronic and mechanical industries, and also in a place where measurement environment is not stable or long. The demands for use in the optical path are increasing. In this case, the problem is correction of atmospheric fluctuation and its refractive index. In the present invention, the accuracy of lightwave interferometry in the atmosphere can be easily increased by automatically correcting the refractive index of the atmosphere in real time, so that even researchers and engineers who are not familiar with optical measurement can understand it. It can be used effectively.

【0007】[0007]

【実施例】図2に、本発明の一実施例である干渉縞係数
方式による2色干渉測長計を示す。図に示す干渉測長計
は2波長に対して同一光路となった偏光干渉測長計であ
り、λ/8板を利用した偏光法によって、2波長につい
て90°だけ位相が異なる信号を得るものである図に
示す干渉測長計は、光源としてレーザ光発射手段である
2波長レーザ13を備えており、1.06μmYAGレ
ーザ光(波長:λ 1 とその第2高調波のレーザ光(波
長:λ 2 が利用される。ここに、1.6μmYAGレ
ーザ光は第1レーザ光に相当し、その第2高調波のレー
ザ光は第2レーザ光に相当している。これらのレーザ光
はλ/2板によって、偏光状態が調整された後、第1
光路分離手段であるビームスプリッター2に向かう。ビ
ームスプリッター2を透過して第1光路を進行した光
は、可動鏡であるプローブ鏡5で進行方向とは逆方向に
反射される。測長する場合には、プローブ鏡5を所定の
速度、例えば10ミリメートル/秒の速度で第1光路上
を移動させる。一方、ビームスプリッター2で反射され
第2光路を進行した光は、λ/8板3を経て固定鏡で
ある参照鏡4に向い、ここで進行方向とは逆方向に反射
される。プローブ鏡5で反射された反射光及び参照鏡4
で反射された反射光はビームスプリッター2で干渉す
る。これら2波長の光の干渉は、第2光路分離手段で
ある2色鏡第1干渉光である基本波の光と第2干渉
光である第2高調波の光に分離される。基本波の干渉光
は偏光ビームスプリッター7に進入し位相が90°だけ
異なる2つの光に分離され、これらの信号が光電素子9
と10により光電検出される。ここに、偏光ビームスプ
リッター7と光電素子9及び10は第1検出手段を構成
している。また、第2高調波の干渉光は偏光ビームスプ
リッター8に進入し位相が90°だけ異なる2つの光に
分離され、これらの信号が光電素子11と12により光
電検出される。ここに、偏光ビームスプリッター8と光
電素子11及び12は第2検出手段を構成している。
れらの信号に含まれる基本波の干渉縞の数と第2高調波
の干渉縞の数電気的信号処理系14内のリバーシブル
カウンター(図示せず)で計数された後、パーソナルコ
ンピュータ15に入力され、被測長物の幾何学的長さが
計算される。ここに、基本波の干渉縞は第1の干渉縞に
相当し、第2高調波の干渉縞は第2の干渉縞に相当す
る。ここで、上記の電気的信号処理系14及びパーソナ
ルコンピュータ15における演算の方法について、図1
を参照しつつ説明する。図1は、基本波の干渉縞から算
出された多数分割要素に対する第1測長値D 1ij を示
し、また干渉縞から算出された多数分割要素に対する第
2測長値D 2ij を示している。図1において、1つの縦
線は1つの分割要素ごとの測長値データを示している。
本実施例の電気的信号処理系14内の図示しないリバー
シブルカウンターは、上記の第1の干渉縞と第2の干渉
縞から干渉縞の数を従来通り別々に同時に計数し、各分
割要素に対する第1測長値D 1ij と各分割要素に対する
第2測長値D 2ij を算出する。しかし、本実施例では、
これらの分割要素毎測長値の処理を2つの経路に分離し
ている。一方の経路においては、従来通り各分割要素に
対する第1測長値D1ij がパーソナルコンピュータ15
に入力される。しかし、もう一方の経路においては、各
分割要素に対する第1測長値D 1ij と各分割要素に対す
る第2測長値D 2ij について所定数N(N=100〜1
0000)個のデータを積分してΣ i 1ij とΣ i
2ij とを求めた後に所定数Nによる第1平均測長値D 1N
(=Σ i 1ij /N)と第2平均測長値D 2N (=Σ i
2ij /N)とを求め、これらがパーソナルコンピュータ
15に入力され、下式 ij =D 1ij −A×(D 1N −D 2N ) ………(3) により各分割要素に対する測長値D ij が求められる。こ
の光学的測長値D ij に、分割要素数を乗ずれば、被測長
物の幾何学的長さが計算される。上記において、電気的
信号処理系14とパーソナルコンピュータ15は演算手
段を構成している。
FIG. 2 shows a two-color interferometer with an interference fringe coefficient method which is an embodiment of the present invention . Gauge interferometer shown in FIG. Is a polarization gauge interferometer which has become the same optical path with respect to two wavelengths, the polarization method utilizing lambda / 8 plate, so as to obtain the phase by 90 ° for 2 wavelengths different signals There is . In the figure
The interferometric length meter shown is a laser light emitting means as a light source.
It is equipped with a two-wavelength laser 13, and has 1.06 μm YAG laser light (wavelength: λ 1 ) and its second harmonic laser light (wave
Length: λ 2) is Ru is used. Here, 1.6 μm YAG
The laser light corresponds to the first laser light, and its second harmonic
The light corresponds to the second laser light. After the polarization state of these laser lights is adjusted by the λ / 2 plate 1 , the first
It goes to the beam splitter 2 which is an optical path separating means . The light that has passed through the beam splitter 2 and traveled along the first optical path is reflected by the probe mirror 5, which is a movable mirror, in the direction opposite to the traveling direction . When measuring the length, set the probe mirror 5
On the first optical path at a speed of, for example, 10 mm / sec.
To move. On the other hand, the light reflected by the beam splitter 2 and traveling in the second optical path passes through the λ / 8 plate 3 and is reflected by the fixed mirror.
It faces a certain reference mirror 4, where it is reflected in the direction opposite to the direction of travel . Reflected light reflected by the probe mirror 5 and the reference mirror 4
The reflected light reflected by the beam interferes with the beam splitter 2. The interference light of these two wavelengths of light is transmitted by the second optical path separating means.
A certain dichroic mirror 6 causes the second interference with the light of the fundamental wave which is the first interference light.
It is separated into light of the second harmonic which is light . Interfering light of fundamental wave
Enters the polarization beam splitter 7 and the phase is only 90 °
The light is separated into two different lights, and these signals are detected by the photoelectric device 9
And 10, photoelectrically detected. Where the polarized beamsp
The litter 7 and the photoelectric devices 9 and 10 constitute a first detecting means.
is doing. In addition, the interference light of the second harmonic is
Two lights that enter the liter 8 and have a phase difference of 90 °
These signals are separated, and these signals are transmitted by the photoelectric elements 11 and 12.
Is detected. Here, the polarization beam splitter 8 and the light
The electric elements 11 and 12 form second detecting means. The number of interference fringes of the fundamental wave contained in these signals and the second harmonic
The number of interference fringes after being counted reversible counters electrical signal processing system 14 (not shown), are input to the personal computer 15, the geometrical length of Chobutsu measuring the is calculated. Here, the interference fringe of the fundamental wave becomes the first interference fringe
The second harmonic interference fringe corresponds to the second interference fringe.
It Here, the electrical signal processing system 14 and the personal
The calculation method in the computer 15 is shown in FIG.
Will be described with reference to. Figure 1 is calculated from the interference fringes of the fundamental wave.
Shows the first measurement value D 1ij for the issued number divided elements
And for the multiple split elements calculated from the interference fringes.
2 shows the length measurement value D 2ij . In Figure 1, one vertical
The line shows the length measurement value data for each divided element.
A river (not shown) in the electrical signal processing system 14 of this embodiment
The sibble counter is used for the first interference fringe and the second interference fringe.
From the fringes, the number of interference fringes was separately counted simultaneously as before, and each
First measurement value D 1ij for split element and each split element
The second length measurement value D 2ij is calculated. However, in this embodiment,
Separate the processing of these measurement values for each divided element into two paths.
ing. On one path, the
The first measured value D1ij for the personal computer 15 is
Entered in. But in the other path, each
The first measured value D 1ij for the dividing element and each dividing element
A predetermined number N (N = 100 to 1 ) for the second measured value D 2ij
0000) pieces of data are integrated to obtain Σ i D 1ij and Σ i D
2ij and the first average length measurement value D 1N
(= Σ i D 1ij / N) and the second average measurement value D 2N (= Σ i D
2ij / N) and these are personal computers
15 and the length measurement value D ij for each divided element is obtained by the following equation D ij = D 1ij −A × (D 1N −D 2N ) ... (3) . This
If the optical measurement value D ij of is multiplied by the number of division elements,
The geometric length of the object is calculated. In the above, electrical
The signal processing system 14 and the personal computer 15 are operators.
The steps are made up.

【0008】[0008]

【発明の効果】以上説明したように、本発明によれば、
分割要素ごとの測長値における大気の補正値は、分割要
素ごとの測長データを所定数N(例えばN=100〜1
0000)の分だけ積分して数Nで平均した値を用いる
ので、従来の2色法によるマイケルソン干渉測長計に比
べ測長の分解能を10〜100倍程度向上させることが
でき、大気の屈折率に影響されずに測長を行うことがで
きる。本発明の計測技術は、従来にはなかった新しい長
さの測定技術であり、半導体デバイスなどの電子関連
生産産業、及び機械など各種の精密工業関連の分野に
おいて、部品・製品の品質の向上及び長さの校正技術と
して価値が高い。
As described above, according to the present invention,
The atmospheric correction value in the measurement value for each division element must be divided.
A predetermined number N of measurement data for each prime (for example, N = 100 to 1)
0000) and use the value averaged over the number N
Therefore, compared to the conventional two-color method Michelson interferometer
It is possible to improve the resolution of the total length measurement by about 10 to 100 times.
The measurement can be performed without being affected by the refractive index of the atmosphere.
Wear. The measurement technology of the present invention is a new length measurement technology that has never existed before, and can improve the quality of parts and products in the electronic-related production industries such as semiconductor devices and various precision industry-related fields such as machinery. Highly valuable as a length calibration technique.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本原理を示す模式図である。FIG. 1 is a schematic diagram showing the basic principle of the present invention.

【図2】本発明の実施例を示す光学的構成図である。FIG. 2 is an optical configuration diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 λ/2板 2 ビームスプリッター 3 λ/8板 4 参照鏡 5 プローブ鏡 6 2色鏡 7 基本波用偏光ビームスプリッター 8 第2高調波用偏光ビームスプリッター 9,10 基本波用光電素子 11,12 第2高調波用光電素子13 2波長レーザ 14 電気的信号処理系 15 パーソナルコンピュータ 1 λ / 2 plate 2 Beam splitter 3 λ / 8 plate 4 Reference mirror 5 Probe mirror 6 Two-color mirror 7 Polarization beam splitter for fundamental wave 8 Polarization beam splitter for second harmonic wave 9,10 Photoelectric element for fundamental wave 11, 12 Second harmonic optoelectronic device 13 Two-wavelength laser 14 Electrical signal processing system 15 Personal computer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1の波長(λ 1 )を有し第1レーザ光
及び第2の波長(λ 2 )を有し第2レーザ光を同一光束
のレーザ光として発射するレーザ光発射手段(13)
と、 前記同一光束のレーザ光を第1光路と第2光路とに分離
する第1光路分離手段(2)と、 前記第1光路中に固定され前記第1光路を進行してきた
レーザ光を逆の方向に反射する固定鏡(4)と、 前記第2光路中に前記第2光路の方向に移動可能に設け
られ、被測長物の幾何学的長さを測長する場合に前記第
2光路の方向に移動され、前記第2光路を進行してきた
レーザ光を逆の方向に反射する可動鏡(5)と、 前記固定鏡(4)からの第1反射光と前記可動鏡(5)
からの第2反射光とが前記第1光路分離手段(2)にお
いて干渉して形成された干渉光を第1干渉光と第2干渉
光とに分離する第2光路分離手段(6)と、 前記第1干渉光の中から第1の干渉縞を検出する第1検
出手段(7,9,10)と、 前記第2干渉光の中から第2の干渉縞を検出する第2検
出手段(8,11,12)と、 前記検出された第1の干渉縞の数を計数して多数分割さ
れた各分割要素に対する前記被測長物の第1測長値D
1ij を算出するとともに、前記検出された第2の干渉縞
の数を計数して多数分割された各分割要素に対する前記
被測長物の第2測長値D 2ij を算出し、前記第1測長値
1ij を所定数N個積分して前記所定数Nで平均化した
第1平均測長値D 1N を算出するとともに、前記第2測長
値D 2ij を前記所定数N個積分して前記所定数Nで平均
化した第2平均測長値D 2N を算出し、大気の屈折率に対
する補正係数をAとしたとき、前記多数分割された各分
割要素に対する前記被測長物の測長値D ij を下式 ij =D 1ij −A×(D 1N −D 2N により算出し、前記測長値D ij に、前記分割要素の数を
乗ずることにより前記被測長物の幾何学的長さを算出す
る演算手段(14,15)と、 を備えたことを特徴とする高精度干渉測長計。
1. A first laser beam having a first wavelength (λ 1 )
And the second laser light having the second wavelength (λ 2 ) and the same light flux
Light emitting means for emitting as a laser light of (13)
And separating the laser light of the same light flux into a first optical path and a second optical path.
A first optical path separating means (2) which is fixed to the first optical path and has traveled along the first optical path.
A fixed mirror (4) for reflecting the laser light in the opposite direction, and a movable mirror provided in the second optical path in the second optical path.
When measuring the geometrical length of the DUT,
It has been moved in the direction of the two optical paths and has traveled along the second optical path.
A movable mirror (5) that reflects laser light in the opposite direction, the first reflected light from the fixed mirror (4) and the movable mirror (5).
The second reflected light from the first optical path separating means (2).
The interference light formed by the interference between the first interference light and the second interference light.
A second optical path separating means (6) for separating the light into light, and a first detecting means for detecting a first interference fringe from the first interference light.
Outputting means (7, 9, 10) and a second detector for detecting a second interference fringe from the second interference light.
The output means (8, 11, 12) and the number of the detected first interference fringes are counted and divided into a large number.
First measured value D of the measured object for each divided element
1ij is calculated, and the detected second interference fringe
The number of the
The second measured value D 2ij of the measured object is calculated, and the first measured value is calculated.
A predetermined number N of D 1ij are integrated and averaged by the predetermined number N.
The first average length measurement value D 1N is calculated, and the second length measurement is performed.
The value D 2ij is integrated by the predetermined number N and averaged by the predetermined number N.
The calculated second average measured value D 2N is calculated and
When the correction coefficient to be set is A,
The length measurement value D ij of the length-measurable object for the division element is calculated by the following equation D ij = D 1ij −A × (D 1N −D 2N ) , and the length measurement value D ij indicates the number of the division elements.
Calculate the geometric length of the measured object by multiplying
A high-precision interferometer , which is provided with a computing means (14, 15) .
JP4102003A 1992-03-27 1992-03-27 High precision interferometer Expired - Lifetime JPH0781819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4102003A JPH0781819B2 (en) 1992-03-27 1992-03-27 High precision interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4102003A JPH0781819B2 (en) 1992-03-27 1992-03-27 High precision interferometer

Publications (2)

Publication Number Publication Date
JPH05272913A JPH05272913A (en) 1993-10-22
JPH0781819B2 true JPH0781819B2 (en) 1995-09-06

Family

ID=14315622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4102003A Expired - Lifetime JPH0781819B2 (en) 1992-03-27 1992-03-27 High precision interferometer

Country Status (1)

Country Link
JP (1) JPH0781819B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103140A (en) * 2010-11-11 2012-05-31 Canon Inc Interference measuring method and interference measuring device
JP2017044565A (en) * 2015-08-26 2017-03-02 株式会社東京精密 Distance measurement device and method
JP2021015304A (en) * 2016-07-13 2021-02-12 エーエスエムエル ネザーランズ ビー.ブイ. Cyclic error measurement and calibration procedures in interferometers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361230B2 (en) * 2008-03-26 2013-12-04 株式会社ミツトヨ Two-wavelength laser interferometer evaluation calibration method, evaluation calibration apparatus, and evaluation calibration system
JP5216465B2 (en) 2008-08-01 2013-06-19 株式会社ミツトヨ Displacement measuring device and displacement measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103140A (en) * 2010-11-11 2012-05-31 Canon Inc Interference measuring method and interference measuring device
US8724114B2 (en) 2010-11-11 2014-05-13 Canon Kabushiki Kaisha Interferometer and distance calculation method therefor
JP2017044565A (en) * 2015-08-26 2017-03-02 株式会社東京精密 Distance measurement device and method
JP2021015304A (en) * 2016-07-13 2021-02-12 エーエスエムエル ネザーランズ ビー.ブイ. Cyclic error measurement and calibration procedures in interferometers

Also Published As

Publication number Publication date
JPH05272913A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP5264172B2 (en) Optical sensor using low coherence interferometry
US10024647B2 (en) Method of air refractive index correction for absolute long distance measurement
TW201728869A (en) Device and method for measuring height in the presence of thin layers
CN110360931B (en) Symmetrical compact heterodyne interference grating displacement measurement system
JPH0543961B2 (en)
EP0611438B1 (en) Optical measuring instruments
JPH06229922A (en) Very accurate air refractometer
JP2561861B2 (en) Combined scale and interferometer
US5133599A (en) High accuracy linear displacement interferometer with probe
JPH04326005A (en) Straightness measuring apparatus
JPH0781819B2 (en) High precision interferometer
de Groot et al. Concepts and geometries for the next generation of precision heterodyne optical encoders
CN108627084B (en) Laser instrument wavelength calibration system based on static michelson interferometer
JP4203831B2 (en) Precision measurement method for group refractive index of optical materials
JP4051443B2 (en) Method and apparatus for accurately measuring group refractive index of optical material
Tamiya et al. Detection principle and verification of non-contact displacement meter with pico-meter resolution
JP2920533B1 (en) High sensitivity measurement method by white interference
Liu et al. Theory and application of laser interferometer systems
CN114353671B (en) Dual-wavelength diffraction interference system and method for realizing synchronous measurement of displacement and angle
Chen et al. A new high-precision device for one-dimensional grating period measurement
JP5177566B2 (en) Refractive index measuring method and refractive index measuring apparatus
DE GROOT et al. Leslie L. Deck
JPH11173808A (en) Method for determining analytical equation of fringe scan interference measurement and fringe scan interferometer
Weichert et al. A straightness measuring interferometer characterised with different wedge prisms
JP2007183297A (en) Method and device for precisely measuring group refractive index of optical material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term