JPH0779994B2 - Ultrapure water production method - Google Patents
Ultrapure water production methodInfo
- Publication number
- JPH0779994B2 JPH0779994B2 JP20998987A JP20998987A JPH0779994B2 JP H0779994 B2 JPH0779994 B2 JP H0779994B2 JP 20998987 A JP20998987 A JP 20998987A JP 20998987 A JP20998987 A JP 20998987A JP H0779994 B2 JPH0779994 B2 JP H0779994B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- ultrapure water
- steam
- membrane
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超純水製造方法に係り、特に、蒸留方法での
超純水製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing ultrapure water, and more particularly to a method for producing ultrapure water by a distillation method.
半導体の製造工程や医薬品の製造には、含有不純物の量
ができる限り少ない、高純度の水(超純水)が必要とさ
れている。特にLSIの洗浄工程では大量の超純水を用い
ている。この超純水の純度が製品の歩留りに大きな影響
を与え、昨今の高集積度のLSI(1M,4Mビツト)の洗浄に
は更に高純度の水が要求されている。High-purity water (ultra-pure water) containing as few impurities as possible is required for the semiconductor manufacturing process and the pharmaceutical manufacturing. Especially in the LSI cleaning process, a large amount of ultrapure water is used. The purity of this ultrapure water has a great influence on the yield of products, and even higher purity water is required for cleaning highly integrated LSI (1M, 4M bits) these days.
従来の超純水製造装置は、環境技術Vol 14,No.4(198
5)、353〜358に記載されているように各種濾過膜、イ
オン交換塔,殺菌灯,脱気装置等から構成されている。
第5図に従来型の超純水製造装置の概要図を示す。原水
は凝集沈澱−濾過−マイクロ濾過などの前処理工程を経
た後、逆浸透工程(RO)に送られ、原水中に含まれる大
部分の溶解有機成分と90〜99%の無機塩類が除去され
る。更にこの透過水は脱気塔を経て脱炭酸され、イオン
交換樹脂工程に送られる。イオン交換塔は二床式および
混床式の再生方式で本工程において完全に塩類が除去さ
れ、通常はここで比抵抗10MΩ・cm以上の1次純水が得
られ、一旦純水タンクに貯蔵される。1次純水は更に、
混床式のイオン交換樹脂(ポリシヤ)で処理され、更に
完全に不純物を除去した後、紫外線殺菌工程で微生物を
除去し、限外濾過工程(UF)で残存する微粒子や死菌を
除去し、超純水となる。The conventional ultrapure water production system uses environmental technology Vol 14, No. 4 (198
5), 353 to 358, it is composed of various filtration membranes, ion exchange towers, germicidal lamps, deaerators, etc.
FIG. 5 shows a schematic diagram of a conventional ultrapure water production system. The raw water is subjected to pretreatment steps such as coagulation sedimentation-filtration-microfiltration, and then sent to the reverse osmosis step (RO) to remove most of dissolved organic components and 90 to 99% of inorganic salts contained in the raw water. It Further, this permeated water is decarbonated through the degassing tower and sent to the ion exchange resin step. The ion exchange tower is a two-bed type and a mixed-bed type regeneration system, in which salt is completely removed in this process. Normally, primary pure water with a specific resistance of 10 MΩ · cm or more is obtained here and then stored in a pure water tank. To be done. Primary pure water is
It is treated with a mixed bed type ion exchange resin (Polysia), and after further removing impurities completely, microorganisms are removed by an ultraviolet sterilization step, and fine particles and dead bacteria remaining in an ultrafiltration step (UF) are removed, It becomes ultrapure water.
また、特開昭61−230703号公報に示すように、疎水性多
孔質膜を用いた純水製造装置も提案されている。この装
置は、液体蒸気は透過させるが、液体自体は透過させな
い疎水性多孔質膜で仕切られた一側を原液通路とし、他
側に冷却板を設けて該冷却板と前記疎水性多孔質膜との
間を凝縮室とし、かつ前記冷却板の外側を冷却水通路と
し、前記原液通路から多孔質膜を透過した蒸気を凝縮質
で凝縮するようにした分離膜ユニツトと、ヒータを有す
るヒートタンクとを少なくとも有し、水道水等の原液を
まず前記分離膜ユニツトの冷却水通路に導き、該冷却水
通路を通過した原液を更に前記ヒートタンクに導き、該
ヒートタンクで加熱された高温の原液を前記分離膜ユニ
ツトの原液通路に導くように配管したものである。Further, as shown in Japanese Patent Laid-Open No. 61-230703, a pure water producing apparatus using a hydrophobic porous membrane has been proposed. In this device, one side partitioned by a hydrophobic porous membrane that allows liquid vapor to pass therethrough but does not allow the liquid itself to pass is used as a raw material passage, and a cooling plate is provided on the other side to provide the cooling plate and the hydrophobic porous film. Is a condensing chamber, and the outside of the cooling plate is a cooling water passage, and a separation membrane unit configured to condense the vapor that has passed through the porous membrane from the raw liquid passage with a condensate, and a heat tank having a heater. At least, and introduce a stock solution such as tap water into the cooling water passage of the separation membrane unit, further introduce the stock solution passing through the cooling water passage to the heat tank, the high temperature stock solution heated in the heat tank Is piped so as to lead to the stock solution passage of the separation membrane unit.
上記従来技術は各種濾過膜,イオン交換樹脂,殺菌灯な
どの多くの要素機器からなり、生成超純水の水質向上に
も、必然的に各要素機器のレベルアツプが必要である。
現在のシステムにおいても、例えば膜モジユールについ
ては、分離機能を有する膜表面の欠陥がなく、原液と透
過液側との間のシールが完全であること、モジユール内
での液の滞留部がなく各部が十分洗浄可能で細菌が増殖
しにくい構造で、モジユールからの溶出成分がほとんど
ないこと等数多くの要求があり、超純水用には特殊グレ
ードのものが使用されている。しかし、モジユール内で
の細菌の増殖防止には、定期的フラツシングによる洗浄
と薬剤による滅菌が必要である。またイオン交換樹脂で
の脱塩工程でも、再生時に外部からの不純物の混入を防
止する方法を採つたり、最終段のポリシヤには非再生型
で、十分に予備洗浄した高純度樹脂を使用するなどの配
慮がされている。The above-mentioned conventional technology is composed of many elemental devices such as various filtration membranes, ion exchange resins, and germicidal lamps, and in order to improve the water quality of the generated ultrapure water, it is inevitable that each elemental device has a level up.
Even in the current system, for example, with regard to the membrane module, there are no defects on the surface of the membrane that has a separation function, the seal between the raw solution and the permeate side is perfect, and there is no liquid retention part in the module. There are many requirements such as that it can be sufficiently washed and bacteria do not proliferate, and there are few elution components from the module, and a special grade is used for ultrapure water. However, in order to prevent bacterial growth in the module, cleaning by regular flushing and sterilization by chemicals are necessary. Even in the desalting process with ion-exchange resin, a method to prevent impurities from being mixed in from outside during regeneration is adopted, and a non-regenerated type of the final stage polyurethane uses a sufficiently purified high-purity resin. Are taken into consideration.
上記のように、従来の超純水製造技術では、水質の維持
に必要なメンテナンスがかなり多いと共に、要素機器が
多いことによる溶出,滞留部に起因する水質の低下等の
問題があつた。As described above, in the conventional ultrapure water production technique, there are problems such as a considerable amount of maintenance required to maintain the water quality, and elution due to the large number of elemental devices, and deterioration of the water quality due to the stagnant portion.
また、従来の疎水性膜を用いた純水製造装置では、前段
に原水中の炭酸ガスや有機物を除去する特別な脱CO2脱T
OC装置が設置されていないため、LSIの洗浄に利用でき
るレベルの水質を作り出すことはできなかつた。In addition, in the conventional pure water production system using a hydrophobic membrane, there is a special de-CO 2 de-T
Since no OC device was installed, it was not possible to create a level of water quality that could be used for cleaning LSIs.
本発明の目的は、上記欠点を解消すべく、要素機器の少
ない簡単な装置で、かつ、より高純度な水の製造が可能
で、同時に、より洗浄力が高いとされている高温超純水
も製造できる次世代向けの超純水製造方法を提供するこ
とにある。An object of the present invention is to eliminate the above-mentioned drawbacks by using a high temperature ultrapure water which is said to be capable of producing higher purity water with a simple device having less elemental equipment and at the same time having higher cleaning power. It is to provide a method for producing ultrapure water for the next generation, which can also be produced.
〔問題点を解決するための手段〕 本発明は、超純水のユースポイントを外部と隔離するク
リーンルームの外で原水から水蒸気を発生させ、この水
蒸気を気相状態で前記クリーンルーム内に移送し、ユー
スポイント近傍に設置され疎水性多孔質膜を装備した凝
縮器で凝縮させるものである。[Means for Solving Problems] The present invention generates steam from raw water outside a clean room that separates the point of use of ultrapure water from the outside, and transfers the steam in a vapor phase state into the clean room, It is condensed by a condenser installed near the point of use and equipped with a hydrophobic porous membrane.
クリーンルーム外にボイラー等の水蒸気発生器を設置
し、クリーンルーム内の凝縮器まで水蒸気の状態で移送
し、ユースポイント近傍の凝縮器で水に戻す。その凝縮
器内に疎水性多孔質膜を配し、復水される直前で膜によ
つて水蒸気を濾過し、水蒸気に同伴されるミスト(液
滴)を分離する。このようにすることにより純度の高い
水蒸気だけが凝縮するようになり、超純水が生成され
る。A steam generator such as a boiler is installed outside the clean room, and it is transferred to the condenser in the clean room in the state of steam and returned to water by the condenser near the point of use. A hydrophobic porous membrane is arranged in the condenser, and the steam is filtered by the membrane immediately before being condensed to separate mist (droplets) entrained in the steam. By doing so, only high-purity water vapor is condensed, and ultrapure water is generated.
通常、水道水や逆浸透処理した水の中には、各種無機
物,イオン,有機物,微生物が多量に含まれている。こ
の中で膜蒸留のような相変化を伴う場合、不揮発性の物
質、例えば無機物,微生物,高沸点の有機物は、割合除
去しやすいが、揮発性物質、例えば炭酸ガス成分、低沸
点の有機物等は、ほとんど除去できない。そこで前段に
脱CO2,脱TOC部を設け、膜蒸留の前段で除去できない揮
発性物質を除去する必要がある。そこで、まずクリーン
ルーム外に設置する水蒸気発生器を、2部に分け、前段
で加熱法や、酸化等の方法による脱CO2,脱TOC部で揮発
性物質を除去し、その後、水蒸気発生部で蒸気が生成さ
れる。揮発性成分は前段で除去されているため、水蒸気
中に混入する不純物は同伴されるミスト(液滴)のみと
なる。この水蒸気はクリーンルーム内に設置した凝縮器
に送られる。凝縮器には疎水性多孔質膜と冷却面が存在
し、送られた水蒸気を膜で濾過して、同伴するミストを
除去し、純粋な水蒸気だけを凝縮させて超純水を製造す
る。Usually, tap water or water subjected to reverse osmosis treatment contains a large amount of various inorganic substances, ions, organic substances, and microorganisms. In the case of a phase change such as membrane distillation, non-volatile substances such as inorganic substances, microorganisms, and high boiling organic substances are easily removed, but volatile substances such as carbon dioxide gas components and low boiling organic substances are easily removed. Can hardly be removed. Therefore, it is necessary to install a CO 2 removal and TOC removal unit in the previous stage to remove volatile substances that cannot be removed in the previous stage of membrane distillation. Therefore, the steam generator installed outside the clean room is first divided into two parts, the volatile substances are removed by the CO 2 removal and TOC removal parts by the heating method and the oxidation method in the previous stage, and then the steam generation part is installed. Steam is produced. Since the volatile components have been removed in the previous stage, the impurities mixed in the water vapor are only mist (droplets) entrained. This water vapor is sent to the condenser installed in the clean room. The condenser has a hydrophobic porous membrane and a cooling surface, and the sent steam is filtered through the membrane to remove mist entrained therein, and only pure steam is condensed to produce ultrapure water.
以下、本発明の実施例を第1図乃至第4図により説明す
る。An embodiment of the present invention will be described below with reference to FIGS.
第1図に、本発明の基本的フローを示す。市水等の原水
はRO等により、前処理され、水蒸気発生器内にスケール
が付着するのを防止する。前処理した水は水蒸気発生器
に入る。ここで揮発性物質を除去した水蒸気は、クリー
ンな配管で水蒸気のまま、クリーンルーム内に送られ、
ユースポイント近傍の凝縮器に入り、凝縮器内の疎水性
多孔質膜で水蒸気中のミストを除去した後、凝縮し、超
純水に生成される。FIG. 1 shows the basic flow of the present invention. Raw water such as city water is pretreated by RO etc. to prevent scale from adhering to the inside of the steam generator. The pretreated water enters the steam generator. The water vapor from which volatile substances have been removed is sent to the clean room as water vapor in a clean pipe,
After entering the condenser near the point of use and removing the mist in the water vapor by the hydrophobic porous membrane in the condenser, it is condensed and produced in ultrapure water.
第2図に、水蒸気発生器の概略の一例を示す。前処理さ
れた原水20は脱CO2,脱TOC部21に入り、加熱器23によつ
て沸騰し、CO2及びTOC成分を水蒸気と共に除去させる。
本実施例では直接加熱しているが、フラツシユ蒸発等の
方法も使用できる。この水蒸気24は次の水蒸気発生部22
の水蒸気発生熱源となり、凝縮した水はドレン27として
系外に排出される。脱CO2,脱TOC部21でCO2及びTOC成分
を除去された原水は、流量調整バルブ26を通り水蒸気発
生部22に送られる。原水はここで蒸気となり配管25を通
りクリーンルーム内に送られる。なお、熱量の調整のた
め予備加熱器28が設置されている。FIG. 2 shows an example of the outline of the steam generator. The pretreated raw water 20 enters the CO 2 removal and TOC removal section 21, and is boiled by the heater 23 to remove CO 2 and TOC components together with steam.
Although heating is performed directly in this embodiment, a method such as flash evaporation can also be used. This steam 24 is used in the next steam generation unit 22.
It becomes a steam generation heat source, and the condensed water is discharged outside the system as a drain 27. De CO 2, raw water removed CO 2 and TOC components in de TOC section 21 is sent to the flow rate adjusting valve 26 as the steam generator 22. The raw water becomes steam here and is sent to the clean room through the pipe 25. A pre-heater 28 is installed to adjust the amount of heat.
第3図に凝縮器の概略を示す。配管25より送られてきた
水蒸気は、疎水性多孔質膜33を有する膜モジユール31を
通り、同伴するミストと分離される。ここで、疎水性多
孔質膜33の素材は、ポリテトラフルオロエチレン,ポリ
プロピレン,ポリエチレン等である。ミストと分離され
た蒸気は、凝縮部32で冷却水33によつて冷やされた冷却
面34上で凝縮し、超純水35として取り出される。本実施
例によれば、水以外の不純物の極めて少ない、高純度の
超純水を高温の状態で取り出すことができる。膜モジユ
ール31を通過した水の比抵抗は18MΩ・cm以上,微粒子
(0.1μm・個/)は100以下,微生物(個/)は10
以下、有機物(ppb)は10以下であつた。FIG. 3 shows an outline of the condenser. The water vapor sent from the pipe 25 passes through the membrane module 31 having the hydrophobic porous membrane 33 and is separated from the accompanying mist. Here, the material of the hydrophobic porous film 33 is polytetrafluoroethylene, polypropylene, polyethylene or the like. The vapor separated from the mist is condensed on the cooling surface 34 cooled by the cooling water 33 in the condensing section 32, and is taken out as ultrapure water 35. According to the present embodiment, high-purity ultrapure water containing very few impurities other than water can be taken out at a high temperature. The specific resistance of water that has passed through the membrane module 31 is 18 MΩ · cm or more, fine particles (0.1 μm · piece / piece) are 100 or less, and microorganisms (piece / piece) are 10 or less.
Below, the organic matter (ppb) was 10 or less.
第4図には熱回収型の凝縮器の概略を示す。前記方法で
は有効な熱回収を図る点では不充分な構造である。そこ
で、同図に示した如く多段化する。配管25より送られる
蒸気は膜モジユール31で濾過された後、第1塔42に送ら
れ、この第1塔42中にある原水41で冷やされ超純水とな
る。この原水41はクリーンルーム外の水蒸気発生器より
送られる。同時に、第1塔42中の原水は蒸発し、水蒸気
は疎水性多孔質46で濾過された後、第2塔43で冷却水44
によつて凝縮し、超純水45となる。本方式によれば、熱
回収が行なえるため、生成水コストを低減させることが
できる。本実施例では2段の凝縮を示してあるが、3
段,4段でも特にさしつかえない。FIG. 4 shows an outline of a heat recovery type condenser. The above method has an insufficient structure in terms of effective heat recovery. Therefore, as shown in FIG. The steam sent from the pipe 25 is filtered by the membrane module 31, then sent to the first tower 42, and cooled by the raw water 41 in the first tower 42 to become ultrapure water. This raw water 41 is sent from a steam generator outside the clean room. At the same time, the raw water in the first tower 42 evaporates, the water vapor is filtered by the hydrophobic porous material 46, and then the cooling water 44 in the second tower 43.
Is condensed and becomes ultrapure water 45. According to this method, since heat can be recovered, the cost of produced water can be reduced. In this example, two stages of condensation are shown, but 3
It doesn't matter even if it is 4 steps or 4 steps.
なお、第1図において、凝縮器を用いて復水し、超純水
として利用しているが、水によるLSIの洗浄でなく水蒸
気による洗浄が有効であれば、本プロセスから冷却面34
(第3図)を取り除くことで、クリーンな水蒸気を取る
ことができる。In FIG. 1, the condenser is used to condense water and use it as ultrapure water. However, if cleaning with water vapor rather than LSI with water is effective, the cooling surface 34
By removing (Fig. 3), clean water vapor can be taken.
本発明によれば、通常の蒸留装置において問題となる揮
発成分については水蒸気発生器で、また同伴するミスト
は凝縮器の疎水性多孔質膜で除去されるため、これら不
純物を含まない、高純度の超純水の製造が可能となる。
更に、従来から問題とされていた超純水移送時の溶出等
のコンタミネーシヨンもユースポイント直前で濾過・凝
縮されることで防止できることから、従来以上の水質が
得られる。また、生成水の温度が高いことから、そのま
ま高温超純水となるためウエハー等の洗浄には更に効果
的となる。According to the present invention, a volatile component which is a problem in an ordinary distillation apparatus is removed by a steam generator, and entrained mist is removed by a hydrophobic porous membrane of a condenser. It becomes possible to produce ultrapure water.
Further, since the contamination such as elution during the transfer of ultrapure water, which has been a problem in the past, can be prevented by filtering and condensing immediately before the point of use, a water quality higher than that in the past can be obtained. Further, since the temperature of the generated water is high, it becomes high-temperature ultrapure water as it is, which is more effective for cleaning wafers and the like.
第1図は本発明の概略フロー図、第2図は水蒸気発生器
の概要構成図、第3図は凝縮器の概要構成図、第4図は
熱回収型の凝縮器の概要構成図、第5図は従来の超純水
製造プロセスを示す概略図である。 20……原水、21……脱CO2脱TOC部、22……水蒸気発生
部、25……配管、31……膜モジユール、32……凝縮部、
33……疎水性多孔質膜、34……冷却面、35……超純水。FIG. 1 is a schematic flow chart of the present invention, FIG. 2 is a schematic configuration diagram of a steam generator, FIG. 3 is a schematic configuration diagram of a condenser, and FIG. 4 is a schematic configuration diagram of a heat recovery type condenser. FIG. 5 is a schematic view showing a conventional ultrapure water production process. 20 ...... raw water, 21 ...... de CO 2 removal TOC section, 22 ...... steam generating unit, 25 ...... pipe, 31 ...... membrane modules, 32 ...... condensing unit,
33 ... Hydrophobic porous membrane, 34 ... Cooling surface, 35 ... Ultrapure water.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 江原 勝也 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 松崎 晴美 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 高橋 燦吉 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Ehara 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture, Hitachi Research Institute, Ltd. Hitachi Research Laboratory (72) Inventor Takayoshi Hashiyoshi 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.
Claims (2)
クリーンルームの外で原水から水蒸気を発生させ、この
水蒸気を気相状態でクリーンルーム内に移送し、ユース
ポイント近傍に設置され疎水性多孔質膜を装備した凝縮
器で凝縮させることを特徴とする超純水製造方法。1. A method of producing steam from raw water outside a clean room that separates the point of use of ultrapure water from the outside, transferring this steam in the gas phase state into the clean room, and installing a hydrophobic porous material near the point of use. A method for producing ultrapure water, which comprises condensing with a condenser equipped with a membrane.
炭酸ガスや有機物を除去した後、該原水から水蒸気を発
生させることを特徴とする超純水製造方法。2. A method for producing ultrapure water according to claim 1, wherein carbon dioxide gas and organic substances in the raw water are removed, and then steam is generated from the raw water.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20998987A JPH0779994B2 (en) | 1987-08-24 | 1987-08-24 | Ultrapure water production method |
EP88104672A EP0284052B1 (en) | 1987-03-25 | 1988-03-23 | Process for producing ultra-pure water and process for using said ultra-pure water |
DE88104672T DE3884435T2 (en) | 1987-03-25 | 1988-03-23 | Processes for producing high-purity water and process for using this water. |
US07/172,583 US4879041A (en) | 1987-03-25 | 1988-03-24 | Process for producing ultra-pure water and process for using said ultra-pure water |
KR1019880003177A KR960003543B1 (en) | 1987-03-25 | 1988-03-24 | Ultrapure-water producing method and the usage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20998987A JPH0779994B2 (en) | 1987-08-24 | 1987-08-24 | Ultrapure water production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6451188A JPS6451188A (en) | 1989-02-27 |
JPH0779994B2 true JPH0779994B2 (en) | 1995-08-30 |
Family
ID=16582017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20998987A Expired - Lifetime JPH0779994B2 (en) | 1987-03-25 | 1987-08-24 | Ultrapure water production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0779994B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0380982A (en) * | 1989-08-25 | 1991-04-05 | Hitachi Zosen Corp | Impurity removing apparatus in multiple-effect distiller for preparing ultrapure water |
-
1987
- 1987-08-24 JP JP20998987A patent/JPH0779994B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6451188A (en) | 1989-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008366066B2 (en) | Methods and systems for processing waste water | |
US20110180479A1 (en) | Zero liquid discharge water treatment system and method | |
US8187464B2 (en) | Apparatus and process for desalination of brackish water using pressure retarded osmosis | |
CN103539288B (en) | Industrial wastewater recovery method and wastewater recovery system | |
JPH10323664A (en) | Wastewater-recovering apparatus | |
JP2520317B2 (en) | Ultrapure water production apparatus and method | |
JPH10272494A (en) | Treatment of organic waste water containing salts of high concentration | |
CN110759570A (en) | Treatment method and treatment system for dye intermediate wastewater | |
JP7578715B2 (en) | Method and system for zero liquid discharge recirculation of waste products from manufacturing processes | |
Singh | Production of high-purity water by membrane processes | |
WO2017066534A1 (en) | Hybrid cooling and desalination system | |
JP5233138B2 (en) | A method for treating concentrated wastewater from a pure water production apparatus and a treatment apparatus for the concentrated wastewater. | |
JPH0779994B2 (en) | Ultrapure water production method | |
JPS60190298A (en) | Preparation of ultra-pure water | |
EP3517508A1 (en) | Zero liquid discharge treatment process for recovering water from a contaminated liquid effluent for its subsequent reuse | |
Singh | Brine recovery at industrial RO plants: Conceptual process design studies | |
JP2002355683A (en) | Ultrapure water making method and apparatus | |
JPH0515486B2 (en) | ||
JPH09294974A (en) | Water treatment apparatus | |
JP4709467B2 (en) | Method and apparatus for treating wastewater containing organic chemicals | |
JPS60172390A (en) | Manufacture of highly demineralized water | |
JP5551628B2 (en) | Method and apparatus for treating wastewater containing organic chemicals | |
JP3482594B2 (en) | Distillation method pure water production equipment | |
JP7377000B2 (en) | Water treatment systems and methods | |
JP7350886B2 (en) | water treatment equipment |