JPH0777408A - End section position measuring method for object - Google Patents
End section position measuring method for objectInfo
- Publication number
- JPH0777408A JPH0777408A JP7853294A JP7853294A JPH0777408A JP H0777408 A JPH0777408 A JP H0777408A JP 7853294 A JP7853294 A JP 7853294A JP 7853294 A JP7853294 A JP 7853294A JP H0777408 A JPH0777408 A JP H0777408A
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- light
- measured
- amount
- measurement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、物体の端部位置測定方
法に係わり、特に、光学センサーを用いて物体の端部の
位置を計測する物体の端部位置計測方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position of an end of an object, and more particularly to a method for measuring the position of the end of an object using an optical sensor.
【0002】[0002]
【従来の技術】従来、溶接のための端部の位置の計測
は、特開平3−207577号公報の様にCCDカメラ
等を用いた複雑な測定方法がある。また、簡単な光学セ
ンサーを用いた物体の端部位置の計測は、例えば、被計
測物に対し所定の距離を設定しレーザを照射して距離を
測定し、測定した距離の変化によって被計測物の端部を
推察していた。2. Description of the Related Art Conventionally, for measuring the position of an end portion for welding, there is a complicated measuring method using a CCD camera or the like, as disclosed in JP-A-3-207577. Further, the measurement of the end position of an object using a simple optical sensor is performed, for example, by setting a predetermined distance to the object to be measured, irradiating a laser to measure the distance, and measuring the object by a change in the measured distance. I was guessing the end.
【0003】図4は被計測物10および距離測定器とし
ての光学センサー11の配置関係(配置の関係は新旧同
一)を示した図であり、図9が光学センサー11と被計
測物10との位置関係を示している。被計測物10の端
部のXが求める測定位置である。この位置を光学センサ
ー11を用いて計測する場合、図10に示すセンシング
形状から、端部X1の位置を計算する。図10のグラフ
は縦軸Zに対し物体の平面部6aによる平坦部と無反射
部による平坦部6bとがあり、物体の平面部による平面
部6aの平均計測位置Z1と所定の距離p変化した位置
(Z1+p)の線と計測形状線とが交差した点X1を端
部の位置としている。FIG. 4 is a diagram showing the arrangement relationship between the object 10 to be measured and the optical sensor 11 as a distance measuring device (the relationship of arrangement is the same as the old and new), and FIG. 9 shows the relationship between the optical sensor 11 and the object 10 to be measured. The positional relationship is shown. X at the end of the DUT 10 is a measurement position to be obtained. When this position is measured using the optical sensor 11, the position of the end portion X1 is calculated from the sensing shape shown in FIG. In the graph of FIG. 10, there are a flat portion due to the flat portion 6a of the object and a flat portion 6b due to the non-reflecting portion with respect to the vertical axis Z, and the average measurement position Z1 of the flat portion 6a due to the flat portion of the object and the predetermined distance p change. The point X1 where the line at the position (Z1 + p) and the measurement shape line intersect is set as the end position.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、図10
が示すように、距離測定器の被計測物の端部の計測は鈍
感であり、被計測物端部の形状が丸みをおびていなくて
も、計測されたグラフの形状は端部が少しだれた状態と
なる。この計測の鈍化によって、端部の測定位置に±
0.2mm程度の誤差が生じることが経験的に知られて
いる。However, as shown in FIG.
As shown in, the measurement of the end of the measured object of the distance measuring device is insensitive, and even if the shape of the end of the measured object is not rounded, the shape of the measured graph is slightly sagging at the end. Will be in a state of Due to this slowing of measurement, ±
It is empirically known that an error of about 0.2 mm occurs.
【0005】本発明は、測定精度の高い端部の位置計測
を行える物体の端部位置計測方法を提供することを目的
とする。It is an object of the present invention to provide an object edge position measuring method capable of measuring the edge position with high measurement accuracy.
【0006】[0006]
【課題を解決するための手段】かかる目的を達成するた
め、本発明の物体の端部の位置を計測する物体の端部位
置計測方法は、物体へ略直角に光ビームを照射し物体に
より反射された光を受光する受光工程と、受光工程によ
り受光された光により光ビームの照射位置と物体間の距
離を測定する距離測定工程と、受光工程により受光され
た光の光量を測定する反射光量測定工程と、光ビームを
照射する位置を物体に対し略並行に移動する移動工程
と、距離測定工程により測定された距離が移動工程の位
置により変化する変化量から物体の端部の位置X1を計
測する第1の端部計測工程と、反射光量測定工程により
測定された光量が移動工程の位置により変化する変化量
から物体の端部の位置X2を計測する第2の端部計測工
程とを有し、計測した2つの端部の位置X1と位置X2
とから最終的な測定位置を求めることを特徴としてい
る。In order to achieve such an object, the object edge position measuring method for measuring the position of the edge part of an object of the present invention is to irradiate an object with a light beam at a substantially right angle and reflect it by the object. The light receiving step of receiving the received light, the distance measuring step of measuring the distance between the irradiation position of the light beam and the object by the light received by the light receiving step, and the reflected light amount of measuring the light quantity of the light received by the light receiving step The position X1 of the end portion of the object is determined from the measuring step, the moving step of moving the position of irradiating the light beam substantially parallel to the object, and the amount of change in which the distance measured by the distance measuring step changes depending on the position of the moving step. A first edge measuring step for measuring and a second edge measuring step for measuring the position X2 of the edge of the object from the amount of change in which the light quantity measured by the reflected light quantity measuring step changes depending on the position of the moving step. Have and measure Positions of the two ends X1 and position X2
The feature is that the final measurement position is obtained from and.
【0007】また、上記の最終的な計測位置は、計測し
た2つの端部の位置X1と位置X2とが、|X1−X2
|<0.5mmの関係を有する場合にはX2を、また、
|X1−X2|≧0.5mmの関係を有する場合にはX
1を、最終的な測定位置とするとよい。In the final measurement position described above, the measured positions X1 and X2 at the two ends are | X1-X2.
If there is a relationship of | <0.5 mm, then X2,
X has a relationship of | X1-X2 | ≧ 0.5 mm.
It is preferable that 1 is the final measurement position.
【0008】更に、第2の端部計測工程は、物体の端部
の位置X2の計測において、3種類の所定の光量値A,
B,C(但し、光量の大きさの関係をA>B>Cとす
る)に対応する位置の値XA,XB,XCを計測し、こ
れらの3つの位置と所定の距離kとの関係が、XC−X
A>kの関係を満たす場合にはXCをX2とし、XC−
XA>kの関係を満たさない場合にはXBをX2とする
とよい。Further, in the second edge measuring step, in measuring the position X2 of the edge of the object, three kinds of predetermined light amount values A,
The values XA, XB, and XC of the positions corresponding to B and C (however, the relationship of the magnitude of the light amount is A>B> C) are measured, and the relationship between these three positions and the predetermined distance k is determined. , XC-X
When the relationship of A> k is satisfied, XC is set to X2, and XC-
When the relationship of XA> k is not satisfied, XB may be set to X2.
【0009】尚、反射光量測定工程において測定した光
量が所定の光量値Aまたは光量値Bに達しない場合、光
量値Cに対応する位置XCと所定の距離qとにより、X
2を、X2=XC+q、の関係において求め、所定の光
量値Aは、物体の平面部による反射光量の近似値とする
とよい。When the light quantity measured in the reflected light quantity measuring step does not reach the predetermined light quantity value A or the light quantity value B, X is determined by the position XC corresponding to the light quantity value C and the predetermined distance q.
2 is obtained in the relationship of X2 = XC + q, and the predetermined light amount value A may be an approximate value of the light amount reflected by the plane portion of the object.
【0010】[0010]
【作用】本発明の物体の端部位置計測方法によれば、物
体へ略直角にレーザを照射し反射光を受光して、レーザ
の照射位置と物体間の距離および光量を被計測物に対し
平行に移動してなめるように測定する。この計測データ
の所定の変化量点を求め端部位置としている。従って、
同一のレーザの照射に基づいた2つの異なる手法による
端部の計測位置X1と位置X2が得られ、この2個の測
定結果から最終的な計測位置を定めることができる。According to the object edge position measuring method of the present invention, the object is irradiated with the laser at a substantially right angle and the reflected light is received, and the irradiation position of the laser, the distance between the objects and the light quantity are measured with respect to the object to be measured. Move in parallel and measure as you lick. A predetermined change amount point of this measurement data is obtained and used as the end position. Therefore,
The measurement positions X1 and X2 of the end portion are obtained by two different methods based on the same laser irradiation, and the final measurement position can be determined from these two measurement results.
【0011】[0011]
【実施例】次に添付図面を参照して本発明による物体の
端部位置計測方法の実施例を詳細に説明する。図1およ
び図2を参照すると本発明の物体の端部位置計測方法が
適用される端部位置計測の実施例が示されている。以
下、本発明の構成を図面に示す実施例に基づいて詳細に
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for measuring an end position of an object according to the present invention will be described in detail with reference to the accompanying drawings. 1 and 2, there is shown an embodiment of edge position measurement to which the object edge position measurement method of the present invention is applied. Hereinafter, the configuration of the present invention will be described in detail based on the embodiments shown in the drawings.
【0012】本計測方法の実施は、例えば、図4の光学
センサー11を用いて行う。光学センサー11は、一般
に、レーザ光を変調し変調したレーザ111を被計測物
10へ照射し、被計測物10から反射されたレーザと発
射したレーザとの位相差によって被計測物10との距離
を計測する。本方法の計測においては更に被計測物10
から反射される受光量も測定する。The measurement method is carried out by using the optical sensor 11 shown in FIG. 4, for example. The optical sensor 11 generally irradiates the measured object 10 with a laser 111 that modulates and modulates a laser beam, and the distance between the measured object 10 and the measured object 10 is determined by the phase difference between the laser reflected from the measured object 10 and the emitted laser. To measure. In the measurement of this method, the object to be measured 10 is further added.
The amount of received light reflected from is also measured.
【0013】図4の測定関係における被計測物10から
の反射光量の測定結果(図1)および被計測物10との
距離の測定結果(図2)の各例が示されている。Each example of the measurement result of the amount of reflected light from the measured object 10 (FIG. 1) and the measurement result of the distance to the measured object 10 (FIG. 2) in the measurement relationship of FIG. 4 is shown.
【0014】図1の光学センサー11の被計測物10か
らの反射光量の測定結果では、被計測物10の端部がシ
ャープに検出されている。図1は被計測物10からの反
射光量であり、この反射光量は、照射したレーザ111
が比計測物10により反射され光学センサー11へ戻っ
て来た光量である。被計測物10の端部の位置をレーザ
111で計測する場合、距離によって測定するより、反
射光量の変化の方が鋭敏に端部の形状を捕らえることが
できる。このため、受光量の変化から位置を計測した方
が正確である。In the measurement result of the amount of light reflected from the object 10 to be measured by the optical sensor 11 shown in FIG. 1, the edge of the object 10 is sharply detected. FIG. 1 shows the amount of reflected light from the object to be measured 10.
Is the amount of light reflected by the ratio measurement object 10 and returned to the optical sensor 11. When the position of the end of the measured object 10 is measured by the laser 111, the change in the amount of reflected light allows the shape of the end to be captured more sharply than by measuring the distance. Therefore, it is more accurate to measure the position from the change in the amount of received light.
【0015】ただし、問題点もある。例えば、被計測物
10の表面が荒れている場合、乱反射によって受光量が
不安定となることである。よって、単純に反射光量のみ
により端部を検出すると誤測定を生じる恐れがある。こ
の関係を以下に説明する。However, there are problems. For example, when the surface of the DUT 10 is rough, the amount of received light becomes unstable due to irregular reflection. Therefore, if the end portion is simply detected only by the amount of reflected light, erroneous measurement may occur. This relationship will be described below.
【0016】図4の光学センサー11と被計測物10の
関係において、光学センサー11と被計測物10との間
の距離と被計測物10により反射された光の量の2つの
計測を、被計測物10の表面に対し、略並行方向へ連続
して計測する。この計測によって得られた結果は、横軸
Xに光学センサー11の位置、縦軸Zを反射光量として
図1のグラフとなる。図1の反射光量が大きい方の平坦
部1aは被計測物10の平面部に相当し、反射光量の小
さい方の平坦部1bは被計測物10が無く反射光量が無
い状態を表している。また、図2のグラフは、横軸Xを
光学センサー11の位置,縦軸Zを光学センサー11お
よび被計測物10間の距離としている。図2の距離Zの
「−」側の平坦部2aが被計測物10の平面部に相当
し、距離Zの「+」側の平坦部2bが被計測部の無い部
分に相当する。In the relationship between the optical sensor 11 and the object 10 to be measured in FIG. 4, two measurements of the distance between the optical sensor 11 and the object 10 and the amount of light reflected by the object 10 are measured. The measurement is continuously performed in a direction substantially parallel to the surface of the measurement object 10. The results obtained by this measurement are shown in the graph of FIG. 1, where the horizontal axis X is the position of the optical sensor 11 and the vertical axis Z is the amount of reflected light. The flat portion 1a having the larger amount of reflected light in FIG. 1 corresponds to the flat portion of the object to be measured 10, and the flat portion 1b having the smaller amount of reflected light represents the state in which there is no object 10 to be measured and there is no amount of reflected light. In the graph of FIG. 2, the horizontal axis X is the position of the optical sensor 11, and the vertical axis Z is the distance between the optical sensor 11 and the object to be measured 10. The flat portion 2a on the “−” side of the distance Z in FIG. 2 corresponds to the flat surface portion of the object 10 to be measured, and the flat portion 2b on the “+” side of the distance Z corresponds to a portion without the measured portion.
【0017】図1の物体による反射光量のグラフは、被
計測物10の表面が光学的に平坦である場合を示してい
る。被計測物10の表面が荒れている等の物理的には平
面であっても光学的には平面でない場合には、照射され
たレーザ111が乱反射され光学センサー11が受光す
る反射光量は大きく乱れる。図3はこのような状態を示
しており、被計測物10の表面が荒れている場合の反射
光量の測定値の一例を表したグラフである。図3のグラ
フは、被計測物10の平面部からの反射光量3aが大き
く乱れ、この反射光量のグラフの平坦部の端部から被計
測物10の端部を計測した場合、検出端X2′の地点は
真の端部X0の地点と大きくかけ離れた位置となる。The graph of the amount of light reflected by the object shown in FIG. 1 shows the case where the surface of the object 10 to be measured is optically flat. If the surface of the object to be measured 10 is physically flat, such as rough, but is not optically flat, the irradiated laser 111 is diffusely reflected, and the amount of reflected light received by the optical sensor 11 is greatly disturbed. . FIG. 3 shows such a state, and is a graph showing an example of the measured value of the reflected light amount when the surface of the DUT 10 is rough. In the graph of FIG. 3, the amount of reflected light 3a from the flat portion of the object to be measured 10 is greatly disturbed, and when the end of the object to be measured 10 is measured from the end of the flat portion of the graph of the amount of reflected light, the detection end X2 ′. The point is markedly separated from the true end X0.
【0018】本発明の物体の端部位置計測方法では、上
記の原因による誤測定を防止するために距離測定から求
めた計測位置X1と、反射光量から求めた計測位置X2
とを並行して取得し、両者の比較によって測定位置を決
めることとしている。一方の測定位置X1と他方の測定
位置X2とにより、最終的な測定位置は下記の手順に基
づいて決める。In the object edge position measuring method according to the present invention, the measuring position X1 obtained from the distance measurement and the measuring position X2 obtained from the reflected light amount in order to prevent erroneous measurement due to the above cause.
And are acquired in parallel, and the measurement position is decided by comparing both. The final measurement position is determined by the one measurement position X1 and the other measurement position X2 based on the following procedure.
【0019】|X1−X2|<0.5mmの条件を満た
す場合、X2の位置を採用する。If the condition of | X1-X2 | <0.5 mm is satisfied, the position of X2 is adopted.
【0020】|X1−X2|≧0.5mmの条件を満た
す場合、X1の位置を採用する。When the condition of | X1−X2 | ≧ 0.5 mm is satisfied, the position of X1 is adopted.
【0021】この選択手順は、端部の検出に鈍感でり、
大きな誤測定は生じないが小量の測定誤差を含み易い一
方の測定値X1と、端部の検出に敏感であり通常の測定
は正確ではあるが、表面形状が特殊の場合に大きな誤差
を含む可能性のある他方の測定値X2とを用い、相互の
欠点を補い長所を活かす為のものである。This selection procedure is insensitive to edge detection,
Although a large erroneous measurement does not occur, one measurement value X1 is likely to include a small amount of measurement error, and the normal measurement is accurate because it is sensitive to the detection of the end portion, but a large error is included when the surface shape is special. This is to use the other possible measured value X2 to compensate for the mutual defects and to take advantage of the advantages.
【0022】上記の測定方法によれば、従来用いられて
いる光学センサー11と単純な測定手順で精度の高い被
計測物10の端部の測定を可能とする。 (変化例1)被計測物10の表面が荒れている場合、被
計測物10の平面部からの反射光量が大きく乱れること
は、図3のグラフに基づいて既述した。この反射光量の
乱れにおいても、安定な測定結果を得る手順例を以下に
説明する。According to the above measuring method, it is possible to measure the end portion of the object to be measured 10 with high accuracy by using the conventionally used optical sensor 11 and a simple measuring procedure. (Variation 1) It has already been described based on the graph of FIG. 3 that when the surface of the measured object 10 is rough, the amount of reflected light from the flat portion of the measured object 10 is greatly disturbed. An example of a procedure for obtaining a stable measurement result even with the disturbance of the reflected light amount will be described below.
【0023】図5は、図4の被計測物10からの反射光
量の測定例を示している。このグラフでは、特に、被測
定物10の端部において受光量が不安定に測定された場
合を例示している。FIG. 5 shows an example of measuring the amount of light reflected from the object 10 to be measured in FIG. This graph particularly illustrates the case where the amount of received light is unstablely measured at the end of the DUT 10.
【0024】図5は、横軸Xを被測定物10の表面に対
して平行方向の位置、縦軸を受光量として表している。
被測定物10の表面から反射される光量が大きく光学セ
ンサー11の受光量が正常である場合には、被測定物の
端部における受光量は一点鎖線4bで示す様なシャープ
な鋭角を示す。この形態は図1のグラフに相当する。し
かし、反射光量が不十分で安定しない場合は、図5に示
す実線4aの様な形態となる。In FIG. 5, the horizontal axis X represents the position in the direction parallel to the surface of the object 10 to be measured, and the vertical axis represents the amount of received light.
When the amount of light reflected from the surface of the object to be measured 10 is large and the amount of light received by the optical sensor 11 is normal, the amount of light received at the end of the object to be measured exhibits a sharp acute angle as indicated by the alternate long and short dash line 4b. This form corresponds to the graph of FIG. However, when the amount of reflected light is insufficient and is not stable, the form is as shown by the solid line 4a in FIG.
【0025】図5に基づいた反射光量測定において、3
種類の受光量レベルA,B,Cを設ける。受光量レベル
Aは、被測定物10の表面部による平坦部4aの反射光
量である。受光量レベルBは、受光量レベルAからの所
定量低いレベルである。受光量レベルCは、受光量レベ
ルBより更に所定量低いレベルである。上記の3種類の
受光量レベルにおけるX軸における位置を、それぞれX
A,XB,XCとする。この位置XBは、図2の位置X
1に相当している。上記の実施例では、位置X1に相当
する位置XBを被測定物10の端部として測定したが、
平面部による受光量の乱れによって誤測定が生じ易いた
め、本変化例では下記の測定手順により端部の測定を行
う。In the reflected light quantity measurement based on FIG. 5, 3
Different types of received light levels A, B, and C are provided. The received light amount level A is the reflected light amount of the flat portion 4a by the surface portion of the DUT 10. The received light amount level B is a level lower than the received light amount level A by a predetermined amount. The received light amount level C is lower than the received light amount level B by a predetermined amount. The positions on the X axis at the above three types of received light levels are respectively set to X.
A, XB, and XC. This position XB is the position X in FIG.
It corresponds to 1. Although the position XB corresponding to the position X1 is measured as the end of the DUT 10 in the above-described embodiment,
Since the erroneous measurement is likely to occur due to the disturbance of the amount of light received by the flat surface portion, the measurement of the end portion is performed by the following measurement procedure in this variation.
【0026】上記3種類の測定位置XA,XB,XCの
関係において、下記の関係の有無をチェックする。In the relationship among the above-mentioned three types of measurement positions XA, XB, and XC, the presence or absence of the following relationship is checked.
【0027】XC−XA>k、 但し、記号kは所定の距離を表す定数であり、本変化例
では0.5mmを採用する。この条件を満たす場合は被
測定物10の端部の位置をXCとし、また、条件を満た
さない場合は同位置をXBとして測定する。XC-XA> k, where the symbol k is a constant representing a predetermined distance, and 0.5 mm is adopted in this variation. When this condition is satisfied, the position of the end of the DUT 10 is measured as XC, and when the condition is not satisfied, the position is measured as XB.
【0028】上記の手順によれば、平面部の受光量の乱
れによる多くの誤測定を解消し、より精度の高い被測定
物の端部の測定が可能となる。 (変化例2)変化例2は、変化例1と同様に十分な受光
量が得られない場合の測定手順に関するものであり、特
に、被測定物の端部に曲面部を有している場合に適用さ
れる。According to the above procedure, many erroneous measurements due to the disturbance of the light receiving amount on the flat surface portion can be eliminated, and the edge portion of the object to be measured can be measured with higher accuracy. (Variation 2) Variation 2 relates to the measurement procedure when a sufficient amount of received light cannot be obtained as in Variation 1, and in particular, when a curved surface portion is provided at the end of the measured object. Applied to.
【0029】図8は、端部に曲面部を有している被測定
物12の端部の位置を測定する状態であり、被測定部1
2の端部にレーザ111が照射されている状態を概念的
に表している。図8に示した状態において被測定物12
の端部を測定し、得られた受光量のデータ例をグラフ化
し図6および図7に示している。FIG. 8 shows a state in which the position of the end of the DUT 12 having a curved surface at the end is measured.
The state in which the laser 111 is irradiated to the end portion of 2 is conceptually shown. The object to be measured 12 in the state shown in FIG.
6 and 7 are graphs showing data examples of the received light amount obtained by measuring the end portions of the.
【0030】図6における横軸が被測定物12の表面に
対し略平行方向の位置Xであり、図6(A)の縦軸がZ
軸方向の光学センサー11からの距離、図6(B)の縦
軸が受光量を表す。図6および図7の相違点は、図6が
被測定物12の表面部が正常であり十分な反射光量が得
られた場合であり、図7が被測定物12の表面部が異常
であり十分な反射光量が得られ無かった場合である。The horizontal axis in FIG. 6 is the position X in the direction substantially parallel to the surface of the object to be measured 12, and the vertical axis in FIG. 6A is Z.
The distance from the optical sensor 11 in the axial direction, and the vertical axis in FIG. 6B represents the amount of received light. The difference between FIG. 6 and FIG. 7 is that the surface portion of the DUT 12 is normal and a sufficient amount of reflected light is obtained, and FIG. 7 is that the surface portion of the DUT 12 is abnormal. This is the case where a sufficient amount of reflected light could not be obtained.
【0031】本変化例では、上記の十分な反射光量の場
合の測定手順例イと、不十分な反射光量の場合の測定手
順例ロとの2種類において以下に説明する。In this variation, two types of measurement procedure, i.e., a. Case of a sufficient amount of reflected light, and b. Example of a measuring procedure, in case of insufficient reflected light amount, will be described below.
【0032】変化例の測定手順イは、図6(B)におけ
る受光量が所定の値DとなるX軸方向の位置をXDと
し、位置XDから予め定めた所定の距離q1離れた位置
をX6とする。よって、2つの位置関係は、X6=XD
+q1、となる。この手順により求めた位置X6を被測
定物12の端部とする。所定の距離q1は被測定物12
の端部の曲面部の形態、光学センサー11の測定特性等
に基づき経験的に定める。In the measurement procedure B of the variation example, the position in the X-axis direction where the amount of received light in FIG. 6 (B) becomes the predetermined value D is XD, and the position separated from the position XD by a predetermined distance q1 is X6. And Therefore, the two positional relationships are X6 = XD
It becomes + q1. The position X6 obtained by this procedure is the end of the DUT 12. The predetermined distance q1 is the measured object 12
It is empirically determined based on the shape of the curved surface at the end of the, the measurement characteristics of the optical sensor 11, and the like.
【0033】変化例の測定手順ロを以下に説明する。図
7において、2つの図、(A)および(B)は、図6の
関係と同様である。図7(B)の受光量が上記の所定量
Dより低い所定の値EとなるX軸方向の位置をXEと
し、位置XEから予め定めた所定の距離q2離れた位置
をX7とする。よって、2つの位置関係は、X7=XE
+q2、となる。この手順により求めた位置X7を被測
定物12の端部とする。The measurement procedure B of the modified example will be described below. In FIG. 7, the two figures, (A) and (B), are similar to the relationship in FIG. The position in the X-axis direction where the amount of received light in FIG. 7B has a predetermined value E lower than the above-described predetermined amount D is XE, and a position separated from the position XE by a predetermined distance q2 is X7. Therefore, the two positional relationships are X7 = XE
+ Q2. The position X7 obtained by this procedure is the end of the DUT 12.
【0034】上記の2つの測定手順イおよびロは、受光
量の異なる2点における測定であり、大きな受光量が得
られ所定量Dに達する場合は、2つの測定手順イおよび
ロの実行が可能である。これら2つの測定結果の、位置
X6と位置X7、位置Z1と位置Z2、は理論的にはX
6=X7およびZ1=Z2とすることが可能である。実
際の測定においては、測定手順イおよび測定手順ロを選
択または併用して測定すると良い。The above two measurement procedures a and b are measurements at two points with different light reception amounts, and when a large light reception amount is obtained and the predetermined amount D is reached, the two measurement procedures a and b can be executed. Is. Positions X6 and X7, positions Z1 and Z2 of these two measurement results are theoretically X.
It is possible that 6 = X7 and Z1 = Z2. In actual measurement, it is recommended to select or use measurement procedure a and measurement procedure b together.
【0035】また、変化例2の測定手順例イ,ロを端部
に曲面部を有する被測定物において説明したが、これは
正確な端部の位置の測定が比較的困難な事例を示したも
のである。よって、図4に示すような鋭角な端部の測定
においても同様な測定手順を用いることに支障は無い。Further, the measurement procedure examples a and b of the modified example 2 have been described with respect to the object to be measured having the curved surface portion at the end, but this shows a case where it is relatively difficult to accurately measure the position of the end portion. It is a thing. Therefore, there is no problem in using a similar measurement procedure even when measuring an acute-angled end as shown in FIG.
【0036】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、上記の実施例では一つのセンサーで距離お
よび反射光量の測定を行ったが二つのセンサーを用いて
も良い。The above embodiment is one example of the preferred embodiment of the present invention, but the present invention is not limited to this and various modifications can be made without departing from the gist of the present invention. For example, in the above embodiment, one sensor measures the distance and the amount of reflected light, but two sensors may be used.
【0037】[0037]
【発明の効果】以上の説明より明らかなように、本発明
の物体の端部位置計測方法は、被計測物へ照射したレー
ザの反射光を受光して、被計測物の距離変化と反射光量
の変化量より端部の位置を検出する事としている。この
異なった2つの計測手法は異なった特性を有しており、
得られた結果の計測位置X1と位置X2を分別して選択
的に採用することにより、端部位置の測定精度を向上さ
せることが可能となる。As is clear from the above description, the method for measuring the edge position of an object according to the present invention receives the reflected light of the laser applied to the object to be measured, and changes the distance of the object to be measured and the amount of reflected light. The position of the end is to be detected from the change amount of. These two different measurement methods have different characteristics,
It is possible to improve the measurement accuracy of the end position by separating and selectively adopting the obtained measurement position X1 and position X2.
【図1】本発明の物体の端部位置測定方法の1の計測要
素である光学センサーと物体間の距離Zと横位置Xとの
関係を表した一例図である。FIG. 1 is an example diagram showing a relationship between a distance Z and a lateral position X between an optical sensor, which is one measuring element of an object edge position measuring method of the present invention, and an object.
【図2】本発明の物体のへ端部位置測定方法の他の1の
計測要素である物体の表面で反射された光の光量を横位
置Xとの関係で表した一例図である。FIG. 2 is an example diagram showing the amount of light reflected by the surface of an object, which is another measurement element of the method for measuring the edge position of an object of the present invention, in relation to the lateral position X.
【図3】図2と同様の関係の他の一例図である。FIG. 3 is another example diagram of a relationship similar to that of FIG.
【図4】本発明の物体の端部位置測定方法の手順を説明
するための光学センサーと被測定物体との位置関係を表
した概念図である。FIG. 4 is a conceptual diagram showing a positional relationship between an optical sensor and an object to be measured, for explaining the procedure of the method for measuring the edge position of an object of the present invention.
【図5】実施例の変化例1を説明するための受光量の測
定グラフ例である。FIG. 5 is an example of a measurement graph of the amount of received light for explaining the first modification of the embodiment.
【図6】実施例の変化例2のイを説明するための図であ
り、(A)が測定位置Xに対する距離Z、(B)が測定
位置Zに対する受光量の測定グラフ例1である。6A and 6B are views for explaining a second variation example A of the embodiment, where FIG. 6A is a distance Z with respect to the measurement position X, and FIG. 6B is measurement graph example 1 of the amount of received light with respect to the measurement position Z.
【図7】実施例の変化例2のロを説明するための図であ
り、(A)が測定位置Xに対する距離Z、(B)が測定
位置Zに対する受光量の測定グラフ例2である。7A and 7B are diagrams for explaining B of the second modification of the embodiment, in which FIG. 7A is a distance Z with respect to the measurement position X, and FIG. 7B is a second measurement graph example 2 of the amount of received light with respect to the measurement position Z.
【図8】変化例2の測定手順を説明するための被測定物
とレーザとの関係を示した概念図である。FIG. 8 is a conceptual diagram showing a relationship between an object to be measured and a laser for explaining the measurement procedure of the second modification.
【図9】従来技術の物体の端部位置の計測原理を説明す
るための被測定物体と光ビームセンサーとの位置関係を
表した概念図である。FIG. 9 is a conceptual diagram showing a positional relationship between an object to be measured and a light beam sensor, for explaining a principle of measuring an end position of an object according to a conventional technique.
【図10】従来技術の物体の端部位置の計測原理を説明
するための被測定物体と光ビームセンサーとの距離Zと
横位置Xの関係を表した図である。FIG. 10 is a diagram showing a relationship between a distance Z and a lateral position X between an object to be measured and a light beam sensor for explaining a principle of measuring an end position of the object according to a conventional technique.
1a 被測定物体の表面により反射された測定光量と横
位置の関係グラフ、 1b 被測定物体の無い部分の測定光量と横位置の関係
グラフ、 10、12 被計測物、 11 光学センサー、 111 レーザ、 X 被測定物体の表面に対する横方向の位置、 Z ビーム方向の距離。1a a relational graph between the amount of measured light reflected by the surface of the object to be measured and the lateral position, 1b a relational graph between the measured light amount and the lateral position of the portion without the object to be measured, 10, 12 the object to be measured, 11 optical sensors, 111 laser, X lateral position with respect to the surface of the measured object, Z distance in the beam direction.
Claims (5)
位置計測方法において、該計測方法は、 前記物体へ略直角に光ビームを照射し前記物体により反
射された光を受光する受光工程と、 前記受光工程により受光された光により前記光ビームの
照射位置と前記物体間の距離を測定する距離測定工程
と、 前記受光工程により受光された光の光量を測定する反射
光量測定工程と、 前記光ビームを照射する位置を前記物体に対し略並行に
移動する移動工程と、 前記距離測定工程により測定された距離が前記移動工程
の位置により変化する変化量から前記物体の端部の位置
X1を計測する第1の端部計測工程と、 前記反射光量測定工程により測定された光量が前記移動
工程の位置により変化する変化量から前記物体の端部の
位置X2を計測する第2の端部計測工程とを有し、 計測した前記2つの端部の位置X1と位置X2とから最
終的な測定位置を求めることを特徴とする物体の端部位
置計測方法。1. An object edge position measuring method for measuring an edge position of an object, the method comprising: receiving a light beam that illuminates the object at a substantially right angle and receives light reflected by the object. A step, a distance measuring step of measuring a distance between the irradiation position of the light beam and the object by the light received by the light receiving step, and a reflected light amount measuring step of measuring a light amount of the light received by the light receiving step. A moving step of moving a position of irradiating the light beam substantially parallel to the object, and a position of an end portion of the object based on a change amount in which the distance measured by the distance measuring step changes depending on the position of the moving step. A first edge measuring step of measuring X1, and a second edge measuring step of measuring the position X2 of the edge of the object from the amount of change in the light quantity measured in the reflected light quantity measuring step depending on the position of the moving step. And a final measurement position from the measured positions X1 and X2 of the two end portions.
記2つの端部の位置X1と位置X2とが、|X1−X2
|<0.5mmの関係を有する場合にはX2を、また、
|X1−X2|≧0.5mmの関係を有する場合にはX
1を、最終的な測定位置とすることを特徴とする請求項
1記載の物体の端部位置計測方法。2. The final measurement position is such that the measured positions X1 and X2 of the two ends are | X1-X2.
If there is a relationship of | <0.5 mm, then X2,
X has a relationship of | X1-X2 | ≧ 0.5 mm.
The end position measuring method for an object according to claim 1, wherein 1 is set as a final measurement position.
の端部の位置X2の計測において、3種類の所定の光量
値A,B,C(但し、光量の大きさの関係をA>B>C
とする)に対応する前記位置の値XA,XB,XCを計
測し、これらの3つの位置と所定の距離kとの関係が、
XC−XA>kの関係を満たす場合には前記XCを前記
X2とし、前記XC−XA>kの関係を満たさない場合
には前記XBを前記X2とすることを特徴とする請求項
1または2記載の物体の端部位置計測方法。3. The second edge measuring step described above comprises three types of predetermined light quantity values A, B, C (however, the relationship between the magnitudes of the light quantity is used in the measurement of the position X2 of the edge of the object). A>B> C
The values XA, XB, and XC of the position corresponding to (3) are measured, and the relationship between these three positions and the predetermined distance k is
The XC is set to the X2 when the relation of XC-XA> k is satisfied, and the XB is set to the X2 when the relation of XC-XA> k is not satisfied. A method for measuring the edge position of the described object.
光量が前記所定の光量値Aまたは光量値Bに達しない場
合、前記光量値Cに対応する前記位置XCと所定の距離
qとにより、前記X2を、X2=XC+q、の関係にお
いて求めることを特徴とする請求項3記載の物体の端部
位置計測方法。4. When the light quantity measured in the reflected light quantity measuring step does not reach the predetermined light quantity value A or the light quantity value B, the X2 is determined by the position XC corresponding to the light quantity value C and a predetermined distance q. 4. The method for measuring the edge position of an object according to claim 3, wherein X is calculated in the relationship of X2 = XC + q.
部による反射光量の近似値とすることを特徴とする請求
項3または4記載の物体の端部位置計測方法。5. The method for measuring the edge position of an object according to claim 3, wherein the predetermined light amount value A is an approximate value of the amount of light reflected by the flat surface portion of the object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7853294A JPH0777408A (en) | 1993-07-12 | 1994-04-18 | End section position measuring method for object |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-171617 | 1993-07-12 | ||
JP17161793 | 1993-07-12 | ||
JP7853294A JPH0777408A (en) | 1993-07-12 | 1994-04-18 | End section position measuring method for object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0777408A true JPH0777408A (en) | 1995-03-20 |
Family
ID=26419589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7853294A Pending JPH0777408A (en) | 1993-07-12 | 1994-04-18 | End section position measuring method for object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0777408A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317221A (en) * | 2005-05-11 | 2006-11-24 | Nec Corp | Object recognition device and recognition method |
JP2019039714A (en) * | 2017-08-23 | 2019-03-14 | 株式会社光コム | Inclined plane border position identifying method, inclined plane border position identifying device, and inclined plane border position identifying program |
-
1994
- 1994-04-18 JP JP7853294A patent/JPH0777408A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006317221A (en) * | 2005-05-11 | 2006-11-24 | Nec Corp | Object recognition device and recognition method |
JP2019039714A (en) * | 2017-08-23 | 2019-03-14 | 株式会社光コム | Inclined plane border position identifying method, inclined plane border position identifying device, and inclined plane border position identifying program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4705395A (en) | Triangulation data integrity | |
US20110040510A1 (en) | Film thickness measurement apparatus | |
US9046349B2 (en) | Method and device for contactless determination of the thickness of a web of material, including correction of the alignment error | |
Kanade et al. | An optical proximity sensor for measuring surface position and orientation for robot manipulation | |
KR100568439B1 (en) | Ellipsometer measuring instrument | |
JPH09170930A (en) | Method to determine position in running plane of vehicle | |
JP4215220B2 (en) | Surface inspection method and surface inspection apparatus | |
JPH0777408A (en) | End section position measuring method for object | |
JPH03264804A (en) | Surface-shape measuring apparatus | |
JP2009236706A (en) | Shape calculator, shape calculation program, shape calculating method, and shape-measuring device | |
JP6464595B2 (en) | Sensor mounting angle detection device and sensor mounting angle detection program | |
JPH0448204A (en) | Height measurement system | |
JP2001165629A (en) | Shape measuring device and shape measuring method | |
KR0131526B1 (en) | Optical measuring device and its measuring method | |
JP2630844B2 (en) | 3D shape and size measurement device | |
JP2002188918A (en) | Automated vehicle position measuring method | |
JP4230758B2 (en) | Non-contact sectional shape measuring method and apparatus | |
EP4386431A1 (en) | Method for diagnosing erroneous distance measurement of a laser rangefinder unit, laser rangefinder unit and computer program | |
JP3192461B2 (en) | Optical measuring device | |
JPH0151124B2 (en) | ||
JPH04274711A (en) | Measuring method of size of pattern using charged beam | |
RU2315949C2 (en) | Method and device for triangulation measuring of object surfaces | |
JPH04276514A (en) | Noncontact displacement measuring apparatus | |
JP2002055718A (en) | Unmanned vehicle position detection system | |
JPS5832103A (en) | Noncontacting measuring device |