[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0778511A - Dielectrid porcelain composition and manufacture of composition powder thereof - Google Patents

Dielectrid porcelain composition and manufacture of composition powder thereof

Info

Publication number
JPH0778511A
JPH0778511A JP5180636A JP18063693A JPH0778511A JP H0778511 A JPH0778511 A JP H0778511A JP 5180636 A JP5180636 A JP 5180636A JP 18063693 A JP18063693 A JP 18063693A JP H0778511 A JPH0778511 A JP H0778511A
Authority
JP
Japan
Prior art keywords
composition
powder
dielectric
less
barium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5180636A
Other languages
Japanese (ja)
Other versions
JP3557623B2 (en
Inventor
Harunobu Sano
野 晴 信 佐
Yukio Hamachi
地 幸 生 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP18063693A priority Critical patent/JP3557623B2/en
Publication of JPH0778511A publication Critical patent/JPH0778511A/en
Application granted granted Critical
Publication of JP3557623B2 publication Critical patent/JP3557623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a highly reliable dielectric porcelain composition having less characteristic dispersion, a small grain size, a large dielectric constant, a small change of the dielectric constant to temperature change, small voltage dependency, and moreover in which relatively indexpensive Ag-Pd alloy can be used for the internal electrode of a laminated ceramic capacitor by using this composition. CONSTITUTION:Ce of 2.0-4.8mol calculated in terms of CeO2, Ti and Sn of 1.0-7.0mol calculated in terms of (Ti1-aSna)O2 (0<a<=1.0), and Mn of 0.88-0.5mol calculated in terms of MnO2 are contained to a barium titanate of 100mol containing an alkaline metal oxide, as an impurity, of 0.03wt.% or less and halogen of 0.03wt.% or less. The following formula is to be satisfied; 0.97<=(BaO +CeO2)/(TiO2+SnO2)<=1.02 (mol ratio).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、誘電体磁器組成物と
その組成物粉末の製造方法に関し、特にチタン酸バリウ
ムを主体とし、たとえば積層セラミックコンデンサに用
いられる誘電体磁器組成物とその組成物粉末の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition and a method for producing a powder of the composition, and particularly to a dielectric ceramic composition mainly composed of barium titanate and used for, for example, a laminated ceramic capacitor and its composition. The present invention relates to a method for producing powder.

【0002】[0002]

【従来の技術】従来より、磁器コンデンサに用いられる
誘電体磁器組成物として、チタン酸バリウムを主体とす
るものが数多く知られている。チタン酸バリウムは、1
20℃付近にキュリー点を持ち、10,000近い誘電
率を示すが、それだけでは常温で高誘電率とはなり得な
い。そこで、シフター材と呼ばれるものを加え、キュリ
ー点を常温に移動させて常温で高誘電率を持たせてい
る。このシフター材として、錫酸化物,ジルコニウム酸
化物などを添加した組成物が、高誘電率の誘電体磁器組
成物として知られている。
2. Description of the Related Art Heretofore, a large number of dielectric ceramic compositions mainly composed of barium titanate have been known for use in ceramic capacitors. 1 barium titanate
It has a Curie point near 20 ° C. and a dielectric constant of close to 10,000, but it alone cannot provide a high dielectric constant at room temperature. Therefore, what is called a shifter material is added, and the Curie point is moved to room temperature to have a high dielectric constant at room temperature. A composition to which tin oxide, zirconium oxide or the like is added as the shifter material is known as a high dielectric constant dielectric ceramic composition.

【0003】しかし、この高誘電率の誘電体磁器組成物
を用いた磁器は、結晶粒径が10μm〜20μmと大き
い。そのため、この誘電体磁器組成物を用いて積層セラ
ミックコンデンサを形成した場合、破壊電圧値が低く、
また、機械的強度も低いという欠点があった。
However, the porcelain using this high dielectric constant dielectric ceramic composition has a large crystal grain size of 10 μm to 20 μm. Therefore, when a laminated ceramic capacitor is formed using this dielectric ceramic composition, the breakdown voltage value is low,
Further, there is a drawback that the mechanical strength is low.

【0004】また、最近の磁器コンデンサは小型化の傾
向にあり、特に積層コンデンサにおいては、誘電体層の
厚みが5μm〜15μmのものが実用化されつつある。
誘電体層が薄くなるに従って、磁器の構造的な欠陥が特
性に反映され易くなるので、誘電体磁器組成物として
は、高誘電率であるだけでなく、結晶粒子の大きさ(グ
レインサイズ)が均一でかつ微細であることと、空孔が
少なくかつ小さいことが望まれている。また、誘電体層
が薄くなることによって、誘電体層に印加される電界強
度も大きくなるため、電圧依存性の小さいことも要求さ
れている。
Further, recent porcelain capacitors have tended to be miniaturized, and in particular, in multilayer capacitors, dielectric capacitors having a thickness of 5 μm to 15 μm are being put to practical use.
As the dielectric layer becomes thinner, the structural defects of the porcelain are more likely to be reflected in the characteristics. Therefore, the dielectric porcelain composition not only has a high dielectric constant but also has a large crystal grain size (grain size). It is desired to be uniform and fine, and to have few and small pores. Further, since the strength of the electric field applied to the dielectric layer increases as the dielectric layer becomes thinner, it is required that the voltage dependency is small.

【0005】グレインサイズの小さいチタン酸バリウム
を主体にした誘電体磁器が、たとえば、特開昭58−1
35507号、特開昭58−223669号、特開昭5
9−86103号などに開示されている。これらの誘電
体磁器は、チタン酸バリウムに酸化セリウムを加え、あ
るいは酸化セリウムとジルコン酸バリウムを加え、ある
いは酸化ネオジムを加えることによって、チタン酸バリ
ウムのグレインサイズを小さくしたものである。また、
グレインサイズを小さくする試みとして、微細なチタン
酸バリウムを用いることも行われている。
A dielectric ceramic mainly composed of barium titanate having a small grain size is disclosed in, for example, Japanese Patent Laid-Open No. 58-1.
35507, JP-A-58-223669, JP-A-5-
No. 9-86103 and the like. In these dielectric porcelains, cerium oxide is added to barium titanate, cerium oxide and barium zirconate are added, or neodymium oxide is added to reduce the grain size of barium titanate. Also,
In an attempt to reduce the grain size, fine barium titanate has been used.

【0006】チタン酸バリウム粉末の製造方法として
は、従来、炭酸バリウムと酸化チタンとの混合物を10
00℃以上で仮焼し、そののち粉砕をして原料粉末を得
る方法が用いられている。しかし、この方法では、仮焼
時に焼結が進み、粗大粒子を多量に含むので、微細で均
一な粒度を有する粉末を得ることは困難であった。この
問題を解決する試みとして、共沈法、アルコキシド法、
加水分解法、水熱合成法などによる原料粉末の合成が行
われている。中でも、水熱反応により合成された粉末
は、粒子が微細であるだけでなく、組成が均一であり、
従来の製造方法によって作製された原料粉末を用いた誘
電磁器焼結体に比較して、結晶粒径が小さく、大きな誘
電率が得られるということが知られている。
As a method for producing barium titanate powder, a mixture of barium carbonate and titanium oxide is conventionally used.
A method is used in which a raw material powder is obtained by calcining at a temperature of 00 ° C. or higher and then pulverizing. However, in this method, since sintering proceeds during calcination and a large amount of coarse particles are contained, it is difficult to obtain a powder having a fine and uniform particle size. As an attempt to solve this problem, coprecipitation method, alkoxide method,
Raw material powders are synthesized by a hydrolysis method, a hydrothermal synthesis method, or the like. Among them, the powder synthesized by the hydrothermal reaction has not only fine particles but also a uniform composition,
It is known that a crystal grain size is small and a large dielectric constant can be obtained as compared with a dielectric ceramic sintered body using a raw material powder manufactured by a conventional manufacturing method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、グレイ
ンサイズの小さいチタン酸バリウムを主体とした誘電体
磁器では、誘電率が常温で最大10,000前後であ
り、グレインサイズの大きいものに比べると誘電率が小
さく、積層コンデンサを小型にした場合、大きい静電容
量を得ることが困難であった。さらに、誘電率の温度変
化曲線が急峻であることも問題であった。また、グレイ
ンサイズの小さい誘電体磁器は焼結温度が高く、130
0℃以上の温度で焼成しなければならないため、積層セ
ラミックコンデンサを形成した場合、内部電極として高
価なPd電極を用いる必要があった。そのため、生産コ
ストに占める内部電極材料のコスト比率が高く、特に静
電容量の大きいものでは内部電極数が多くなるため、さ
らにコスト高となり、高信頼性にもかかわらず価格面で
大きな障害となっていた。
However, a dielectric ceramic mainly composed of barium titanate having a small grain size has a maximum dielectric constant of about 10,000 at room temperature, which is higher than that of a large grain size. Is small, and it is difficult to obtain a large capacitance when the multilayer capacitor is downsized. Another problem is that the temperature change curve of the dielectric constant is steep. In addition, the dielectric ceramic with a small grain size has a high sintering temperature,
Since firing must be performed at a temperature of 0 ° C. or higher, it was necessary to use an expensive Pd electrode as an internal electrode when forming a laminated ceramic capacitor. Therefore, the cost ratio of the internal electrode material to the production cost is high, and the number of internal electrodes is large especially in the case of large capacitance, resulting in higher cost and a major obstacle in terms of price despite high reliability. Was there.

【0008】また、従来の誘電体組成物粉末において
は、主原料以外の副成分原料についても酸化物粉末ある
いは炭酸物で添加される。一般に主原料と副成分原料の
分散状態は、特性のばらつきの原因や信頼性に影響を与
える。分散状態をよくするためには、主原料同様、副成
分原料も細かくする必要があり、むしろ主原料よりもさ
らに微細な粉末が必要である。しかしながら、従来の副
成分原料粉末はあまり細かくすることができないため、
誘電体組成物粉末において、主原料と副成分原料の分散
状態は非常に悪かった。そのため、特に主成分原料に対
して副成分原料の添加量の少ないグレインサイズの小さ
いチタン酸バリウムを主体とする誘電体磁器組成物粉末
におてい、特性のばらつきの原因になっていた。
In addition, in the conventional dielectric composition powder, sub-component raw materials other than the main raw material are added as oxide powder or carbonate. Generally, the dispersion state of the main raw material and the sub-component raw material affects the cause of the characteristic variation and the reliability. In order to improve the dispersion state, it is necessary to make the auxiliary component raw material finer, like the main raw material, and rather a finer powder than the main raw material is required. However, since conventional auxiliary ingredient raw material powder cannot be made very fine,
In the dielectric composition powder, the dispersion state of the main raw material and the subcomponent raw material was very poor. Therefore, in particular, in the dielectric ceramic composition powder mainly composed of barium titanate having a small grain size and a small amount of addition of the auxiliary component raw material to the main component raw material, it has been a cause of variations in characteristics.

【0009】それゆえに、この発明の主たる目的は、グ
レインサイズが小さく、大きい誘電率を有し、温度変化
に対する誘電率の変化が少なく、電圧依存性が小さく、
しかもこれを用いることにより積層セラミックコンデン
サの内部電極に比較的安価なAg−Pd合金を用いるこ
とのできる特性のばらつきの少ない高信頼性の誘電体磁
器組成物とその組成物粉末の製造方法を提供することで
ある。
Therefore, the main object of the present invention is to have a small grain size, a large dielectric constant, a small change in the dielectric constant with respect to a temperature change, and a small voltage dependence.
Moreover, by using this, a relatively inexpensive Ag-Pd alloy can be used for the internal electrodes of a monolithic ceramic capacitor, and a highly reliable dielectric ceramic composition with little variation in properties and a method for producing the composition powder are provided. It is to be.

【0010】[0010]

【課題を解決するための手段】この発明は、不純物とし
て含まれるアルカリ金属酸化物の含有量が0.03重量
%以下、ハロゲンの含有量が0.03重量%以下のチタ
ン酸バリウム100モルに対して、CeをCeO2 換算
で2.0〜4.8モル、Ti,Snを(Ti1-a
a )O2 (ただし、0<a≦1.0)換算で1.0〜
7.0モル、MnをMnO2 換算で0.08〜0.5モ
ル含有し、かつ0.97≦(BaO+CeO2 )/(T
iO2 +SnO2 )≦1.02(モル比)である、誘電
体磁器組成物である。チタン酸バリウムとして、比表面
積が4.0m2 /g以下、未反応のBaO量が2.0%
以下の粉末を用いて、前記誘電体磁器組成物の組成物粉
末を製造するのが好ましい。また、チタン酸バリウムと
して、水熱反応を利用して製造した粉末を用いて、前記
誘電体磁器組成物の組成物粉末を製造するのが好まし
い。さらに、Ce,Ti,Sn,Mnとして、有機溶剤
可溶な有機金属化合物を用いて、前記誘電体磁器組成物
の組成物粉末を製造するのが好ましい。
The present invention relates to 100 mol of barium titanate having an alkali metal oxide content of 0.03% by weight or less and a halogen content of 0.03% by weight or less as impurities. On the other hand, Ce is 2.0 to 4.8 mol in terms of CeO 2 and Ti and Sn are (Ti 1-a S
n a ) O 2 (where 0 <a ≦ 1.0) conversion is 1.0 to
7.0 mol, 0.08 to 0.5 mol of Mn in terms of MnO 2 , and 0.97 ≦ (BaO + CeO 2 ) / (T
The dielectric ceramic composition is iO 2 + SnO 2 ) ≦ 1.02 (molar ratio). Barium titanate having a specific surface area of 4.0 m 2 / g or less and an unreacted BaO content of 2.0%
The following powders are preferably used to produce the composition powder of the dielectric ceramic composition. Further, as the barium titanate, it is preferable to use a powder produced by utilizing a hydrothermal reaction to produce the composition powder of the dielectric ceramic composition. Furthermore, it is preferable to produce a composition powder of the above dielectric ceramic composition by using an organic solvent-soluble organometallic compound as Ce, Ti, Sn, and Mn.

【0011】[0011]

【作用】水熱合成法で合成されるチタン酸バリウム粉末
は、出発原料として塩化物が用いられることが多く、ま
た、結晶化を促進するために、鉱化剤としてNaOH,
KOHなどの各種のアルカリ金属溶液を用いることが一
般的である。そのために、Na2 O,K2 Oなどのアル
カリ金属酸化物とClなどのハロゲンが不純物として取
り込まれている。
In the barium titanate powder synthesized by the hydrothermal synthesis method, chloride is often used as a starting material, and in order to promote crystallization, NaOH as a mineralizer is added.
It is common to use various alkali metal solutions such as KOH. Therefore, alkali metal oxides such as Na 2 O and K 2 O and halogens such as Cl are incorporated as impurities.

【0012】本発明者らは、チタン酸バリウムを主体と
する誘電体磁器の粒径が3μm以下と小さいときに誘電
率が10000に満たない原因を種々検討した結果、主
原料であるチタン酸バリウムの不純物の種類とその含有
量とが多い場合、その誘電率が大きくならないことを見
いだした。また、主原料であるチタン酸バリウム粉末の
比表面積、未反応のBaO量によっても、誘電率が大き
くならないことを見いだした。つまり、Na2 O,K2
Oなどのアルカリ金属酸化物の含有量が少なく、比表面
積が小さくて、未反応のBaO量が少ないチタン酸バリ
ウムにおいて、これに酸化セリウムを加えることによっ
て、グレインサイズが小さくなり、しかも大きい誘電率
を示すことを見いだした。また、酸化錫を加えることに
より、誘電率の温度変化率が小さい誘電体磁器が得られ
ることを見いだした。さらに、不純物としてClなどの
ハロゲンをある一定量以上を含んでいるチタン酸バリウ
ムを主原料に用いて積層セラミックコンデンサを作製し
た場合、信頼性に大きく影響することも見いだした。
As a result of various studies on the cause of the dielectric constant of less than 10000 when the particle diameter of the dielectric ceramic mainly composed of barium titanate is as small as 3 μm or less, the present inventors have found that barium titanate as a main raw material. It was found that the dielectric constant does not increase when the types of impurities and their contents are large. It was also found that the dielectric constant does not increase even with the specific surface area of the barium titanate powder, which is the main raw material, and the amount of unreacted BaO. That is, Na 2 O, K 2
In barium titanate having a small amount of unreacted BaO with a small content of alkali metal oxide such as O and a small amount of unreacted BaO, by adding cerium oxide thereto, the grain size is reduced and the dielectric constant is large. Found to show. It was also found that by adding tin oxide, a dielectric ceramic with a small rate of change in dielectric constant with temperature can be obtained. Further, it was also found that reliability is greatly affected when a monolithic ceramic capacitor is manufactured by using barium titanate containing a certain amount of halogen such as Cl as an impurity as a main material.

【0013】[0013]

【発明の効果】この発明にかかる誘電体磁器組成物を用
いれば、誘電率が11,000以上あり、しかもこのよ
うに高誘電率であるにもかかわらず結晶粒径が2μm以
下と小さい誘電体磁器が得られる。したがって、積層セ
ラミックコンデンサを製造するときに、誘電体層を薄膜
化しても、従来の積層セラミックコンデンサのように層
中に存在する結晶粒の量が少なくならない。このため、
信頼性が高く、しかも小型で大容量の積層セラミックコ
ンデンサを得ることができる。さらに、この誘電体磁器
組成物は、1300℃以下の比較的低温で焼成可能であ
るため、内部電極としてAg−Pd合金の使用が可能で
あり、安価な積層セラミックコンデンサを得ることがで
きる
By using the dielectric ceramic composition according to the present invention, a dielectric material having a dielectric constant of 11,000 or more and a small crystal grain size of 2 μm or less despite its high dielectric constant is obtained. Porcelain is obtained. Therefore, when a multilayer ceramic capacitor is manufactured, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. For this reason,
It is possible to obtain a monolithic ceramic capacitor that has high reliability, is small, and has a large capacity. Furthermore, since this dielectric porcelain composition can be fired at a relatively low temperature of 1300 ° C. or lower, it is possible to use an Ag—Pd alloy as an internal electrode, and an inexpensive monolithic ceramic capacitor can be obtained.

【0014】この発明の上述の目的,その他の目的,特
徴および利点は、図面を参照して行う以下の実施例の詳
細な説明から一層明らかとなろう。
The above-mentioned objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments with reference to the drawings.

【0015】[0015]

【実施例】【Example】

(実施例1)まず、0.10モルのチタンイソプロポキ
シド(Ti(OC3 7 4 )を秤量し、約300ml
のイソプロピルアルコール(IPA)に溶解させたもの
を数種用意した。これらの溶液を十分に攪拌したのち、
それぞれの溶液に0.2モル〜0.6モルのNaOHを
含有する水溶液120ccを加えて加水分解させた。次
に、これらの加水分解させた溶液それぞれに0.10モ
ルのBaCl2 ・2H2 Oを窒素ガスを吹き込みながら
添加・混合し、混合溶液を得た。そののち、これらの混
合溶液を、それぞれ500mlのオートクレーブに入
れ、200℃にて10時間水熱処理した。水熱処理後、
冷却して得られたスラリをろ別して、通常の方法によっ
て、洗浄,ろ過を数回繰り返し行ったのち、110℃で
乾燥した。乾燥後、空気中にて700℃〜1150℃の
温度で1時間熱処理を行い、表1に示すNa量、CI量
および粉末特性の異なったA〜Gの7種類のBaTiO
3 の白色粉末を得た。この7種類の白色粉末のBa/T
i比は1.00であった。
(Example 1) First, 0.10 mol of titanium isopropoxide (Ti (OC 3 H 7 ) 4 ) was weighed and about 300 ml.
Several kinds of isopropyl alcohol (IPA) dissolved in were prepared. After thoroughly stirring these solutions,
120 cc of an aqueous solution containing 0.2 mol to 0.6 mol of NaOH was added to each solution for hydrolysis. Next, 0.10 mol of BaCl 2 .2H 2 O was added to and mixed with each of these hydrolyzed solutions while blowing nitrogen gas to obtain a mixed solution. After that, each of these mixed solutions was put into a 500 ml autoclave and hydrothermally treated at 200 ° C. for 10 hours. After hydrothermal treatment,
The slurry obtained by cooling was separated by filtration, washed and filtered several times by a usual method, and then dried at 110 ° C. After drying, heat treatment was performed in the air at a temperature of 700 ° C. to 1150 ° C. for 1 hour, and seven types of BaTiOs A to G having different Na amounts, CI amounts and powder characteristics shown in Table 1 were used.
A white powder of 3 was obtained. Ba / T of these 7 types of white powder
The i ratio was 1.00.

【0016】[0016]

【表1】 [Table 1]

【0017】次いで、上記A〜Fの6種類のBaTiO
3 とオクチル酸Ce,オクチル酸Sn,Tiアセチルア
セトネート,Mnアセチルアセトネートを準備した。こ
れらの原料を表2に示す割合となるように配合したの
ち、エタノールとトルエンの混合有機溶剤を加えて、ボ
ールミルによって16時間混合分散処理を行った。そし
て、スプレードライにより乾燥・造粒したのち、空気中
600℃の温度で熱処理を行い、有機物の除去を行っ
た。そののち、乾式粉砕機により粉砕し、BaTiO3
とその他の成分が均一に分散した原料粉末を得た。
Then, the above six kinds of BaTiOs A to F are used.
3 and Ce octylate, Sn octylate, Ti acetylacetonate, and Mn acetylacetonate were prepared. After blending these raw materials in the proportions shown in Table 2, a mixed organic solvent of ethanol and toluene was added and mixed and dispersed by a ball mill for 16 hours. Then, after drying and granulation by spray drying, heat treatment was performed in air at a temperature of 600 ° C. to remove organic substances. After that, it is crushed by a dry crusher and BaTiO 3
A raw material powder in which and other components were uniformly dispersed was obtained.

【0018】[0018]

【表2】 [Table 2]

【0019】この原料粉末に、酢酸ビニルバインダと純
水とを加えて16時間湿式混合して混合物を得た。この
混合物を乾燥後造粒したのち、2000kg/cm2
圧力で直径10mm、厚さ0.5mmの円板を、表3に
示す温度で2時間焼成して、円板状の磁器を得た。そし
て、得られた磁器の表面を走査型電子顕微鏡にて、倍率
1500倍で観察し、グレインサイズを測定した。
A vinyl acetate binder and pure water were added to this raw material powder and wet mixed for 16 hours to obtain a mixture. After the mixture was dried and granulated, a disc having a diameter of 10 mm and a thickness of 0.5 mm was fired at a pressure of 2000 kg / cm 2 for 2 hours at a temperature shown in Table 3 to obtain a disc-shaped porcelain. . Then, the surface of the obtained porcelain was observed with a scanning electron microscope at a magnification of 1500 times to measure the grain size.

【0020】[0020]

【表3】 [Table 3]

【0021】得られた磁器の主表面に銀電極を焼き付け
て測定試料(コンデンサ)とし、その室温での誘電率,
誘電損失および温度変化に対する静電容量の変化率を測
定した。また、200V/mm,1KHzの交流電圧を
印加し、誘電損失(tanδ)を測定した。さらに、絶
縁抵抗計によって500Vの直流電圧を2分間印加した
のちの絶縁抵抗値を測定した。絶縁抵抗は、25℃およ
び85℃の値を測定し、それぞれの体積抵抗率の対数
(logρ)を算出した。
A silver electrode was baked on the main surface of the obtained porcelain to obtain a measurement sample (capacitor), and the dielectric constant at room temperature,
The rate of change of capacitance with respect to dielectric loss and temperature change was measured. Further, an AC voltage of 200 V / mm and 1 KHz was applied, and the dielectric loss (tan δ) was measured. Furthermore, the insulation resistance value was measured after applying a DC voltage of 500 V for 2 minutes with an insulation resistance meter. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (logρ) of each volume resistivity was calculated.

【0022】なお、誘電率(ε)および誘電損失(ta
nδ)は温度25℃、1KHz、1Vrmsで測定し、
温度変化に対する静電容量の変化率については、20℃
での静電容量を基準とした−25℃と85℃での静電容
量の変化率(ΔC/C20)を示した。
The dielectric constant (ε) and the dielectric loss (ta
nδ) is measured at a temperature of 25 ° C., 1 KHz, 1 Vrms,
The rate of change in capacitance with temperature changes is 20 ° C
The rate of change in capacitance (ΔC / C 20 ) at −25 ° C. and 85 ° C. based on the capacitance in FIG.

【0023】以上の各試験の結果を、表3に合わせて示
す。
The results of each of the above tests are also shown in Table 3.

【0024】(実施例2)実施例1の試料番号10の誘
電体磁器原料粉末と表1のGのチタン酸バリウムを用い
て試料番号10と同様の配合比率で同様の方法で作製し
た誘電体磁器原料粉末を用意した(試料番号21)。こ
の誘電体磁器原料粉末に、ポリビニルブチラール系バイ
ンダおよびエタノールなどの有機溶剤を加えて、ボール
ミルにより湿式混合し、スラリを調製した。そののち、
スラリをドクターブレード法によってシート形成し、厚
み14μmの矩形のグリーンシートを得た。
(Embodiment 2) A dielectric material prepared by using the dielectric ceramic raw material powder of sample No. 10 of Example 1 and barium titanate of G of Table 1 in the same mixing ratio as in Sample No. 10 by the same method. A porcelain raw material powder was prepared (Sample No. 21). A polyvinyl butyral binder and an organic solvent such as ethanol were added to the dielectric ceramic raw material powder, and the mixture was wet-mixed by a ball mill to prepare a slurry. after that,
The slurry was formed into a sheet by a doctor blade method to obtain a rectangular green sheet having a thickness of 14 μm.

【0025】次に、このセラミックグリーンシート上
に、Pdを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。導電ペー
スト層が形成されたセラミック・グリーンシートを導電
ペーストの引き出されている側が互い違いとなるように
複数枚積層し、積層体を得た。得られた積層体を空気中
において、表4に示す温度で2時間焼成した。焼成後、
得られたセラミック焼結体の両端面に銀ペーストを塗布
し、大気中において750℃の温度で焼き付け、内部電
極と電気的に接続された外部電極を形成した。
Next, a conductive paste containing Pd as a main component was printed on the ceramic green sheet to form a conductive paste layer for forming internal electrodes. A plurality of ceramic green sheets on which the conductive paste layers were formed were laminated so that the sides from which the conductive paste was drawn out were staggered to obtain a laminate. The obtained laminate was fired in air at the temperature shown in Table 4 for 2 hours. After firing
Silver paste was applied to both end faces of the obtained ceramic sintered body and baked at a temperature of 750 ° C. in the atmosphere to form an external electrode electrically connected to the internal electrode.

【0026】[0026]

【表4】 [Table 4]

【0027】上記のようにして得られた積層コンデンサ
の外形寸法は、幅;1.6mm、長さ;3.2mm、厚
さ;1.2mmであり、内部電極間に介在される誘電体
セラミック層の厚みは9μmである。また、有効誘電体
セラミック層の総数は19であり、一層当たりの対向電
極の面積は2.1mm2 である。
The external dimensions of the multilayer capacitor obtained as described above are: width: 1.6 mm, length: 3.2 mm, thickness: 1.2 mm, and the dielectric ceramic interposed between the internal electrodes. The layer thickness is 9 μm. The total number of effective dielectric ceramic layers is 19, and the area of the counter electrode per layer is 2.1 mm 2 .

【0028】静電容量(C)および誘電損失(tan
δ)は、自動ブリッジ式測定器を用いて周波数1KH
z、1Vrms、温度25℃の条件で測定し、静電容量
から誘電率(ε)を算出した。次に、絶縁抵抗(R)を
測定するために、絶縁抵抗計を用い、16Vの直流電圧
を2分間印加して、25℃,85℃での絶縁抵抗(R)
を測定し、静電容量(C)と絶縁抵抗(R)との積、す
なわちCR積を求めた。また、20℃での静電容量を基
準とした−25℃および85℃での温度変化に対する静
電容量の変化率(ΔC/C20)を測定した。さらに、各
試料50個ずつの直流破壊電圧値B.D.V(V)と抗
折強度とを測定し、平均値と最小値を示した。
Capacitance (C) and dielectric loss (tan)
δ) is a frequency of 1KH using an automatic bridge type measuring instrument
The measurement was performed under the conditions of z, 1 Vrms, and temperature of 25 ° C., and the dielectric constant (ε) was calculated from the capacitance. Next, in order to measure the insulation resistance (R), a DC voltage of 16 V was applied for 2 minutes using an insulation resistance meter to measure the insulation resistance (R) at 25 ° C. and 85 ° C.
Was measured, and the product of the electrostatic capacitance (C) and the insulation resistance (R), that is, the CR product was obtained. In addition, the rate of change in capacitance (ΔC / C 20 ) with respect to temperature changes at −25 ° C. and 85 ° C. based on the capacitance at 20 ° C. was measured. Further, the DC breakdown voltage value B. D. V (V) and bending strength were measured, and the average value and the minimum value were shown.

【0029】なお、抗折強度は、図1に示す抗折強度測
定装置10を用いて測定した。抗折強度測定装置10は
試料保持台12を含む。試料保持台12上には、被試験
積層セラミックコンデンサ14が置かれる。被試験積層
セラミックコンデンサ14は加圧ピン16によって加圧
される。そして、加圧された圧力が置き針付きテンショ
ンゲージ18によって表示される。なお、この試験に際
して、試料保持台12の治具のスパンは2mmとした。
The bending strength was measured using a bending strength measuring device 10 shown in FIG. The bending strength measuring device 10 includes a sample holder 12. On the sample holder 12, a monolithic ceramic capacitor under test 14 is placed. The test multilayer ceramic capacitor 14 is pressed by the pressing pin 16. Then, the applied pressure is displayed by the tension gauge 18 with a stationary needle. In this test, the span of the jig of the sample holder 12 was 2 mm.

【0030】また、高温負荷試験として、各試料を10
0個ずつ、温度85℃にて、直流電圧を32V印加して
1000時間経過後の絶縁抵抗を測定した。湿中負荷試
験としては、各試料を100個ずつ、湿度95%,温度
70℃にて直流電圧を16V印加して1000時間経過
後の絶縁抵抗を測定した。なお、高温負荷試験および湿
中負荷試験では、ともに1000時間経過後の絶縁抵抗
値(R)と静電容量(C)との積、CR積が50MΩ・
μF以下の試料を不良として、その個数を示した。
As a high temperature load test, 10
A DC voltage of 32 V was applied to each of them at a temperature of 85 ° C., and the insulation resistance after 1000 hours was measured. In the wet / medium load test, 100 samples of each sample were applied with a DC voltage of 16 V at a humidity of 95% and a temperature of 70 ° C., and the insulation resistance after 1000 hours was measured. In both the high temperature load test and the humidity and humidity load test, the product of the insulation resistance value (R) and the capacitance (C) after 1000 hours, and the CR product were 50 MΩ ·
The number of samples was shown as being unsatisfactory for samples of μF or less.

【0031】比較例1として、表1のAのチタン酸バリ
ウムと純度99%以上のCeO2 ,SnO2 ,Ti
2 ,MnO2 を用意し、実施例1の試料番号10と同
じ配合比率になるように秤量し、上述と同様の方法によ
って積層セラミックコンデンサを作製した。また、比較
例2として、純度99.8%以上のBaTiO3 ,Ba
ZrO3 ,CaZrO3 を準備し、BaTiO3 100
モルに対して、BaZrO3 18.5モル,CaZrO
3 8.9モルになるように秤量し、上述と同様の方法に
よって積層セラミックコンデンサを作製した。この比較
例1,2について、上述の各特性を測定した。また、そ
れぞれの積層セラミックコンデンサの表面を走査型電子
顕微鏡にて、倍率1500倍で観察し、グレインサイズ
を測定した。
As Comparative Example 1, barium titanate of A in Table 1 and CeO 2 , SnO 2 , Ti having a purity of 99% or more are used.
O 2 and MnO 2 were prepared, weighed so that the compounding ratio was the same as that of sample No. 10 of Example 1, and a laminated ceramic capacitor was manufactured by the same method as described above. Further, as Comparative Example 2, BaTiO 3 , Ba having a purity of 99.8% or more was used.
ZrO 3 and CaZrO 3 are prepared, and BaTiO 3 100
18.5 mol of BaZrO 3 and CaZrO based on mol
3 Weighed so as to be 8.9 mol, and a monolithic ceramic capacitor was produced by the same method as described above. The above-mentioned respective characteristics were measured for Comparative Examples 1 and 2. The surface of each monolithic ceramic capacitor was observed with a scanning electron microscope at a magnification of 1500 to measure the grain size.

【0032】以上の各試験の結果を、表4に合わせて示
した。
The results of each of the above tests are also shown in Table 4.

【0033】表3から明らかなように、この発明にかか
る誘電体磁器組成物は誘電率εが11,000以上と大
きく、また200V/mmの交流電圧を引加したときの
誘電損失が5.0%以下と小さい。しかも、温度に対す
る静電容量の変化率ΔC/C20)が、−25℃〜85℃
での範囲でJIS規格に規定するF特性規格を満足す
る。また、25℃,85℃における絶縁抵抗は、体積抵
抗率の対数(logρ)で表したときに、それぞれ13
以上、11以上と高い値を示す。さらに、焼成温度も1
300℃以下と比較的抵温で焼結可能であり、粒径につ
いても2μm以下と小さい。
As is clear from Table 3, the dielectric ceramic composition according to the present invention has a large permittivity ε of 11,000 or more, and has a dielectric loss of 5. when an alternating voltage of 200 V / mm is applied. It is as small as 0% or less. Moreover, the rate of change in capacitance ΔC / C 20 ) with respect to temperature is -25 ° C to 85 ° C.
The F characteristic standard defined in the JIS standard is satisfied within the range of. Further, the insulation resistance at 25 ° C. and 85 ° C. is 13 when expressed by the logarithm (log ρ) of the volume resistivity.
As described above, the value is as high as 11 or more. Furthermore, the firing temperature is 1
It can be sintered at a relatively low temperature of 300 ° C. or less, and has a small particle size of 2 μm or less.

【0034】また、表4から明らかなように、この発明
にかかる誘電体磁器組成物で作製した積層セラミックコ
ンデンサは、比較例に比べて、高い破壊電圧および抗折
強度を有し、そのばらつきも小さい。さらに、この積層
セラミックコンデンサは、湿中負荷時の絶縁抵抗の寿命
が長く、優れた信頼性を示す。
Further, as is clear from Table 4, the monolithic ceramic capacitor made of the dielectric ceramic composition according to the present invention has higher breakdown voltage and bending strength as compared with the comparative example, and its variation is also large. small. Furthermore, this monolithic ceramic capacitor has a long life of insulation resistance under a load in the wet and shows excellent reliability.

【0035】以上のことから、この発明にかかる誘電体
磁器組成物で作製した積層セラミックコンデンサは、誘
電体層が10μm以下と薄くなっても十分対応でき、小
型大容量の積層セラミックコンデンサとして期待でき
る。さらに、焼成温度が1300℃以下と低いため内部
電極として30Ag−70Pb(重量%)などのAg−
Pb合金の使用が可能である。
From the above, the monolithic ceramic capacitor manufactured by the dielectric ceramic composition according to the present invention can be sufficiently applied even when the dielectric layer is thinned to 10 μm or less, and can be expected as a small-sized and high-capacity monolithic ceramic capacitor. . Further, since the firing temperature is as low as 1300 ° C. or lower, Ag-such as 30Ag-70Pb (wt%) is used as an internal electrode.
It is possible to use Pb alloys.

【0036】ここで、この発明における組成の限定理由
について説明する。
Here, the reason for limiting the composition in the present invention will be explained.

【0037】試料番号1のように、BaTiO3 100
モルに対してCeO2 が2.0モル未満の場合、誘電率
が11,000未満となり、200V/mmの交流電圧
を印加したときの誘電損失が5.0%を越え、また温度
特性がF特性規格を満足しない。一方、試料番号15の
ように、CeO2 が4.8モルを超えると、誘電率が1
1,000未満になり、温度特性もF特性規格を満足し
ない。
As sample No. 1, BaTiO 3 100
When CeO 2 is less than 2.0 mol per mol, the dielectric constant is less than 11,000, the dielectric loss when an AC voltage of 200 V / mm is applied exceeds 5.0%, and the temperature characteristic is F. Does not meet the characteristic standards. On the other hand, as in Sample No. 15, when CeO 2 exceeds 4.8 mol, the dielectric constant becomes 1
It becomes less than 1,000, and the temperature characteristic does not satisfy the F characteristic standard.

【0038】また、試料番号2のように、BaTiO3
100モルに対して(Ti1-a Sna )O2 が1.0モ
ル未満の場合、誘電率が11,000未満となり、20
0V/mmの交流電圧を印加したときの誘電損失が大き
くなって好ましくない。一方、試料番号16のように、
(Ti1-a Sna )O2 が7.0モルを超えると、誘電
率が11,000未満となり、温度特性がF特性規格を
満足しなくなる。
In addition, as in sample No. 2, BaTiO 3
When (Ti 1-a Sn a ) O 2 is less than 1.0 mol with respect to 100 mol, the dielectric constant is less than 11,000 and 20
The dielectric loss becomes large when an AC voltage of 0 V / mm is applied, which is not preferable. On the other hand, like sample number 16,
When (Ti 1-a Sn a ) O 2 exceeds 7.0 mol, the dielectric constant becomes less than 11,000 and the temperature characteristics do not satisfy the F characteristics standard.

【0039】試料番号3のように、BaTiO3 100
モルに対してMnO2 が0.08モル未満の場合、室温
および高温での絶縁抵抗が低くなり好ましくない。ま
た、試料番号17のように、MnO2 が0.50モルを
超えると、200V/mmの交流電圧を印加したときの
誘電損失が5.0%を越え、25℃,85℃での絶縁抵
抗が大幅に低下してしまう。
As sample No. 3, BaTiO 3 100
When MnO 2 is less than 0.08 mol based on mol, the insulation resistance at room temperature and high temperature becomes low, which is not preferable. When MnO 2 exceeds 0.50 mol as in Sample No. 17, the dielectric loss when an AC voltage of 200 V / mm is applied exceeds 5.0% and the insulation resistance at 25 ° C and 85 ° C is increased. Will be significantly reduced.

【0040】また、試料番号4のように、(BaO+C
eO2 )/(TiO2 +SnO2 )のモル比が0.97
未満の場合、200V/mmの交流電圧を印加したとき
の誘電損失が5.0%を越え、室温および高温での絶縁
抵抗が低くなり、またグレインサイズが2μmより大き
くなってしまう。一方、試料番号18のように、(Ba
O+CeO2 )/(TiO2 +SnO2 )のモル比が
1.02を超えると、焼結性が極端に悪くなる。
Further, as in sample No. 4, (BaO + C
The molar ratio of eO 2 ) / (TiO 2 + SnO 2 ) is 0.97.
When it is less than 1.0%, the dielectric loss when an AC voltage of 200 V / mm is applied exceeds 5.0%, the insulation resistance at room temperature and high temperature becomes low, and the grain size becomes larger than 2 μm. On the other hand, like sample number 18, (Ba
When the molar ratio of O + CeO 2 ) / (TiO 2 + SnO 2 ) exceeds 1.02, the sinterability becomes extremely poor.

【0041】試料番号5のように、SnO2 量aが0の
場合、200V/mmの交流電圧を印加したときの誘電
損失が5.0%を超え、温度特性がF特性規格を満足し
なくなる。
When the SnO 2 amount a is 0 as in sample No. 5, the dielectric loss when an AC voltage of 200 V / mm is applied exceeds 5.0%, and the temperature characteristic does not satisfy the F characteristic standard. .

【0042】試料番号19のように、比表面積が4.0
2 /gを超え、未反応のBaO量が2.0%を超える
チタン酸バリウムEを用いた場合、静電容量の温度変化
率は小さいが、誘電率が大幅に低下してしまう。また、
試料番号20のように、アルカリ金属酸化物の含有量の
多い水熱反応を利用して作製したチタン酸バリウムFを
用いた場合、誘電率が小さくなる。試料番号21のよう
に、ハロゲンの含有量の多い水熱反応を利用して作製し
たチタン酸バリウムGを用いて、積層コンデンサを作製
した場合、高温負荷試験および湿中負荷試験での不良数
が多くなり好ましくない。
As in Sample No. 19, the specific surface area is 4.0.
When barium titanate E exceeding m 2 / g and having an unreacted BaO amount of over 2.0% is used, the rate of change in capacitance with temperature is small, but the dielectric constant is significantly reduced. Also,
When barium titanate F produced by utilizing a hydrothermal reaction having a large content of alkali metal oxide is used as in Sample No. 20, the dielectric constant becomes small. When a multilayer capacitor was manufactured by using barium titanate G prepared by utilizing a hydrothermal reaction having a large halogen content as in Sample No. 21, the number of defects in the high temperature load test and the humidity and medium load test was high. It is not preferable because it increases.

【0043】また、比較例1のように、粉末で添加物を
添加した場合、破壊電圧値および抗折強度の平均値は、
比較例2に比べて大きいが、min値が平均値に比較し
て大幅に小さくなってしまい好ましくない。
When the additive is added in the form of powder as in Comparative Example 1, the breakdown voltage value and the mean value of the bending strength are
Although it is larger than that of Comparative Example 2, the min value is significantly smaller than the average value, which is not preferable.

【0044】なお、この発明にかかる有機溶剤可溶な有
機金属化合物として、オクチル酸Ce,オクチル酸S
n,Tiアセチルアセトネート,Mnアセチルアセトネ
ートを用いたが、これに限定されるものではなく、アル
コキシドやその他の脂肪酸塩,アセチルアセトネートで
も同様の効果が得られる。
As the organic solvent-soluble organometallic compound according to the present invention, octyl acid Ce and octyl acid S are used.
Although n, Ti acetylacetonate and Mn acetylacetonate were used, the present invention is not limited to this, and similar effects can be obtained with alkoxides, other fatty acid salts and acetylacetonate.

【図面の簡単な説明】[Brief description of drawings]

【図1】試料の抗折強度を測定するための抗折強度測定
装置を示す図解図である。
FIG. 1 is an illustrative view showing a bending strength measuring device for measuring a bending strength of a sample.

【符号の説明】[Explanation of symbols]

10 抗折強度測定装置 12 試料保持台 14 被試験積層セラミックコンデンサ 16 加圧ピン 18 置き針付きテンションゲージ 10 Bending strength measuring device 12 Sample holder 14 Multilayer ceramic capacitor under test 16 Pressure pin 18 Tension gauge with needle

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不純物として含まれるアルカリ金属酸化
物の含有量が0.03重量%以下、ハロゲンの含有量が
0.03重量%以下のチタン酸バリウム100モルに対
して、 CeをCeO2 換算で2.0〜4.8モル Ti,Snを(Ti1-a Sna )O2 (ただし、0<a
≦1.0)換算で1.0〜7.0モル MnをMnO2 換算で0.08〜0.5モル 含有し、かつ 0.97≦(BaO+CeO2 )/(TiO2 +SnO
2 )≦1.02(モル比)である、誘電体磁器組成物。
1. Ce based on CeO 2 with respect to 100 mol of barium titanate having an alkali metal oxide content of 0.03% by weight or less and a halogen content of 0.03% by weight or less contained as impurities. 2.0 to 4.8 mol of Ti, Sn to (Ti 1-a Sn a ) O 2 (where 0 <a
≦ 1.0) 1.0-7.0 mol Mn 0.08-0.5 mol MnO 2 conversion, and 0.97 ≦ (BaO + CeO 2 ) / (TiO 2 + SnO)
2 ) Dielectric porcelain composition, wherein ≦ 1.02 (molar ratio).
【請求項2】 前記チタン酸バリウムとして、比表面積
が4.0m2 /g以下、未反応のBaO量が2.0%以
下の粉末を用いる、請求項1の誘電体磁器組成物の組成
物粉末の製造方法。
2. The composition of the dielectric ceramic composition according to claim 1, wherein a powder having a specific surface area of 4.0 m 2 / g or less and an unreacted BaO content of 2.0% or less is used as the barium titanate. Powder manufacturing method.
【請求項3】 前記チタン酸バリウムとして、水熱反応
を利用して製造した粉末を用いる、請求項1の誘電体磁
器組成物の組成物粉末の製造方法。
3. The method for producing a composition powder of a dielectric ceramic composition according to claim 1, wherein a powder produced by utilizing a hydrothermal reaction is used as the barium titanate.
【請求項4】 前記Ce,Ti,Sn,Mnとして、有
機溶剤可溶な有機金属化合物を用いる、請求項1の誘電
体磁器組成物の組成物粉末の製造方法。
4. The method for producing a composition powder of a dielectric ceramic composition according to claim 1, wherein an organic solvent-soluble organometallic compound is used as the Ce, Ti, Sn, and Mn.
JP18063693A 1993-06-24 1993-06-24 Method for producing dielectric ceramic raw material powder Expired - Lifetime JP3557623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18063693A JP3557623B2 (en) 1993-06-24 1993-06-24 Method for producing dielectric ceramic raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18063693A JP3557623B2 (en) 1993-06-24 1993-06-24 Method for producing dielectric ceramic raw material powder

Publications (2)

Publication Number Publication Date
JPH0778511A true JPH0778511A (en) 1995-03-20
JP3557623B2 JP3557623B2 (en) 2004-08-25

Family

ID=16086665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18063693A Expired - Lifetime JP3557623B2 (en) 1993-06-24 1993-06-24 Method for producing dielectric ceramic raw material powder

Country Status (1)

Country Link
JP (1) JP3557623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036603A (en) * 2004-07-28 2006-02-09 Tdk Corp Method for manufacturing barium titanate powder, barium titanate powder and electronic component
US20180130601A1 (en) 2016-11-09 2018-05-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036603A (en) * 2004-07-28 2006-02-09 Tdk Corp Method for manufacturing barium titanate powder, barium titanate powder and electronic component
JP4626207B2 (en) * 2004-07-28 2011-02-02 Tdk株式会社 Method for producing barium titanate powder
US20180130601A1 (en) 2016-11-09 2018-05-10 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
US10580575B2 (en) 2016-11-09 2020-03-03 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
US10600572B2 (en) 2016-11-09 2020-03-24 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same
USRE49923E1 (en) 2016-11-09 2024-04-16 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and multilayer ceramic capacitor containing the same

Also Published As

Publication number Publication date
JP3557623B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
JP2001351828A (en) Non-reducing dielectric ceramic and laminated ceramic capacitor using the same
JP2594320B2 (en) Dielectric ceramic composition
JP3482654B2 (en) Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder
JPH0925162A (en) Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same
JP3557623B2 (en) Method for producing dielectric ceramic raw material powder
JP3634930B2 (en) Dielectric porcelain composition
JP3362408B2 (en) Dielectric porcelain composition
JP3470299B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2795654B2 (en) High dielectric constant porcelain composition
JP3064518B2 (en) Dielectric porcelain composition
JP2902925B2 (en) Dielectric porcelain composition
JP2958826B2 (en) Dielectric porcelain composition
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JPH06345432A (en) Production of barium titanate powder
JP2508374B2 (en) Dielectric porcelain composition
JP2621478B2 (en) High dielectric constant porcelain composition
JPH088137A (en) Laminar ceramic capacitor
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JPH08119728A (en) Dielectric porcelain composition
JPH04334809A (en) Dielectric porcelain composite
JPH10139539A (en) Dielectric porcelain composition
JP3064519B2 (en) Dielectric porcelain composition
JP3106371B2 (en) Dielectric porcelain composition
JPH02242522A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

EXPY Cancellation because of completion of term