[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0777006A - Air-cooled moving blade for gas turbine - Google Patents

Air-cooled moving blade for gas turbine

Info

Publication number
JPH0777006A
JPH0777006A JP22332493A JP22332493A JPH0777006A JP H0777006 A JPH0777006 A JP H0777006A JP 22332493 A JP22332493 A JP 22332493A JP 22332493 A JP22332493 A JP 22332493A JP H0777006 A JPH0777006 A JP H0777006A
Authority
JP
Japan
Prior art keywords
gas turbine
cooling
air
turbulence promoter
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22332493A
Other languages
Japanese (ja)
Other versions
JP3377563B2 (en
Inventor
Masayuki Takahama
正幸 高濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22332493A priority Critical patent/JP3377563B2/en
Publication of JPH0777006A publication Critical patent/JPH0777006A/en
Application granted granted Critical
Publication of JP3377563B2 publication Critical patent/JP3377563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve a heat transfer effect by improving a turbulence promoter mounted on a cooling air passage in the air-cooled moving blade of a gas turbine. CONSTITUTION:A turbulence promoter 3 mounted in a cooling air passage in the air-cooled moving blade of a gas turbine is forward into a tear drop shape formed of a conical part D on the upstream side and a hemisphere part E formed continuously to the conical part on the downstream side so as to reduce a turbulence zone in the back stream of the turbulence promoter 3, so it in order to improve a thermal transfer effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンの動翼の
冷却空気通路に設けられたタービュレンスプロモータを
改良したガスタービンの空気冷却動翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air cooling blade of a gas turbine having an improved turbulence promoter provided in a cooling air passage of the blade of the gas turbine.

【0002】[0002]

【従来の技術】図3(b)は、従来のガスタービン動翼
の一例の破断斜視図である。翼根1の底部からガスター
ビン動翼内へ流入した冷却空気は、矢印の方向に流れて
動翼を冷却する。すなわち前縁側の空気入口2Aから流
入した冷却空気は、タービュレンスプロモータを形成す
る冷却フィン3Aを有する冷却空気通路を流れて翼を冷
却し、図3(a)及び図3(b)に示すチップシニング
(tip thinnig)4が設けられた翼頂部の空
気出口穴5から流出して、主ガス流れに合流する。また
後縁側の空気入口2Bから流入した冷却空気は、タービ
ュレンスプロモータを形成する冷却フィン3Aが設けら
れた冷却空気通路を矢印の方向に流れ、ピンフィン6で
翼後縁を冷却したのち空気出口穴7から流出して、主ガ
ス流れに合流する。
2. Description of the Related Art FIG. 3B is a cutaway perspective view of an example of a conventional gas turbine rotor blade. The cooling air that has flowed into the gas turbine rotor blade from the bottom of the blade root 1 flows in the direction of the arrow to cool the rotor blade. That is, the cooling air flowing in from the air inlet 2A on the leading edge side flows through the cooling air passage having the cooling fins 3A forming the turbulence promoter to cool the blades, and the chips shown in FIGS. 3 (a) and 3 (b) are obtained. It flows out of an air outlet hole 5 at the tip of a blade provided with a thinning 4 and joins the main gas flow. The cooling air flowing in from the air inlet 2B on the trailing edge side flows in the direction of the arrow through the cooling air passage provided with the cooling fins 3A forming the turbulence promoter, and the pin fins 6 cool the trailing edge of the blade, and then the air outlet hole. 7 and joins the main gas stream.

【0003】図4は冷却フィン3Aの断面図である。冷
却フィン3Aは、断面矩形状の形状を有しており、伝熱
面積を増して熱通過量を増大させると共に流れに乱れを
与えて熱伝達率を向上させ、タービュレンスプロモータ
(turbulence promotor)として冷
却効果を促進する。
FIG. 4 is a sectional view of the cooling fin 3A. The cooling fin 3A has a rectangular cross-section, and increases the heat transfer area to increase the amount of heat passing through and disturbs the flow to improve the heat transfer rate, and serves as a turbulence promoter. Promotes the cooling effect.

【0004】図5はタービュレンスプロモータの原理説
明図である。冷却フィン3Aの下流では、流れは強制的
にはく離し、流線は、図に示すように壁側に向かうと共
に、冷却フィン3Aの下流には、うずが誘導される。こ
のうずの端Aは、流線が下流につながるか、又は上流に
もどるかの境界となっており、この箇所で流れが再付着
するため一般に再付着点と呼ばれる。熱伝達率は、ター
ビュレンスプロモータ直後のうず域では低いが再付着点
以降で上昇する。すなわち、図のB域に比べて、C域で
の熱通過量は大きく、冷却効果に大きな差が発生する。
FIG. 5 illustrates the principle of the turbulence promoter. The flow is forcibly separated downstream of the cooling fin 3A, the streamline is directed to the wall side as shown in the figure, and eddies are induced downstream of the cooling fin 3A. The edge A of the vortex is a boundary where the streamline connects to the downstream side or returns to the upstream side, and the flow reattaches at this point, and therefore is generally called a reattachment point. The heat transfer coefficient is low in the vortex region immediately after the turbulence promoter, but increases after the reattachment point. That is, the amount of heat passing through the area C is large as compared with the area B in the figure, and a large difference occurs in the cooling effect.

【0005】[0005]

【発明が解決しようとする課題】前記従来のガスタービ
ンの空気冷却動翼では、次の問題点がある。 (1)タービュレンスプロモータ後流で再付着点に達す
るまでの冷却面熱伝達率が低く、この域の面積が大きい
ため冷却効果が比較的低かった。 (2)このため動翼メタル温度が高く、また温度を下げ
るために大量の冷却空気を必要としていた。前者は翼の
寿命を短縮し、後者はガスタービン効率を低下させてい
た。
The air cooling blade of the conventional gas turbine has the following problems. (1) The heat transfer coefficient on the cooling surface is low until the reattachment point is reached in the wake of the turbulence promoter, and the cooling effect is relatively low due to the large area in this region. (2) For this reason, the rotor blade metal temperature is high, and a large amount of cooling air is required to lower the temperature. The former reduced blade life and the latter reduced gas turbine efficiency.

【0006】本発明は、以上の問題点を解決することが
できるガスタービンの空気冷却動翼を提供しようとする
ものである。
The present invention is intended to provide an air cooling blade for a gas turbine which can solve the above problems.

【0007】[0007]

【課題を解決するための手段】本発明のガスタービンの
空気冷却動翼は、冷却通路に設けられたタービュレンス
プロモータを円錐部と同円錐部に連設された半球部より
なる涙滴形状に形成し、かつ、前記円錐部を冷却空気通
路の上流側に位置させたことを特徴とする。
An air cooling blade of a gas turbine according to the present invention has a teardrop shape composed of a turbulence promoter provided in a cooling passage and a hemispherical part connected to the conical part. And the conical portion is located upstream of the cooling air passage.

【0008】[0008]

【作用】本発明では、冷却空気通路に設けられたタービ
ュレンスプロモータを円錐部と同円錐部に連設された半
球部よりなる涙滴形状に形成し、かつ、前記円錐部を冷
却空気通路の上流側に位置させているために、タービュ
レンスプロモータによるうず域が減少し、うずの端すな
わち再付着点が上流側に移行する。従って、高熱伝達域
が増大して、低熱伝達域が減少する。
In the present invention, the turbulence promoter provided in the cooling air passage is formed into a teardrop shape composed of a conical portion and a hemispherical portion connected to the conical portion, and the conical portion is provided in the cooling air passage. Since it is located on the upstream side, the vortex region due to the turbulence promoter is reduced, and the edge of the vortex, that is, the reattachment point moves to the upstream side. Therefore, the high heat transfer area is increased and the low heat transfer area is decreased.

【0009】[0009]

【実施例】本発明の一実施例を、図1及び図2によって
説明する。図1は同実施例に係るガスタービンの空気冷
却翼のタービュレンスプロモータの断面図、図2は同実
施例における流線と熱伝達率の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a turbulence promoter of an air cooling blade of a gas turbine according to the same embodiment, and FIG. 2 is an explanatory diagram of streamlines and heat transfer coefficients in the same embodiment.

【0010】図1において、タービン空気冷却動翼内の
冷却空気通路に設けられたタービュレンスプロモータ3
は、後方の断面積が拡大する円錐部Dとその後部に半球
部Eが連設されるように冷却空気通路を削除して涙滴形
状に形成され、円錐部Dを冷却空気通路の上流側に位置
させている。このような涙滴形状のタービュレンスプロ
モータ3が冷却空気通路の上流側から下流側へわたって
複数個連設されている。
In FIG. 1, a turbulence promoter 3 is provided in a cooling air passage in a turbine air cooling blade.
Is formed into a teardrop shape by removing the cooling air passage so that a conical portion D having an enlarged rear cross-sectional area and a hemispherical portion E connected to the rear portion thereof are formed in a teardrop shape. Is located in. A plurality of such teardrop-shaped turbulence promoters 3 are continuously arranged from the upstream side to the downstream side of the cooling air passage.

【0011】本実施例では、上流側の円錐部Dと下流側
の半球部Eで涙滴形状のタービュレンスプロモータ3を
設けているために、図2に示すように、タービュレンス
プロモータによって発生するうず域は従来に比べて著し
く減少し、うずの端すなわち再付着点Aは上流側に移行
している。これに伴って低熱伝達域Bが減少し、高熱伝
達域Cが増大する。従って、本実施例では、伝熱効果を
上げることができ、冷却空気量を少なくして動翼メタル
の温度上昇を防止することができる。
In this embodiment, since the teardrop-shaped turbulence promoter 3 is provided in the upstream conical portion D and the downstream hemispherical portion E, the turbulence promoter is generated as shown in FIG. The eddy region is remarkably reduced as compared with the conventional one, and the eddy end, that is, the reattachment point A is moved to the upstream side. Along with this, the low heat transfer area B decreases and the high heat transfer area C increases. Therefore, in this embodiment, the heat transfer effect can be enhanced, the amount of cooling air can be reduced, and the temperature rise of the blade metal can be prevented.

【0012】[0012]

【発明の効果】本発明は、ガスタービンの空気冷却動翼
の冷却空気通路に設けられたタービュレンスプロモータ
を、円錐部と同円錐部に連設された半球部で涙滴形状に
形成し、かつ、前記円錐部を冷却空気通路の上流側に位
置させているので、タービュレンスプロモータの伝熱効
果が向上し、少ない冷却空気で効果的な冷却を行うこと
ができる。従ってガスタービン効率が向上し、翼の寿命
の延長を図ることができる。
According to the present invention, a turbulence promoter provided in a cooling air passage of an air cooling blade of a gas turbine is formed in a teardrop shape by a conical portion and a hemispherical portion connected to the conical portion. Moreover, since the conical portion is located on the upstream side of the cooling air passage, the heat transfer effect of the turbulence promoter is improved, and effective cooling can be performed with a small amount of cooling air. Therefore, the gas turbine efficiency is improved and the life of the blade can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るガスタービンの空気冷
却動翼のタービュレンスプロモータの断面図である。
FIG. 1 is a cross-sectional view of a turbulence promoter of an air cooling blade of a gas turbine according to an embodiment of the present invention.

【図2】同実施例における流線と熱伝達率の説明図であ
る。
FIG. 2 is an explanatory diagram of streamlines and heat transfer coefficients in the same example.

【図3】従来のガスタービンの空気冷却動翼を示し、図
3(a)はその端面図、図3(b)はその破断斜視図で
ある。
FIG. 3 shows an air cooling blade of a conventional gas turbine, FIG. 3 (a) is an end view thereof, and FIG. 3 (b) is a cutaway perspective view thereof.

【図4】従来のガスタービンの空気冷却動翼のタービュ
レンスプロモータの断面図である。
FIG. 4 is a sectional view of a turbulence promoter of an air cooling blade of a conventional gas turbine.

【図5】同従来のタービュレンスプロモータにおける流
線と熱伝達率の説明図である。
FIG. 5 is an explanatory diagram of streamlines and heat transfer rates in the conventional turbulence promoter.

【符号の説明】[Explanation of symbols]

1 翼根 2A,2B 冷却空気入口 3 タービュレンスプロモータ 3A 冷却フィン 4 チップシニング 5,7 空気出口穴 6 ピンフィン A 再付着点 B 低熱伝達域 C 高熱伝達域 D 円錐部 E 半球部 1 Blade Root 2A, 2B Cooling Air Inlet 3 Turbulence Promoter 3A Cooling Fin 4 Tip Thinning 5, 7 Air Outlet Hole 6 Pin Fin A Reattachment Point B Low Heat Transfer Area C High Heat Transfer Area D Cone Part E Hemisphere Part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却空気通路にタービュレンスプロモー
タを有するガスタービンの空気冷却動翼において、ター
ビュレンスプロモータを円錐部と同円錐部に連設された
半球部よりなる涙滴形状に形成し、かつ、前記円錐部を
冷却空気通路の上流側に位置させたことを特徴とするガ
スタービンの空気冷却動翼。
1. An air cooling blade of a gas turbine having a turbulence promoter in a cooling air passage, wherein the turbulence promoter is formed into a teardrop shape composed of a conical portion and a hemispherical portion connected to the conical portion, and The air cooling blade of a gas turbine, wherein the conical portion is located upstream of the cooling air passage.
JP22332493A 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades Expired - Lifetime JP3377563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22332493A JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22332493A JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Publications (2)

Publication Number Publication Date
JPH0777006A true JPH0777006A (en) 1995-03-20
JP3377563B2 JP3377563B2 (en) 2003-02-17

Family

ID=16796373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22332493A Expired - Lifetime JP3377563B2 (en) 1993-09-08 1993-09-08 Gas turbine air-cooled rotor blades

Country Status (1)

Country Link
JP (1) JP3377563B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517673A (en) * 1998-06-08 2002-06-18 ソウラー タービンズ インコーポレイテッド Combustor for low exhaust gas turbine engine
JP2007327494A (en) * 2006-06-06 2007-12-20 United Technol Corp <Utc> Turbine engine component and cooling micro circuit
US8128366B2 (en) 2008-06-06 2012-03-06 United Technologies Corporation Counter-vortex film cooling hole design

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517673A (en) * 1998-06-08 2002-06-18 ソウラー タービンズ インコーポレイテッド Combustor for low exhaust gas turbine engine
JP2007327494A (en) * 2006-06-06 2007-12-20 United Technol Corp <Utc> Turbine engine component and cooling micro circuit
US8128366B2 (en) 2008-06-06 2012-03-06 United Technologies Corporation Counter-vortex film cooling hole design

Also Published As

Publication number Publication date
JP3377563B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP4063937B2 (en) Turbulence promoting structure of cooling passage of blade in gas turbine engine
US7955053B1 (en) Turbine blade with serpentine cooling circuit
JP4094010B2 (en) Fan-shaped trailing edge teardrop array
US7997868B1 (en) Film cooling hole for turbine airfoil
JP3689114B2 (en) Combustor liner equipment
JP2006342804A (en) Turbine airfoil with variable compound fillet
US20140023497A1 (en) Cooled turbine blade tip shroud with film/purge holes
JPH0370084B2 (en)
EP1647672A2 (en) Airfoil with impingement cooling of a large fillet
FR2571428A1 (en) HOLLOW BLADES OF TURBINES COOLED BY A FLUID AND ENGINE EQUIPPED WITH SUCH PALES
JPH10274002A (en) Turbulence unit structure of cooling passage of moving blade for gas turbine engine
JP2004308658A (en) Method for cooling aerofoil and its device
EP1818504B1 (en) Material having internal cooling passage and method for cooling material having internal cooling passage
CN112459852B (en) Be applied to two water conservancy diversion rib water conservancy diversion structures of turbine blade trailing edge half-splitting seam
CN102022378B (en) Small or small vane impeller with blunt trailing edge structure used in vane compressor
JP3040590B2 (en) Gas turbine blades
JP6843253B2 (en) Walls of hot gas section and corresponding hot gas section for gas turbine
JPH0777006A (en) Air-cooled moving blade for gas turbine
CN112343667B (en) Continuous V-shaped rib flow guide structure applied to turbine blade trailing edge half-splitting seam
CN112523810B (en) Triangular column type flow guide structure applied to turbine blade trailing edge half-splitting seam
JPH0463901A (en) Gas turbine cooling blade
JP2002349201A (en) Turbin rotor blade
CN215214095U (en) Backward blade for centrifugal fan impeller, centrifugal fan and range hood
CN105485743B (en) A kind of range hood with noise reducing mechanism
JP3241241B2 (en) Hollow gas turbine blades

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11