[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0771830A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0771830A
JPH0771830A JP21948793A JP21948793A JPH0771830A JP H0771830 A JPH0771830 A JP H0771830A JP 21948793 A JP21948793 A JP 21948793A JP 21948793 A JP21948793 A JP 21948793A JP H0771830 A JPH0771830 A JP H0771830A
Authority
JP
Japan
Prior art keywords
liquid
refrigerant
gas
phase refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21948793A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21948793A priority Critical patent/JPH0771830A/en
Publication of JPH0771830A publication Critical patent/JPH0771830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To regulate the amount of refrigerant to a proper amount by providing a gas-phase connection passage for introducing gas-phase refrigerant in a gas- liquid separator into a liquid receiver and a regulating valve for regulating the amount of the gas-phase refrigerant passing through the gas-phase connection passage. CONSTITUTION:A gas-phase connection passage (rp) fluidly connects gas-phase refrigerant from a gas-liquid separator 10 with gas-phase portion in a liquid receiver 12 to introduce gas-phase refrigerant Gh in the separator 10 into the receiver 12. A liquid-receiver regulating valve vR provided in the passage (rp) regulates the amount of the high pressure gas-phase refrigerant Gh introduced into the receiver 12 through the passage (rp) from the separator 10, whereby the liquid level of liquid-phase refrigerant L stored in the receiver 12 is regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ装置に関
し、詳しくは、高圧冷媒送出部から送給される高圧冷媒
を気相冷媒と液相冷媒とに分離する気液分離器と、その
気液分離器から送出される気相冷媒を凝縮させる温熱発
生凝縮器と、前記気液分離器から送出される液相冷媒を
膨張手段に対し通過させたのち蒸発させる冷熱発生蒸発
器とを設けたヒートポンプ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device, and more particularly, to a gas-liquid separator for separating a high-pressure refrigerant fed from a high-pressure refrigerant delivery section into a gas-phase refrigerant and a liquid-phase refrigerant, and a gas-liquid separation thereof. Heat generating device provided with a heat generating condenser for condensing the vapor phase refrigerant sent from the evaporator, and a cold heat producing evaporator for evaporating the liquid phase refrigerant sent from the vapor-liquid separator after passing through the expansion means. Regarding

【0002】[0002]

【従来の技術】図7は従来装置において温熱と冷熱を並
行して発生させる冷温熱並行モードでの冷媒流れを示
し、高圧冷媒送出部Aとしての放熱凝縮器Coから高圧
冷媒として高圧の気液二相冷媒GLを気液分離器10に
送給するとともに、この高圧の気液二相冷媒GLを気液
分離器10において気相冷媒Ghと液相冷媒Lとに分離
し、そして、その分離した気相冷媒Ghを気液分離器1
0から温熱発生凝縮器Ciに供給して凝縮させるととも
に、分離した液相冷媒Lを気液分離器10から膨張手段
exVを介し冷熱発生蒸発器Eiに供給して蒸発させ、
これにより、暖房・再熱・物品加熱等の用途の温熱を温
熱発生凝縮器Ciで発生させ、かつ、冷房・冷却除湿・
物品冷却等の用途の冷熱を冷熱発生蒸発器Eiで発生さ
せる。
2. Description of the Related Art FIG. 7 shows a refrigerant flow in a cold-heat parallel mode in which warm heat and cold heat are generated in parallel in a conventional apparatus. The two-phase refrigerant GL is fed to the gas-liquid separator 10, the high-pressure gas-liquid two-phase refrigerant GL is separated into the gas-phase refrigerant Gh and the liquid-phase refrigerant L in the gas-liquid separator 10, and the separation is performed. The gas-phase refrigerant Gh
From 0 to the hot heat generating condenser Ci to be condensed, the separated liquid phase refrigerant L is supplied from the gas-liquid separator 10 to the cold heat generating evaporator Ei via the expansion means exV to be evaporated.
As a result, heat for use in heating, reheating, article heating, etc. is generated in the heat generating condenser Ci, and cooling / dehumidifying / cooling is performed.
Cold heat for applications such as article cooling is generated by the cold heat generation evaporator Ei.

【0003】また、この冷温熱並行モードでは、気液分
離器10における貯留液相冷媒Lの液位を液位検出手段
14aにより検出して、この検出情報に基づき、気液分
離器10における貯留液相冷媒Lの液位を一定位mに保
つように気液分離器10からの液相冷媒導出量を弁vL
により調整しながら、高圧冷媒送出部Aとしての放熱凝
縮器Coから気液分離器10へ送給する高圧冷媒として
の気液二相冷媒GLの気液比(換言すれば、高圧湿り蒸
気冷媒の湿り度ないし乾き度)を、温熱発生凝縮器Ci
及び冷熱発生蒸発器Ei夫々の運転状態に応じ放熱凝縮
器Coの放熱能力調整等により調整する(例えば、特開
平4−214153号公報参照)。
Further, in this cold-heat parallel mode, the liquid level of the stored liquid phase refrigerant L in the gas-liquid separator 10 is detected by the liquid level detection means 14a, and based on this detection information, the storage in the gas-liquid separator 10 is carried out. The amount of the liquid-phase refrigerant discharged from the gas-liquid separator 10 is controlled by the valve vL so as to keep the liquid level of the liquid-phase refrigerant L at a fixed level m.
The gas-liquid ratio of the gas-liquid two-phase refrigerant GL as the high-pressure refrigerant to be fed from the heat dissipation condenser Co as the high-pressure refrigerant delivery unit A to the gas-liquid separator 10 (in other words, Wetness or dryness), the heat generation condenser Ci
And the cold heat generation evaporator Ei are adjusted by adjusting the heat radiation capacity of the heat radiation condenser Co according to the operating state of each (for example, refer to JP-A-4-214153).

【0004】つまり、気液二相冷媒GLの気液比を温熱
発生凝縮器Ci及び冷熱発生蒸発器Ei夫々の運転状態
に応じ変更・調整することに対し、気液分離器10にお
ける貯留液相冷媒Lの液位を一定位mに保つ調整制御を
並行実施することで、温熱発生凝縮器Ciへは気相冷媒
Ghのみを、かつ、冷熱発生蒸発器Eiへは液相冷媒L
のみを夫々確実に分離供給し、これにより、温熱発生凝
縮器Ci及び冷熱発生蒸発器Eiの夫々を安定的に機能
させるようにしている。
That is, in contrast to changing and adjusting the gas-liquid ratio of the gas-liquid two-phase refrigerant GL according to the operating states of the hot heat generating condenser Ci and the cold heat generating evaporator Ei, the stored liquid phase in the gas-liquid separator 10 is changed. By carrying out the adjustment control for keeping the liquid level of the refrigerant L at the fixed level m in parallel, only the gas phase refrigerant Gh is supplied to the hot heat generating condenser Ci and the liquid phase refrigerant L is supplied to the cold heat generating evaporator Ei.
Only the heat-generating condenser Ci and the cold-heat generating evaporator Ei are stably operated.

【0005】なお、上記の冷温熱並行モードでは、温熱
発生凝縮器Ciから送出される凝縮後の液相冷媒Lを気
液分離器10での分離液相冷媒Lと合流させて膨張手段
exVを介し冷熱発生蒸発器Eiに供給するようにして
いる。
In the cold-heat parallel mode, the condensed liquid-phase refrigerant L sent from the heat-generating condenser Ci is combined with the separated liquid-phase refrigerant L in the gas-liquid separator 10 to form the expansion means exV. It is configured to be supplied to the cold heat generation evaporator Ei via the.

【0006】[0006]

【発明が解決しようとする課題】ところで、気液分離器
10を備えるこの種のヒートポンプ装置においては、上
記の如き冷温熱並行モードで温熱発生凝縮器Ciとして
用いていた熱交換器を第2の冷熱発生蒸発器Ei’とし
て切り換え使用する形態、あるいは、温熱発生凝縮器C
iへの冷媒供給は遮断して別の第2の冷熱発生蒸発器E
i’を用いる形態で、それら冷熱発生蒸発器Ei及び第
2の冷熱発生蒸発器Ei’により冷熱のみを発生する冷
熱単独モードや、また、冷温熱並行モードで冷熱発生蒸
発器Eiとして用いていた熱交換器を第2の温熱発生凝
縮器Ci’として切り換え使用する形態、あるいは、冷
熱発生蒸発器Eiへの冷媒供給は遮断して別の第2の温
熱発生凝縮器Ci’を用いる形態で、それら温熱発生凝
縮器Ci及び第2の温熱発生凝縮器Ci’により温熱の
みを発生する温熱単独モードを、前述の冷温熱並行モー
ドとの切り換えで実施できるようにする場合が多い。
In the heat pump device of this type having the gas-liquid separator 10, the heat exchanger used as the heat generation condenser Ci in the cold / heat parallel mode as described above is used as the second heat exchanger. A form that is switched and used as a cold heat generation evaporator Ei ′, or a heat generation condenser C
The refrigerant supply to i is cut off, and another second cold heat generation evaporator E
i ′ was used as the cold heat generation evaporator Ei in the cold heat only mode in which only cold heat is generated by the cold heat generation evaporator Ei and the second cold heat generation evaporator Ei ′, or in the cold / heat parallel mode. In a mode in which the heat exchanger is switched and used as the second heat-generating condenser Ci ', or in a mode in which the refrigerant supply to the cool-heat generating evaporator Ei is cut off and another second heat-generating condenser Ci' is used, In many cases, the warm-heat only mode in which only warm heat is generated by the warm-heat generating condenser Ci and the second warm-heat generating condenser Ci 'can be switched to the cold-heat parallel mode.

【0007】そして、従来装置において上記の冷熱単独
モードを実施する場合の冷媒流れは、図8に示すよう
に、高圧冷媒送出部Aとしての放熱凝縮器Coから高圧
冷媒として凝縮液相冷媒Lを気液分離器10に送給する
とともに、この液相冷媒Lを気液分離器10から冷熱発
生蒸発器Eiと前記の第2の冷熱発生蒸発器Ei’との
夫々に膨張手段exVを介し供給して蒸発させる形態と
なり、そして、この冷熱単独モードにおいて気液分離器
10は、液相冷媒Lのみの通過経路となることから、液
相冷媒Lで満たされた満液状態となる。
As shown in FIG. 8, the refrigerant flow when the above-mentioned cold heat only mode is carried out in the conventional apparatus is such that the condensed liquid phase refrigerant L is supplied from the heat radiating condenser Co as the high pressure refrigerant delivery section A to the high pressure refrigerant. The liquid-phase refrigerant L is supplied from the gas-liquid separator 10 to the cold-heat generating evaporator Ei and the second cold-heat generating evaporator Ei ′ through expansion means exV while being sent to the gas-liquid separator 10. Then, the gas-liquid separator 10 becomes a passage for only the liquid-phase refrigerant L in this cold heat only mode, and thus is in a full liquid state filled with the liquid-phase refrigerant L.

【0008】また、従来装置において上記の温熱単独モ
ードを実施する場合の冷媒流れは、図9に示すように、
放熱凝縮器Coの運転に代えて吸熱蒸発器Eoの運転を
伴う状態で、高圧冷媒送出部Aとしての圧縮機6から高
圧冷媒として高圧気相冷媒Ghを気液分離器10に送給
するとともに、この高圧気相冷媒Ghを気液分離器10
から温熱発生凝縮器Ciと前記の第2の温熱発生凝縮器
Ci’との夫々に供給して凝縮させる形態となり、そし
て、この温熱単独モードにおいて気液分離器10は、気
相冷媒Ghのみの通過経路となることから、液相冷媒L
が存在しない空状態となる。
Further, the refrigerant flow in the case of carrying out the above-mentioned heating only mode in the conventional apparatus is as shown in FIG.
While the operation of the endothermic evaporator Eo is performed in place of the operation of the heat dissipation condenser Co, the compressor 6 serving as the high-pressure refrigerant delivery unit A supplies the high-pressure gas-phase refrigerant Gh as the high-pressure refrigerant to the gas-liquid separator 10. , The high-pressure gas-phase refrigerant Gh is supplied to the gas-liquid separator 10
From the heat-generating condenser Ci to the second heat-generating condenser Ci ′ to be condensed respectively, and in this heat-only mode, the gas-liquid separator 10 is operated only with the gas-phase refrigerant Gh. Since it becomes a passage, the liquid-phase refrigerant L
It becomes an empty state where there is no.

【0009】ところが、圧縮機6により冷媒を循環させ
るヒートポンプ装置においては、冷媒回路中を循環する
実質の冷媒量(重量)、すなわち、冷媒回路に対する充
填冷媒のうち気液分離器10における貯留液相冷媒等の
滞留分を除いた冷媒量(重量)によって、圧縮機6の吐
出圧力poや吸入圧力psが変化し、また、圧縮機6の
吐出圧力poや吸入圧力psを装置運転上の適正範囲に
保つに適した実質冷媒量(以下、適正冷媒量と称する)
は、温熱発生凝縮器Ci,Ci’や冷熱発生蒸発器E
i,Ei’の運転状態の変化・変更を初めとするヒート
ポンプ運転状態の変化・変更に伴い変化する特性があ
る。
However, in the heat pump device in which the refrigerant is circulated by the compressor 6, the substantial amount (weight) of the refrigerant circulating in the refrigerant circuit, that is, the stored liquid phase in the gas-liquid separator 10 out of the refrigerant filled in the refrigerant circuit. The discharge pressure po and the suction pressure ps of the compressor 6 change depending on the amount (weight) of the refrigerant excluding the stagnant amount of the refrigerant, and the discharge pressure po and the suction pressure ps of the compressor 6 are set within appropriate ranges for operating the apparatus. Real amount of refrigerant suitable for keeping (hereinafter referred to as proper refrigerant amount)
Is a heat generating condenser Ci, Ci 'or a cold heat generating evaporator E.
There is a characteristic that changes with the change / change of the heat pump operation state including the change / change of the operation state of i and Ei ′.

【0010】この点、上記の図8に示す冷熱単独モード
では、気液分離器10が満液状態となることから、気液
分離器10における貯留液相冷媒Lの液位を一定位mに
保つ(換言すれば、気液分離器10の液相冷媒貯留量が
一定に保たれる)前述の冷温熱並行モードに比べ、冷媒
回路中を循環する実質冷媒量が減少するが、この実質冷
媒量の減少に反し、冷暖房等の通常の冷熱・温熱用途で
は一般に、この冷熱単独モードにおける上記の適正冷媒
量は冷温熱並行モードにおける適正冷媒量よりも大とな
る傾向がある。
In this respect, in the cold heat only mode shown in FIG. 8, since the gas-liquid separator 10 is in a full state, the liquid level of the stored liquid-phase refrigerant L in the gas-liquid separator 10 is set to the fixed position m. Maintained (in other words, the amount of liquid-phase refrigerant stored in the gas-liquid separator 10 is kept constant) Compared to the above-described cold-heat parallel mode, the actual amount of refrigerant circulating in the refrigerant circuit is reduced. Contrary to the decrease in the amount, in the normal cold / heat application such as cooling / heating, generally, the appropriate refrigerant amount in the cold / heat only mode tends to be larger than the appropriate refrigerant amount in the cold / heat parallel mode.

【0011】また、上記の図9に示す温熱単独モードで
は、気液分離器10が空状態となることから、気液分離
器10における貯留液相冷媒Lの液位を一定位mに保つ
前述の冷温熱並行モードに比べ、冷媒回路中を循環する
実質冷媒量が増大するが、この実質冷媒量の増大に反
し、冷暖房等の通常の冷熱・温熱用途では一般に、この
温熱単独モードにおける適正冷媒量は冷温熱並行モード
における適正冷媒量よりも小となる傾向がある。
Further, in the single heating mode shown in FIG. 9, the gas-liquid separator 10 is in an empty state, so that the liquid level of the stored liquid-phase refrigerant L in the gas-liquid separator 10 is kept at the fixed position m. Compared with the cold / heat parallel mode, the amount of the actual refrigerant that circulates in the refrigerant circuit increases, but contrary to the increase in the amount of the actual refrigerant, in the normal cold / heat application such as cooling / heating, generally, the proper refrigerant in the single heating / heating mode is used. The amount tends to be smaller than the proper amount of refrigerant in the cold-heat parallel mode.

【0012】そして、従来装置では、上記の如き冷熱単
独モードや温熱単独モードを冷温熱並行モードとの切り
換えで実施する、すなわち、冷媒経路を切り換えてヒー
トポンプ運転状態を異ならせる複数の運転モードを切り
換え実施することにおいて、上述の如き適正冷媒量の増
大傾向に反した実質冷媒量の減少や、適正冷媒量の減少
傾向に反した実質冷媒量の増大といった実質冷媒量及び
適正冷媒量の変化が生じ、それら実質冷媒量と適正冷媒
量とに差が生じるため、圧縮機吐出圧力poの異常上昇
や圧縮機吸入圧力psの異常低下といった圧力異常を生
じ易く、ひいては、これら圧力異常に対する安全上の自
動停止機能が頻繁に作動して使い勝手の悪い装置となっ
たり、これら圧力異常に起因する故障や装置劣化を招き
易い問題があった。
In the conventional apparatus, the cold heat alone mode or the warm heat alone mode as described above is executed by switching to the cold heat parallel mode, that is, a plurality of operation modes for changing the heat pump operating state by switching the refrigerant path are switched. In the implementation, a change in the actual refrigerant amount and the appropriate refrigerant amount such as a decrease in the actual refrigerant amount contrary to the increasing tendency of the appropriate refrigerant amount or an increase in the actual refrigerant amount contrary to the decreasing tendency of the appropriate refrigerant amount occurs. Since there is a difference between the actual refrigerant amount and the proper refrigerant amount, a pressure abnormality such as an abnormal increase in the compressor discharge pressure po or an abnormal decrease in the compressor suction pressure ps is apt to occur, and by the automatic There was a problem that the stop function was frequently activated to make the device inconvenient to use, or that malfunctions and device deterioration due to abnormal pressure were likely to occur.

【0013】本発明の目的は、気液分離器を用いるこの
種のヒートポンプ装置の設計・設置面での本来利点を充
分に活かしながら、冷媒回路中を循環させる実質の冷媒
量を、気液分離器における液相冷媒の貯留量変化や前述
の適正冷媒量の変化にかかわらず、その適正冷媒量に調
整できるようにする点にある。
It is an object of the present invention to make full use of the original advantages of the design and installation of this type of heat pump device using a gas-liquid separator, while the substantial amount of refrigerant circulated in the refrigerant circuit is determined by the gas-liquid separation. This is to enable adjustment to the proper refrigerant amount regardless of the change in the storage amount of the liquid-phase refrigerant in the container and the change in the appropriate refrigerant amount described above.

【0014】[0014]

【課題を解決するための手段】[Means for Solving the Problems]

〔第1特徴構成〕本発明によるヒートポンプ装置の第1
特徴構成は、高圧冷媒送出部から送給される高圧冷媒を
気相冷媒と液相冷媒とに分離する気液分離器と、その気
液分離器から送出される気相冷媒を凝縮させる温熱発生
凝縮器と、前記気液分離器から送出される液相冷媒を膨
張手段に対し通過させたのち蒸発させる冷熱発生蒸発器
とを設ける構成において、前記気液分離器から送出され
る液相冷媒を前記膨張手段へ導く液冷媒路、又は、前記
温熱発生凝縮器から送出される液相冷媒を導く液冷媒路
に連通する受液器と、前記気液分離器における気相冷媒
を前記受液器に導通する気相連通路と、その気相連通路
における気相冷媒の導通量を調整する調整弁とを設けた
ことにある。
[First Characteristic Configuration] First of heat pump device according to the present invention
The characteristic configuration is a gas-liquid separator that separates the high-pressure refrigerant sent from the high-pressure refrigerant delivery unit into a gas-phase refrigerant and a liquid-phase refrigerant, and heat generation that condenses the gas-phase refrigerant sent from the gas-liquid separator. In a configuration in which a condenser and a cold heat generation evaporator that evaporates the liquid-phase refrigerant sent from the gas-liquid separator after passing through the expansion means are provided, the liquid-phase refrigerant sent from the gas-liquid separator is A liquid refrigerant passage leading to the expansion means, or a liquid receiver communicating with a liquid refrigerant passage leading the liquid phase refrigerant sent from the heat-generating condenser, and the gas phase refrigerant in the gas liquid separator with the liquid receiver. There is provided a gas-phase communication passage communicating with the gas-phase communication passage and a regulating valve for adjusting the amount of conduction of the gas-phase refrigerant in the gas-phase communication passage.

【0015】〔第2特徴構成〕本発明によるヒートポン
プ装置の第2特徴構成は、上記の第1特徴構成の実施に
おいて、前記受液器における液相冷媒の貯留量を検出す
る液量検出手段を設け、冷媒経路を切り換えてヒートポ
ンプ運転状態を異ならせる複数の運転モード夫々におい
て、前記受液器における液相冷媒の貯留量が運転モード
ごとに設定してある目標貯留量になるように、前記液量
検出手段の検出情報に基づき前記調整弁を調整する制御
手段を設けたことにある。
[Second Characteristic Configuration] A second characteristic structure of the heat pump device according to the present invention is a liquid amount detecting means for detecting a stored amount of the liquid phase refrigerant in the liquid receiver in the implementation of the first characteristic structure. In each of the plurality of operation modes in which the heat pump operation state is changed by switching the refrigerant path provided, the liquid amount of the liquid-phase refrigerant in the liquid receiver is set to the target storage amount set for each operation mode, The control means for adjusting the adjusting valve based on the detection information of the quantity detecting means is provided.

【0016】〔第3特徴構成〕本発明によるヒートポン
プ装置の第3特徴構成は、前記の第1特徴構成の実施に
おいて、冷媒を循環させる圧縮機の吐出圧力、又は吸入
圧力を検出する圧力検出手段を設け、前記圧縮機の吐出
圧力、又は吸入圧力が目標圧力になるように、前記圧力
検出手段の検出情報に基づき前記調整弁を調整する制御
手段を設けたことにある。
[Third Characteristic Configuration] A third characteristic configuration of the heat pump device according to the present invention is the pressure detecting means for detecting the discharge pressure or the suction pressure of the compressor for circulating the refrigerant in the implementation of the first characteristic configuration. And the control means for adjusting the adjusting valve based on the detection information of the pressure detecting means so that the discharge pressure or the suction pressure of the compressor becomes the target pressure.

【0017】[0017]

【作用】[Action]

〔第1特徴構成の作用〕つまり、上記の第1特徴構成に
おいては(図1参照)、気液分離器10から送出される
液相冷媒Lを膨張手段exVへ導く液冷媒路rr、又
は、温熱発生凝縮器Ciから送出される液相冷媒Lを導
く液冷媒路rr’に連通する受液器12を設けること
で、その受液器12の基本的機能として、それら液冷媒
路rr,rr’における液相冷媒Lを受液器12内に導
入し、その導入液相冷媒Lを受液器12に貯留する。
[Operation of First Characteristic Configuration] That is, in the above-described first characteristic configuration (see FIG. 1), the liquid refrigerant passage rr for guiding the liquid phase refrigerant L sent from the gas-liquid separator 10 to the expansion means exV, or By providing the liquid receiver 12 that communicates with the liquid refrigerant passage rr 'that guides the liquid-phase refrigerant L sent from the heat-generating condenser Ci, the liquid receiver passages 12 have the basic functions of these liquid refrigerant passages rr, rr. The liquid-phase refrigerant L in 'is introduced into the receiver 12, and the introduced liquid-phase refrigerant L is stored in the receiver 12.

【0018】そして、この受液器12における液相冷媒
Lの貯留に対し、気相連通路rpにおける気相冷媒Gh
の導通量を調整弁vRにより増大側に調整して、気液分
離器10から受液器12へ導入する高圧気相冷媒Ghの
導入量を増大させることで、受液器12において液相冷
媒L中に吸収される形態で液相化する気相冷媒Ghの量
よりも気相連通路rpからの気相冷媒Ghの導入量の方
が大きくなる状況として、受液器12における貯留液相
冷媒Lを導入気相冷媒Ghにより押し出す形態で受液器
12から送出し、これにより、受液器12における液相
冷媒Lの貯留量を減少側に調整して、冷媒回路中を循環
させる実質の冷媒量(重量)を増大側に調整する。
When the liquid phase refrigerant L is stored in the liquid receiver 12, the gas phase refrigerant Gh in the gas phase communication passage rp is stored.
Of the high-pressure gas-phase refrigerant Gh introduced from the gas-liquid separator 10 to the liquid receiver 12 is increased by adjusting the conduction amount of the liquid-phase refrigerant to the liquid-side refrigerant in the liquid receiver 12. As a situation in which the amount of introduction of the gas-phase refrigerant Gh from the gas-phase communication passage rp is larger than the amount of the gas-phase refrigerant Gh that is liquidized in a form absorbed in L, the stored liquid-phase refrigerant in the liquid receiver 12 L is sent out from the liquid receiver 12 in a form of being pushed out by the introduced gas-phase refrigerant Gh, whereby the storage amount of the liquid-phase refrigerant L in the liquid receiver 12 is adjusted to the decreasing side, and is circulated in the refrigerant circuit. The amount of refrigerant (weight) is adjusted to the increasing side.

【0019】また逆に、気相連通路rpにおける気相冷
媒Ghの導通量を調整弁vRにより減少側に調整して、
気液分離器10から受液器12へ導入する高圧気相冷媒
Ghの導入量を減少させることで、受液器12において
液相冷媒L中に吸収される形態で液相化する気相冷媒G
hの量の方が気相連通路rpからの気相冷媒Ghの導入
量よりも大きくなる状況として、上記の液冷媒路rr,
rr’から液相冷媒Lを受液器12内へ吸入する形態で
導入し、これにより、受液器12における液相冷媒Lの
貯留量を増大側に調整して、冷媒回路中を循環させる実
質の冷媒量(重量)を減少側に調整する。
On the contrary, the amount of conduction of the gas-phase refrigerant Gh in the gas-phase communication passage rp is adjusted to the decreasing side by the adjusting valve vR,
By reducing the amount of high-pressure gas-phase refrigerant Gh introduced from the gas-liquid separator 10 to the liquid receiver 12, a gas-phase refrigerant that is liquefied in the liquid receiver 12 in the form of being absorbed in the liquid-phase refrigerant L G
As a situation in which the amount of h becomes larger than the amount of introduction of the vapor phase refrigerant Gh from the vapor phase communication passage rp, the liquid refrigerant passage rr,
The liquid-phase refrigerant L is introduced into the liquid receiver 12 from rr 'so that the amount of the liquid-phase refrigerant L stored in the liquid receiver 12 is adjusted to the increasing side and circulated in the refrigerant circuit. The actual refrigerant amount (weight) is adjusted to the decreasing side.

【0020】なお、図1においては高圧冷媒送出部Aと
しての放熱凝縮器Coから高圧冷媒として高圧の気液二
相冷媒GLを気液分離器10に供給する運転形態を示す
が、先述の冷熱単独モード等で高圧冷媒送出部Aとして
の放熱凝縮器Coから高圧冷媒として高圧の液相冷媒L
を気液分離器10に送給する運転形態においても、その
高圧液相冷媒Lの温度・圧力を放熱凝縮器Coの放熱能
力調整等により適当に調整すれば、気相連通路rpを介
して受液器12へ送る貯留量調整用の高圧気相冷媒Gh
を気液分離器10において発生させることができる。
Although FIG. 1 shows an operation mode in which a high-pressure gas-liquid two-phase refrigerant GL is supplied as a high-pressure refrigerant to the gas-liquid separator 10 from the heat radiating condenser Co serving as the high-pressure refrigerant delivery section A, the cold heat described above is used. In a single mode or the like, a high-pressure liquid-phase refrigerant L as a high-pressure refrigerant from the heat-radiating condenser Co as the high-pressure refrigerant delivery unit A
Even in the operating mode in which the gas is sent to the gas-liquid separator 10, if the temperature and pressure of the high-pressure liquid-phase refrigerant L are appropriately adjusted by adjusting the heat dissipation capacity of the heat dissipation condenser Co, etc., it is received via the gas phase communication passage rp. High-pressure gas-phase refrigerant Gh for adjusting storage amount to be sent to the liquid container 12
Can be generated in the gas-liquid separator 10.

【0021】〔第2特徴構成の作用〕第2特徴構成にお
いては(図1ないし図5参照)、前記の調整弁vRの調
整により受液器12における液相冷媒Lの貯留量を調整
して、冷媒回路中を循環させる実質の冷媒量を調整する
にあたり、冷媒経路を切り換えてヒートポンプ運転状態
を異ならせる複数の運転モードごとに、冷媒回路中を循
環する実質の冷媒量が適正冷媒量となるような(換言す
れば、圧縮機6の吐出圧力poや吸入圧力psが適正範
囲となるような)受液器12の液相冷媒貯留量を目標貯
留量n1〜n5として実験や試験運転等に基づき予め設
定しておく。
[Operation of Second Characteristic Configuration] In the second characteristic configuration (see FIGS. 1 to 5), the storage amount of the liquid-phase refrigerant L in the liquid receiver 12 is adjusted by adjusting the adjusting valve vR. , In adjusting the substantial amount of refrigerant circulating in the refrigerant circuit, the substantial amount of refrigerant circulating in the refrigerant circuit becomes an appropriate amount of refrigerant for each of a plurality of operation modes in which the refrigerant pump is switched to change the heat pump operating state. In this way (in other words, the discharge pressure po of the compressor 6 and the suction pressure ps are in the proper range), the liquid-phase refrigerant storage amount of the liquid receiver 12 is set as the target storage amounts n1 to n5, and used in experiments and test operations. It is set in advance based on this.

【0022】そして、各運転モードにおいて、受液器1
2の液相冷媒貯留量を検出する液量検出手段14bの検
出情報に基づき制御手段13により調整弁vRを調整す
ることで、受液器12における液相冷媒Lの貯留量をそ
のときの実施運転モードに対する上記の目標貯留量n1
〜n5に調整し、これにより、各運転モードにおいて冷
媒回路中を循環させる実質の冷媒量を各運転モードでの
適正冷媒量に自動調整する。
In each operation mode, the liquid receiver 1
The storage amount of the liquid-phase refrigerant L in the liquid receiver 12 is adjusted at that time by adjusting the adjusting valve vR by the control means 13 based on the detection information of the liquid-amount detecting means 14b that detects the liquid-phase refrigerant storage amount of No. 2. The above target storage amount n1 for the operation mode
.About.n5, whereby the substantial amount of refrigerant circulating in the refrigerant circuit in each operation mode is automatically adjusted to the appropriate amount of refrigerant in each operation mode.

【0023】〔第3特徴構成の作用〕第3特徴構成にお
いては(図6参照)、前記の調整弁vRの調整により受
液器12における液相冷媒Lの貯留量を調整して、冷媒
回路中を循環させる実質の冷媒量を調整するにあたり、
その実質冷媒量によって変化する圧縮機6の吐出圧力p
oや吸入圧力psそのものを調整指標として調整弁vR
を調整する。
[Operation of Third Characteristic Configuration] In the third characteristic configuration (see FIG. 6), the storage amount of the liquid phase refrigerant L in the liquid receiver 12 is adjusted by adjusting the adjusting valve vR, and the refrigerant circuit is formed. In adjusting the amount of the actual refrigerant that circulates inside,
Discharge pressure p of the compressor 6 that changes depending on the substantial amount of refrigerant
Adjustment valve vR with o and suction pressure ps itself as adjustment indexes
Adjust.

【0024】すなわち、圧縮機6の吐出圧力po又は吸
入圧力psを検出する圧力検出手段P1,P2の検出情
報に基づき制御手段13により調整弁vRを調整するこ
とで、圧縮機6の吐出圧力po又は吸入圧力psが目標
圧力になるように(換言すれば、実質冷媒量がそのとき
のヒートポンプ運転状態での適正冷媒量になるよう
に)、受液器12における液相冷媒貯留量を調整して冷
媒回路中の実質冷媒量を調整し、これにより、圧縮機の
吐出圧力po又は吸入圧力psを目標圧力に自動調整す
る。
That is, the discharge pressure po of the compressor 6 is adjusted by adjusting the adjusting valve vR by the control means 13 based on the detection information of the pressure detection means P1 and P2 for detecting the discharge pressure po of the compressor 6 or the suction pressure ps. Alternatively, the liquid-phase refrigerant storage amount in the liquid receiver 12 is adjusted so that the suction pressure ps becomes the target pressure (in other words, the actual refrigerant amount becomes the proper refrigerant amount in the heat pump operating state at that time). The actual amount of refrigerant in the refrigerant circuit is adjusted by this, and thereby the discharge pressure po or the suction pressure ps of the compressor is automatically adjusted to the target pressure.

【0025】[0025]

【発明の効果】【The invention's effect】

〔第1特徴構成の効果〕すなわち、本発明の第1特徴構
成によれば、複数の運転モードを切り換え実施すること
において、気液分離器における貯留液相冷媒の液位が変
化するにしても、また、圧縮機の吐出圧力や吸入圧力を
適正範囲に保ち得る適正冷媒量が変化するにしても、調
整弁の調整により受液器における液相冷媒の貯留量を調
整して、冷媒回路中を循環させる実質の冷媒量を調整す
ることで、それら運転モードの実施時における実質冷媒
量をその実施運転モードでの適正冷媒量に調整できる。
[Effects of First Characteristic Configuration] That is, according to the first characteristic configuration of the present invention, even if the liquid level of the stored liquid phase refrigerant in the gas-liquid separator changes in switching between a plurality of operation modes. In addition, even if the proper amount of refrigerant that can maintain the discharge pressure or suction pressure of the compressor within the proper range changes, the amount of liquid-phase refrigerant stored in the receiver is adjusted by adjusting the adjustment valve, By adjusting the substantial amount of the refrigerant that circulates, the actual amount of the refrigerant when the operation modes are performed can be adjusted to the appropriate amount of the refrigerant in the operation mode.

【0026】しかも、本発明の第1特徴構成によれば、
気液分離器における貯留液相冷媒の液位変化を伴う運転
モード切り換えに対し上述の如く対応できるのみなら
ず、気液分離器における貯留液相冷媒の液位変化を伴わ
ないヒートポンプ運転状態の変更や変化(例えば、気液
分離器における貯留液相冷媒の液位変化を伴わない運転
モード切り換えや、運転モードそのものとしては同じで
あるが温熱発生凝縮器や冷熱発生蒸発器の運転条件が変
化するといったこと)で適正冷媒量のみが変化すること
に対しても、適当な形態での調整弁の調整により受液器
における液相冷媒の貯留量を調整し、これにより、冷媒
回路中を循環させる実質の冷媒量を調整することで、各
ヒートポンプ運転状態における実質冷媒量をその実施運
転状態での適正冷媒量に調整できる。
Moreover, according to the first characteristic configuration of the present invention,
Not only can the operation mode switching that accompanies the liquid level change of the stored liquid phase refrigerant in the gas-liquid separator be handled as described above, but also the change of the heat pump operating state that does not accompany the liquid level change of the stored liquid phase refrigerant in the gas-liquid separator. Or change (for example, operation mode switching without a liquid level change of the stored liquid phase refrigerant in the gas-liquid separator, or the operation mode itself is the same, but the operating conditions of the heat generation condenser and the heat generation evaporator change Therefore, even if only the proper amount of refrigerant changes, the amount of liquid-phase refrigerant stored in the liquid receiver can be adjusted by adjusting the adjustment valve in an appropriate form, and thereby circulating in the refrigerant circuit. By adjusting the substantial amount of refrigerant, the actual amount of refrigerant in each heat pump operating state can be adjusted to the proper amount of refrigerant in the actual operating state.

【0027】そして、これらのことから、気液分離器を
用いるこの種のヒートポンプ装置において圧縮機吐出圧
力の異常上昇や圧縮機吸入圧力の異常低下といった圧力
異常が生じることを効果的に防止できるようになり、ひ
いては、これら圧力異常に起因する装置自動停止の頻度
を低くして装置の使い勝手を向上し得るとともに、圧力
異常に起因する装置劣化を防止して装置耐用年数も向上
し得る。
From the above, it is possible to effectively prevent a pressure abnormality such as an abnormal increase in the compressor discharge pressure or an abnormal decrease in the compressor suction pressure in a heat pump device of this type using a gas-liquid separator. As a result, the frequency of automatic stop of the device due to the pressure abnormality can be reduced to improve the usability of the device, and the device deterioration due to the pressure abnormality can be prevented to improve the service life of the device.

【0028】又、気液分離器を用いるこの種のヒートポ
ンプ装置は、気液分離器、温熱発生凝縮器、及び、冷熱
発生蒸発器を屋内設置装置とし、これに対し、高圧冷媒
送出部を構成する圧縮機や前記の放熱凝縮器、及び、前
記の吸熱蒸発器を屋外設置装置とする設置形態で使用す
ることが多く、そして、この屋内外分離の設置形態にお
いて、屋外設置装置側から屋内設置装置側へ高圧の気相
冷媒と液相冷媒とを同時に送るのに、通常各別の2本の
冷媒管が必要となるところを、気液分離器に対し気液二
相冷媒を送る1本の冷媒管で済ませることができるとい
った利点、すなわち、屋外側と屋内側とにわたらせる冷
媒管の本数を少数化できる利点を本来有するものであ
る。
In this type of heat pump device using a gas-liquid separator, the gas-liquid separator, the heat-generating condenser and the cold-generating evaporator are installed indoors, whereas the high-pressure refrigerant delivery section is constituted. It is often used in an installation form in which the compressor, the heat dissipation condenser, and the endothermic evaporator are used as an outdoor installation device, and in this indoor and outdoor separation installation form, the outdoor installation device side is installed indoors. One where a gas-liquid two-phase refrigerant is sent to a gas-liquid separator, where two separate refrigerant pipes are usually required to simultaneously send a high-pressure gas-phase refrigerant and a liquid-phase refrigerant to the device side It has the advantage of being able to use only the refrigerant pipes, that is, the advantage that the number of refrigerant pipes extending over the outdoor side and the indoor side can be reduced.

【0029】この点、本発明の第1特徴構成によれば、
気液分離器から送出される液相冷媒を膨張手段へ導く液
冷媒路、又は、温熱発生凝縮器から送出される液相冷媒
を導く液冷媒路に対し受液器を連通させるとともに、そ
の受液器と気液分離器とを気相連通路を介し接続すると
いう構成であるから、上記の屋内外分離の設置形態にお
いて受液器を気液分離器とともに屋内側の設置装置とす
ることにより、屋内設置装置側での改良だけで本発明の
第1特徴構成を容易に実施でき、そして、屋内側と屋外
側とにわたらせる冷媒管の本数を少数化できるという、
この種のヒートポンプ装置の設計・設置面での本来利点
を充分に活かすことができる。
In this respect, according to the first characteristic configuration of the present invention,
The liquid receiver is connected to the liquid refrigerant path for guiding the liquid phase refrigerant sent from the gas-liquid separator to the expansion means or the liquid refrigerant path for guiding the liquid phase refrigerant sent from the heat-generating condenser, and the receiver Since the liquid and gas-liquid separator is configured to be connected via a gas-phase communication passage, by using the liquid receiver as the indoor-side installation device together with the gas-liquid separator in the above-mentioned indoor-outdoor installation configuration, The first characteristic configuration of the present invention can be easily implemented only by improving the indoor installation device side, and the number of refrigerant pipes extending over the indoor side and the outdoor side can be reduced.
It is possible to make full use of the original advantages of the design and installation of this type of heat pump device.

【0030】〔第2特徴構成の効果〕前記の第1特徴構
成の実施において、本発明の第2特徴構成を採用すれ
ば、気液分離器における貯留液相冷媒の液位変化を伴う
運転モード切り換え、あるいは、このような液位変化を
伴わない運転モード切り換えのいずれであるにしても、
冷媒経路を切り換えてヒートポンプ運転状態を異ならせ
る複数の運転モードを切り換え実施することにおいて、
制御手段による調整弁の調整により実質の冷媒量が各運
転モードでの適正冷媒量に自動調整されることで、運転
モード切り換えに伴い実質冷媒量と適正冷媒量とに差が
生じて発生する圧力異常が確実に防止される。
[Effects of Second Characteristic Configuration] In the implementation of the first characteristic structure described above, if the second characteristic structure of the present invention is adopted, an operation mode involving a change in the liquid level of the stored liquid phase refrigerant in the gas-liquid separator. Whether it is switching or operation mode switching without such a liquid level change,
In switching between a plurality of operation modes that change the refrigerant path to make the heat pump operating state different,
By adjusting the adjustment valve by the control means, the actual refrigerant amount is automatically adjusted to the proper refrigerant amount in each operation mode, and the pressure generated by the difference between the actual refrigerant amount and the proper refrigerant amount due to the switching of the operation modes. Abnormality is surely prevented.

【0031】〔第3特徴構成の効果〕前記の第1特徴構
成の実施において、本発明の第3特徴構成を採用すれ
ば、運転モードの変更のみならず、同一の運転モードに
おいて温熱発生凝縮器や冷熱発生蒸発器の運転条件が外
部要因により変化したり、意図的に変更されたりする等
のヒートポンプ運転状態の変化・変更に対しても、制御
手段による調整弁の調整により圧縮機の吐出圧力又は吸
入圧力が目標圧力に自動調整されることで、ヒートポン
プ運転状態の変化・変更に伴い実質冷媒量と適正冷媒量
とに差が生じて発生する圧力異常が確実に防止される。
[Effect of Third Characteristic Configuration] In implementing the first characteristic structure, if the third characteristic structure of the present invention is adopted, not only the operation mode is changed but also the heat-generating condenser is used in the same operation mode. The discharge pressure of the compressor can be adjusted by adjusting the adjustment valve by the control means even when the operating condition of the heat pump operating condition of the heat and cold heat generating evaporator changes or is changed intentionally due to external factors. Alternatively, by automatically adjusting the suction pressure to the target pressure, it is possible to reliably prevent the pressure abnormality that occurs due to the difference between the actual refrigerant amount and the proper refrigerant amount due to the change / change of the heat pump operating state.

【0032】[0032]

【実施例】次に実施例を説明する。EXAMPLES Next, examples will be described.

【0033】図1はセパレート型空調装置を示し、1は
室外機、2は室内機であり、これら室外機1と室内機2
とは高圧側及び低圧側の二本の渡り冷媒配管3a,3b
で接続してある。
FIG. 1 shows a separate type air conditioner, 1 is an outdoor unit, 2 is an indoor unit, and these outdoor unit 1 and indoor unit 2
Is the two high-pressure side and low-pressure side transition refrigerant pipes 3a, 3b
It is connected with.

【0034】室外機1には、外気OAに対して吸放熱さ
せる室外熱交換器4、その室外熱交換器4に対して外気
OAを通風する室外ファン5、並びに、圧縮機6を主要
装置として装備してある。
The outdoor unit 1 mainly includes an outdoor heat exchanger 4 for absorbing and releasing heat from the outdoor air OA, an outdoor fan 5 for ventilating the outdoor air OA to the outdoor heat exchanger 4, and a compressor 6. It is equipped.

【0035】また、室内機2には、上流熱交換器7、空
気流れ方向で上流熱交換器7の下流に位置する下流熱交
換器8、それら上流・下流熱交換器7,8で調整した空
気SAを対応の空調対象域に送給する給気ファン9、気
液分離器10、過冷却器11、受液器12、第1ないし
第3の膨張弁ex1〜ex3、流量調整弁vF、並び
に、受液器調整弁vRを主要装置として装備してある。
In the indoor unit 2, the upstream heat exchanger 7, the downstream heat exchanger 8 located downstream of the upstream heat exchanger 7 in the air flow direction, and the upstream / downstream heat exchangers 7, 8 were adjusted. An air supply fan 9, a gas-liquid separator 10, a subcooler 11, a liquid receiver 12, first to third expansion valves ex1 to ex3, a flow rate adjusting valve vF, which supplies the air SA to a corresponding air-conditioning target area. In addition, the liquid receiver adjusting valve vR is equipped as a main device.

【0036】なお、第1ないし第3膨張弁ex1〜ex
3は夫々、本来の膨張手段として機能させる状態と、流
量調整弁として機能させる状態と、流路開閉弁として機
能させる状態とに切り換え可能な構造としてある。
The first to third expansion valves ex1 to ex
3 has a structure capable of switching between a state in which it functions as an original expansion means, a state in which it functions as a flow rate adjusting valve, and a state in which it functions as a flow path opening / closing valve.

【0037】13は空調装置の運転制御を司る制御器で
あり、また、図中v1〜v8は夫々、運転モードに応じ
て冷媒経路を切り換えるための電磁弁、c1,c2は逆
止弁である。
Reference numeral 13 is a controller for controlling the operation of the air conditioner, and in the figure, v1 to v8 are solenoid valves for switching the refrigerant path according to the operation mode, and c1 and c2 are check valves. .

【0038】同図1は、上流熱交換器7を冷熱発生蒸発
器Eiとして機能させて通過空気を冷却除湿するととも
に、下流熱交換器8を温熱発生凝縮器Ciとして機能さ
せて上流熱交換器7からの冷却除湿空気を再熱温調し、
これに対し、室外熱交換器4を放熱凝縮器Coとして機
能させて外気OAに対し放熱させる「除湿冷房モード」
(先述の冷温熱並行モードに相当する運転モード)の冷
媒流れ状態を示し、具体的には、圧縮機6から吐出され
る高圧気相冷媒Gh(図中、黒塗りの太線で示す)を放
熱凝縮器Coとしての室外熱交換器4で一部凝縮させ、
そして、放熱凝縮器Coとしての室外熱交換器4を室内
機側の気液分離器10に対する高圧冷媒送出部Aとする
形態で、その室外熱交換器4から送出される高圧の気液
二相冷媒GL(図中、太ハッチングを施した太線で示
す)を高圧側渡り配管3aを介して気液分離器10に送
給し、この気液分離器10において供給される気液二相
冷媒GLを高圧気相冷媒Ghと液相冷媒Lとに分離す
る。
In FIG. 1, the upstream heat exchanger 7 functions as a cold heat generating evaporator Ei to cool and dehumidify the passing air, and the downstream heat exchanger 8 functions as a warm heat generating condenser Ci. Reheat the cooling dehumidified air from 7
On the other hand, the "dehumidifying and cooling mode" in which the outdoor heat exchanger 4 functions as the heat radiating condenser Co to radiate heat to the outside air OA
It shows the refrigerant flow state in the (operation mode corresponding to the above-mentioned cold-heat parallel mode), and specifically radiates the high-pressure gas-phase refrigerant Gh (indicated by a thick black line in the figure) discharged from the compressor 6. Partly condensing with the outdoor heat exchanger 4 as the condenser Co,
Then, the outdoor heat exchanger 4 as the radiation condenser Co is used as the high-pressure refrigerant delivery section A for the gas-liquid separator 10 on the indoor unit side, and the high-pressure gas-liquid two-phase delivered from the outdoor heat exchanger 4 is used. A refrigerant GL (indicated by a thick line with thick hatching in the figure) is sent to the gas-liquid separator 10 via the high-pressure side crossover pipe 3a, and the gas-liquid two-phase refrigerant GL supplied in this gas-liquid separator 10 is supplied. Is separated into a high pressure gas phase refrigerant Gh and a liquid phase refrigerant L.

【0039】気液分離器10において分離した高圧気相
冷媒Gh(黒塗りの太線)は気相冷媒路rhを介し温熱
発生凝縮器Ciとしての下流熱交換器8に供給して凝縮
させ、下流熱交換器8から送出される液相冷媒L(図
中、細ハッチングを施した太線で示す)は、温熱発生凝
縮器Ciからの送出液相冷媒Lを導く液冷媒路rr’と
しての第2接続路r2を介し受液器12に導入し、一
方、気液分離器10において分離した液相冷媒Lは、気
液分離器10からの送出液相冷媒L(細ハッチングを施
した太線)を膨張手段exVへ導く液冷媒路rrとして
の第4接続路r4を介し受液器12に導入し、そして、
これら受液器12へ導入した液相冷媒Lを、受液器12
に対する第1接続路r1、及び、その第1接続路r1に
おいて本来の膨張手段exVとして機能させる第1膨張
弁ex1を介し冷熱発生蒸発器Eiとしての上流熱交換
器7に供給し、ここで蒸発させる。
The high-pressure gas-phase refrigerant Gh (thick black line) separated in the gas-liquid separator 10 is supplied to the downstream heat exchanger 8 as the heat-generating condenser Ci via the gas-phase refrigerant passage rh to be condensed, and then downstream. The liquid-phase refrigerant L sent from the heat exchanger 8 (indicated by a thin hatched thick line in the drawing) is the second liquid-refrigerant passage rr ′ that guides the liquid-phase refrigerant L sent from the heat-generating condenser Ci. The liquid-phase refrigerant L introduced into the liquid receiver 12 via the connection path r2 and separated in the gas-liquid separator 10 is the delivery liquid-phase refrigerant L from the gas-liquid separator 10 (thick line with thin hatching). It is introduced into the liquid receiver 12 through the fourth connection passage r4 as the liquid refrigerant passage rr leading to the expansion means exV, and
The liquid-phase refrigerant L introduced into the liquid receiver 12 is supplied to the liquid receiver 12
To the upstream heat exchanger 7 as the cold heat generating evaporator Ei via the first connection path r1 to the first connection path r1 and the first expansion valve ex1 that functions as the original expansion means exV in the first connection path r1. Let

【0040】また、上流熱交換器7から送出される蒸発
後の低圧気相冷媒Gc(図中、白抜きの太線で示す)
は、冷却用冷媒路rc、気液分離器10に内装の過冷却
器11、並びに、低圧側の渡り冷媒配管3bを介して圧
縮機6の吸入側に戻す(なお、図中黒塗りの弁は閉弁状
態を示す)。
Further, the vaporized low-pressure vapor-phase refrigerant Gc sent from the upstream heat exchanger 7 (indicated by a thick white line in the figure)
Is returned to the suction side of the compressor 6 through the cooling refrigerant passage rc, the subcooler 11 inside the gas-liquid separator 10, and the low-pressure side transition refrigerant pipe 3b (note that the black-painted valve in the figure). Indicates a valve closed state).

【0041】14aは気液分離器10における貯留液相
冷媒Lの液位を検出する第1液位センサであり、上記の
「除湿冷房モード」において制御器13は、第1液位セ
ンサ14aの検出情報に基づき、室外ファン5の出力調
整により放熱凝縮器Coとしての室外熱交換器4の放熱
能力を調整して室外熱交換器4での冷媒凝縮度を調整す
ることで、気液分離器10における貯留液相冷媒Lの液
位を設定液位mに調整・維持するように、室外熱交換器
4から気液分離器10へ送出する気液二相冷媒GLの気
液比(換言すれば、高圧湿り蒸気冷媒の湿り度、ない
し、乾き度)を調整する。
Reference numeral 14a is a first liquid level sensor for detecting the liquid level of the stored liquid phase refrigerant L in the gas-liquid separator 10, and in the above "dehumidifying and cooling mode", the controller 13 controls the first liquid level sensor 14a. Based on the detection information, the output of the outdoor fan 5 is adjusted to adjust the heat dissipation capacity of the outdoor heat exchanger 4 as the heat dissipation condenser Co to adjust the degree of condensation of the refrigerant in the outdoor heat exchanger 4. In order to adjust and maintain the liquid level of the stored liquid phase refrigerant L in 10 to the set liquid level m, the gas-liquid ratio of the gas-liquid two-phase refrigerant GL sent from the outdoor heat exchanger 4 to the gas-liquid separator 10 (in other words, For example, adjust the wetness or dryness of the high-pressure wet steam refrigerant.

【0042】rpは気液分離器10からの気相冷媒路r
hと受液器12における気相部分とを接続して、気液分
離器10における気相冷媒Ghを受液器12に導通する
気相連通路であり、この気相連通路rp、及び、それに
介装した前記の受液器調整弁vRは、気液分離器10か
ら気相連通路rpを介して受液器12に導入する高圧気
相冷媒Ghの導入量を受液器調整弁vRにより調整する
ことで、受液器12における貯留液相冷媒Lの液位(換
言すれば、受液器12における液相冷媒Lの貯留量)を
調整する貯留量調整手段を構成し、これに対し、制御器
13は、受液器12における液相冷媒Lの液位を検出す
る第2液位センサ14bの検出情報に基づき、受液器1
2における貯留液相冷媒Lの液位を「除湿冷房モード」
用の設定目標液位x1に調整・維持するように(換言す
れば、受液器12における液相冷媒Lの貯留量を「除湿
冷房モード」用の設定目標貯留量n1に調整・維持する
ように)、受液器調整弁vRを調整する構成としてあ
る。
Rp is the gas-phase refrigerant passage r from the gas-liquid separator 10.
h is a gas-phase communication passage that connects the gas-phase portion of the liquid receiver 12 and allows the gas-phase refrigerant Gh in the gas-liquid separator 10 to conduct to the liquid receiver 12, and this gas-phase communication passage rp and The installed receiver adjustment valve vR adjusts the amount of high-pressure gas-phase refrigerant Gh introduced from the gas-liquid separator 10 into the receiver 12 via the gas-phase communication passage rp by the receiver adjustment valve vR. Thus, a storage amount adjusting means for adjusting the liquid level of the stored liquid phase refrigerant L in the liquid receiver 12 (in other words, the amount of storage of the liquid phase refrigerant L in the liquid receiver 12) is configured, and control is performed for this. The liquid receiver 13 receives the liquid receiver 1 based on the detection information of the second liquid level sensor 14b that detects the liquid level of the liquid refrigerant L in the liquid receiver 12.
The liquid level of the stored liquid phase refrigerant L in 2 is set to "dehumidification cooling mode"
So as to adjust and maintain the set target liquid level x1 (in other words, to adjust and maintain the stored amount of the liquid phase refrigerant L in the receiver 12 to the set target stored amount n1 for the "dehumidifying and cooling mode"). 2), the liquid receiver adjusting valve vR is adjusted.

【0043】過冷却器11においては、冷却用冷媒路r
cにより導かれる上流熱交換器7からの低圧気相冷媒G
cと気液分離器10における分離液相冷媒Lとを熱交換
させて気液分離器10における分離液相冷媒Lを冷却
し、これにより、分離液相冷媒Lを膨張手段exVとし
ての第1膨張弁ex1に送ることにおいて、その途中
(特にある程度の減圧を生じる流量調整弁vFの通過過
程)で分離液相冷媒L中に一部気相部分が発生すること
を防止する。
In the subcooler 11, the cooling refrigerant passage r
low-pressure gas-phase refrigerant G from the upstream heat exchanger 7 guided by c
c and the separated liquid phase refrigerant L in the gas-liquid separator 10 are heat-exchanged to cool the separated liquid phase refrigerant L in the gas-liquid separator 10, whereby the separated liquid phase refrigerant L serves as the expansion means exV. When the gas is sent to the expansion valve ex1, it is possible to prevent a part of the gas phase from being generated in the separated liquid phase refrigerant L in the middle of the process (particularly in the passing process of the flow rate adjusting valve vF that causes decompression to some extent).

【0044】「除湿冷房モード」において流量調整弁v
Fは、温熱発生凝縮器Ciとしての下流熱交換器8の必
要温熱発生量に応じて第2膨張弁ex2が流量調整弁と
して開度調整されることに対し、気液分離器10から下
流熱交換器8を経て受液器12に至る系統の流路抵抗
と、気液分離器10から第4接続路r4を介して直接的
に受液器12に至る系統の流路抵抗とが、ほぼ同等とな
るように制御器13により開度調整し、これにより、下
流熱交換器8からの液相冷媒Lと気液分離器10からの
液相冷媒Lとの受液器12での合流を円滑にする。
In the "dehumidifying and cooling mode", the flow rate adjusting valve v
F indicates that the opening degree of the second expansion valve ex2 is adjusted as a flow rate adjusting valve in accordance with the required heat generation amount of the downstream heat exchanger 8 serving as the heat generation condenser Ci, while the downstream heat from the gas-liquid separator 10 is adjusted. The flow path resistance of the system that reaches the liquid receiver 12 via the exchanger 8 and the flow path resistance of the system that directly reaches the liquid receiver 12 from the gas-liquid separator 10 via the fourth connection path r4 are approximately The opening degree is adjusted by the controller 13 so as to be equal to each other, so that the liquid-phase refrigerant L from the downstream heat exchanger 8 and the liquid-phase refrigerant L from the gas-liquid separator 10 are joined at the liquid receiver 12. Smooth out.

【0045】図2は、下流熱交換器8に対する冷媒供給
を断った状態で、上流熱交換器7を冷熱発生蒸発器Ei
として機能させて通過空気を冷却温調し、これに対し、
室外熱交換器4を放熱凝縮器Coとして機能させて外気
OAに対し放熱させる「通常冷房モード」の冷媒流れ状
態を示し、具体的には、圧縮機6から吐出される高圧気
相冷媒Gh(黒塗りの太線)を放熱凝縮器Coとしての
室外熱交換器4で凝縮させ、そして、「除湿冷房モー
ド」と同様に放熱凝縮器Coとしての室外熱交換器4を
室内機側の気液分離器10に対する高圧冷媒送出部Aと
する形態で、その室外熱交換器4から送出される高圧の
液相冷媒L(細ハッチングを施した太線)を高圧側渡り
配管3aを介して気液分離器10に送給する。
In FIG. 2, the upstream heat exchanger 7 is connected to the cold heat generation evaporator Ei with the refrigerant supply to the downstream heat exchanger 8 cut off.
To control the cooling temperature of the passing air,
The refrigerant | coolant flow state of the "normal cooling mode" which makes the outdoor heat exchanger 4 function as a heat radiation condenser Co, and heat-radiates with respect to the external air OA is shown, and, specifically, the high pressure gas-phase refrigerant Gh (discharged from the compressor 6 (Black thick line) is condensed in the outdoor heat exchanger 4 as the heat radiating condenser Co, and the outdoor heat exchanger 4 as the heat radiating condenser Co is separated into gas and liquid on the indoor unit side as in the “dehumidifying and cooling mode”. The high-pressure refrigerant delivery section A for the vessel 10 is used as a high-pressure liquid-phase refrigerant L (thin line with fine hatching) delivered from the outdoor heat exchanger 4 through the high-pressure side connecting pipe 3a to form a gas-liquid separator. Send to 10.

【0046】気液分離器10に供給した液相冷媒Lは、
前記の第4接続路r4、受液器12、第1接続路r1、
及び、その第1接続路r1において本来の膨張手段ex
Vとして機能させる第1膨張弁ex1を介し冷熱発生蒸
発器Eiとしての上流熱交換器7に供給し、ここで蒸発
させる。
The liquid-phase refrigerant L supplied to the gas-liquid separator 10 is
The fourth connection path r4, the liquid receiver 12, the first connection path r1,
And the original expansion means ex in the first connecting path r1
It is supplied to the upstream heat exchanger 7 as the cold heat generation evaporator Ei via the first expansion valve ex1 which functions as V and is evaporated here.

【0047】また、上流熱交換器7から送出される蒸発
後の低圧気相冷媒Gc(白抜きの太線)は、「除湿冷房
モード」と同様、冷却用冷媒路rc、過冷却器11、並
びに、低圧側の渡り冷媒配管3bを介して圧縮機6の吸
入側に戻す。
The evaporated low-pressure vapor-phase refrigerant Gc (white thick line) sent from the upstream heat exchanger 7 is the cooling refrigerant passage rc, the supercooler 11, and the same as in the "dehumidifying and cooling mode". , Is returned to the suction side of the compressor 6 via the low-pressure side transition refrigerant pipe 3b.

【0048】この「通常冷房モード」において制御器1
3は、気液分離器10において供給される高圧の液相冷
媒Lから一部気相冷媒Ghを生じさせる形態で気液分離
器10における貯留液相冷媒Lの液位を設定液位mに調
整・維持するように、第1液位センサ14aの検出情報
に基づき、室外ファン5の出力調整により放熱凝縮器C
oとしての室外熱交換器4の放熱能力を調整して、室外
熱交換器4から気液分離器10へ送出する液相冷媒Lの
過冷却度を調整し、そして、気液分離器10において生
じる高圧の気相冷媒部分Ghを受液器液位の調整用に用
いる形態で、制御器13は第2液位センサ14bによる
液位検出に基づき、受液器12における貯留液相冷媒L
の液位を「通常冷房モード」用の設定目標液位x2に調
整・維持するように(換言すれば、受液器12における
液相冷媒Lの貯留量を「通常冷房モード」用の設定目標
貯留量n2に調整・維持するように)、受液器調整弁v
Rを調整する。
In this "normal cooling mode", the controller 1
3 is a mode in which a part of the gas-phase refrigerant Gh is generated from the high-pressure liquid-phase refrigerant L supplied in the gas-liquid separator 10, and the liquid level of the stored liquid-phase refrigerant L in the gas-liquid separator 10 is set to the set liquid level m. In order to adjust and maintain the heat dissipation condenser C by adjusting the output of the outdoor fan 5 based on the detection information of the first liquid level sensor 14a.
The heat dissipation capacity of the outdoor heat exchanger 4 as o is adjusted, the degree of supercooling of the liquid-phase refrigerant L sent from the outdoor heat exchanger 4 to the gas-liquid separator 10 is adjusted, and in the gas-liquid separator 10. In the mode in which the generated high-pressure vapor-phase refrigerant portion Gh is used for adjusting the liquid level of the liquid receiver, the controller 13 detects the liquid level by the second liquid level sensor 14b and the stored liquid-phase refrigerant L in the liquid receiver 12 is detected.
So that the liquid level of the liquid phase refrigerant L is adjusted and maintained at the set target liquid level x2 for the "normal cooling mode" (in other words, the storage amount of the liquid-phase refrigerant L in the receiver 12 is set for the "normal cooling mode". Adjusting and maintaining the stored amount n2), liquid receiver adjustment valve v
Adjust R.

【0049】また、気液分離器10では、これも「除湿
冷房モード」と同様、冷熱発生蒸発器Eiとしての上流
熱交換器7から送出される低温の低圧気相冷媒Gcを冷
却用冷媒とした過冷却器11での液相冷媒冷却により分
離液相冷媒Lの過冷却度を増大させ、これにより、膨張
手段exVとしての第1膨張弁ex1へ送る液相冷媒L
中に一部気相部分が発生することを防止する。
In the gas-liquid separator 10, as in the "dehumidifying and cooling mode", the low-temperature low-pressure gas-phase refrigerant Gc sent from the upstream heat exchanger 7 as the cold heat generating evaporator Ei is used as the cooling refrigerant. The supercooling degree of the separated liquid-phase refrigerant L is increased by cooling the liquid-phase refrigerant in the supercooler 11 described above, whereby the liquid-phase refrigerant L sent to the first expansion valve ex1 as the expansion means exV.
Prevents the formation of some gas phase inside.

【0050】図3は、下流熱交換器8に対する冷媒供給
を断った状態で、上流熱交換器7を温熱発生凝縮器Ci
として機能させて通過空気を加熱温調し、これに対し、
室外熱交換器4を吸熱蒸発器Eoとして機能させて外気
OAから吸熱させる「通常暖房モード」の冷媒流れ状態
を示し、具体的には、圧縮機6を室内機側の気液分離器
10に対する高圧冷媒送出部Aとする形態で、その圧縮
機6から吐出される高圧気相冷媒Gh(黒塗りの太線)
を高圧側渡り冷媒配管3a、気液分離器10、及び、気
相冷媒路rhを介し温熱発生凝縮器Ciとしての上流熱
交換器7に供給し、この上流熱交換器7で凝縮させる。
In FIG. 3, the upstream heat exchanger 7 is connected to the heat generating condenser Ci while the refrigerant supply to the downstream heat exchanger 8 is cut off.
To control the heating temperature of the passing air,
The refrigerant | coolant flow state of the "normal heating mode" which makes the outdoor heat exchanger 4 function as an endothermic evaporator Eo, and absorbs heat from the outdoor air OA is shown, and specifically, the compressor 6 with respect to the gas-liquid separator 10 on the indoor unit side is shown. The high-pressure refrigerant Gh (black thick line) discharged from the compressor 6 in the form of the high-pressure refrigerant delivery section A.
Is supplied to the upstream heat exchanger 7 as the heat-generating condenser Ci via the high-pressure side refrigerant pipe 3a, the gas-liquid separator 10 and the gas-phase refrigerant passage rh, and is condensed in the upstream heat exchanger 7.

【0051】上流熱交換器7から送出される液相冷媒L
(細ハッチングを施した太線)は、温熱発生凝縮器Ci
からの送出液相冷媒Lを導く液冷媒路rr’としての第
1接続路r1、受液器12、第3膨張弁ex3が本来の
膨張手段exVとして機能する第3接続路r3、並び
に、低圧側渡り冷媒配管3bを介し吸熱蒸発器Eoとし
ての室外熱交換器4に供給して、この室外熱交換器4で
蒸発させ、そして、室外熱交換器4から送出される低圧
気相冷媒Gc(白抜きの太線)を圧縮機6の吸入側に戻
す。
Liquid phase refrigerant L delivered from the upstream heat exchanger 7.
(Thin line with thin hatching) indicates the heat generation condenser Ci
The first connection path r1 as a liquid refrigerant path rr 'that guides the delivery liquid phase refrigerant L from, the liquid receiver 12, the third connection path r3 in which the third expansion valve ex3 functions as the original expansion means exV, and the low pressure The low-pressure gas-phase refrigerant Gc (which is supplied to the outdoor heat exchanger 4 as the endothermic evaporator Eo through the side-passing refrigerant pipe 3b to be evaporated in the outdoor heat exchanger 4 and is sent from the outdoor heat exchanger 4 ( Return the white thick line) to the suction side of the compressor 6.

【0052】この「通常暖房モード」において、圧縮機
6から送出される高圧気相冷媒Ghの通過経路となる気
液分離器10は液相冷媒が存在しない空の状態となるこ
とから、気液分離器10へ送給する冷媒の状態を前述の
「除湿冷房モード」や「通常冷房モード」の如く第1液
位センサ14aの検出情報に基づいて調整する制御は停
止するが、制御器13は、気相冷媒路rhから気相連通
路rpへ一部分流する高圧気相冷媒Ghを受液器液位の
調整用に用いる形態で、第2液位センサ14bによる液
位検出に基づき、受液器12における貯留液相冷媒Lの
液位を「通常暖房モード」用の設定目標液位x3に調整
・維持するように(換言すれば、受液器12における液
相冷媒Lの貯留量を「通常暖房モード」用の設定目標貯
留量n3に調整・維持するように)、受液器調整弁vR
を調整する。
In the "normal heating mode", the gas-liquid separator 10 serving as a passage for the high-pressure gas-phase refrigerant Gh delivered from the compressor 6 is in an empty state in which no liquid-phase refrigerant is present. The control for adjusting the state of the refrigerant sent to the separator 10 based on the detection information of the first liquid level sensor 14a, such as the above-mentioned "dehumidifying cooling mode" or "normal cooling mode", stops, but the controller 13 In the mode in which the high-pressure gas-phase refrigerant Gh partially flowing from the gas-phase refrigerant passage rh to the gas-phase communication passage rp is used for adjusting the liquid receiver liquid level, the liquid receiver is detected based on the liquid level detection by the second liquid level sensor 14b. In order to adjust and maintain the liquid level of the stored liquid-phase refrigerant L in 12 to the set target liquid level x3 for the "normal heating mode" (in other words, the storage amount of the liquid-phase refrigerant L in the receiver 12 is "normal"). Adjust to set target storage amount n3 for "heating mode" As lifting), receiver control valve vR
Adjust.

【0053】図4は「強冷房モード」(先述の冷熱単独
モードに相当する運転モード)の冷媒流れ状態を示し、
第2膨張弁ex2を第1膨張弁ex1とともに本来の膨
張手段exVとして機能させて、下流熱交換器8を上流
熱交換器7とともに冷熱発生蒸発器Ei,Ei’として
機能させる点、及び、第2液位センサ14bの検出情報
に基づく受液器調整弁vRの調整として、受液器12に
おける貯留液相冷媒Lの液位を「強冷房モード」用の設
定目標液位x4に調整・維持するように(換言すれば、
受液器12における液相冷媒Lの貯留量を「強冷房モー
ド」用の設定目標貯留量n4に調整・維持するよう
に)、受液器調整弁vRを調整する点を除いては、前述
の「通常冷房モード」と同様である。
FIG. 4 shows the refrigerant flow state in the "strong cooling mode" (the operation mode corresponding to the above-mentioned cooling / heating only mode),
The second expansion valve ex2 functions as the original expansion means exV together with the first expansion valve ex1, and the downstream heat exchanger 8 functions as the cold heat generation evaporators Ei, Ei ′ together with the upstream heat exchanger 7, and The liquid level of the stored liquid phase refrigerant L in the liquid receiver 12 is adjusted and maintained at the set target liquid level x4 for the "strong cooling mode" as the adjustment of the liquid receiver adjustment valve vR based on the detection information of the two liquid level sensor 14b. To do (in other words,
Except for adjusting the receiver adjustment valve vR so that the amount of the liquid refrigerant L stored in the receiver 12 is adjusted and maintained at the set target storage amount n4 for the "strong cooling mode"), the above description is made. This is the same as the "normal cooling mode" of.

【0054】また、図5は「強暖房モード」(先述の温
熱単独モードに相当する運転モード)の冷媒流れ状態を
示し、下流熱交換器8を上流熱交換器7とともに温熱発
生凝縮器Ci,Ci’として機能させる点、及び、第2
液位センサ14bの検出情報に基づく受液器調整弁vR
の調整として、受液器12における貯留液相冷媒Lの液
位を「強暖房モード」用の設定目標液位x5に調整・維
持するように(換言すれば、受液器12における液相冷
媒Lの貯留量を「強暖房モード」用の設定目標貯留量n
5に調整・維持するように)、受液器調整弁vRを調整
する点を除いては、前述の「通常暖房モード」と同様で
ある。
FIG. 5 shows the refrigerant flow state in the “strong heating mode” (the operation mode corresponding to the above-mentioned heating only mode), in which the downstream heat exchanger 8 together with the upstream heat exchanger 7 are heated by the heat generation condenser Ci, Point to function as Ci ', and second
Liquid receiver adjusting valve vR based on the detection information of the liquid level sensor 14b
In order to adjust the above, the liquid level of the stored liquid phase refrigerant L in the liquid receiver 12 is adjusted and maintained at the set target liquid level x5 for the "strong heating mode" (in other words, the liquid phase refrigerant in the liquid receiver 12 is adjusted. L storage amount is set target storage amount n for "strong heating mode"
5) so that the liquid receiver adjustment valve vR is adjusted, so that it is the same as the above-mentioned “normal heating mode”.

【0055】上記の運転モード夫々において、受液器調
整弁vRによる液位調整(貯留量調整)の目標とする目
標液位x1〜x5(目標貯留量n1〜n5)について
は、各運転モードごとに、圧縮機6の吐出圧力po及び
吸入圧力psが適正範囲内となるような(すなわち、冷
媒回路中を循環する実質冷媒量が先述の適正冷媒量とな
るような)受液器12の液相冷媒液位(液相冷媒貯留
量)を実験や試運転により求めて、これらを各運転モー
ドでの目標液位x1〜x5(目標貯留量n1〜n5)と
して設定したものであり、この設定に対し、前述の如く
各運転モードにおいて第2液位センサ14bの検出情報
に基づく受液器調整弁vRの調整により、受液器12に
おける液相冷媒Lの液位(貯留量)を実施運転モードの
設定目標液位x1〜x5(設定目標貯留量n1〜n5)
に自動調整することで、圧縮機吐出圧力poの異常上昇
や圧縮機吸入圧力psの異常低下といった圧力異常の発
生を防止する。
In each of the above operation modes, the target liquid levels x1 to x5 (target storage amounts n1 to n5), which are targets of the liquid level adjustment (reservation amount adjustment) by the receiver adjustment valve vR, are set for each operation mode. In addition, the liquid in the liquid receiver 12 such that the discharge pressure po and the suction pressure ps of the compressor 6 are within appropriate ranges (that is, the substantial amount of refrigerant circulating in the refrigerant circuit is the appropriate amount of refrigerant described above). The phase refrigerant liquid level (liquid phase refrigerant storage amount) is obtained by experiment or trial operation, and these are set as target liquid levels x1 to x5 (target storage amounts n1 to n5) in each operation mode. On the other hand, as described above, in each operation mode, the liquid level (storage amount) of the liquid phase refrigerant L in the liquid receiver 12 is adjusted by adjusting the liquid receiver adjustment valve vR based on the detection information of the second liquid level sensor 14b. Setting target liquid level x1 to x (Set target storage amount n1~n5)
The automatic adjustment to prevent the occurrence of a pressure abnormality such as an abnormal increase in the compressor discharge pressure po and an abnormal decrease in the compressor suction pressure ps.

【0056】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.

【0057】(1)前述の実施例においては受液器12
における液相冷媒Lの貯留量を検出するのに、受液器1
2における液相冷媒Lの液位を検出する形態を採用した
が、貯留量の検出は液位検出による形態に限定されるも
のではなく、種々の検出形態を採用でき、前述の実施例
における第2液位センサ14bを含め、受液器12にお
ける液相冷媒Lの貯留量を検出する手段を液量検出手段
14bと称する。
(1) The liquid receiver 12 in the above-described embodiment.
To detect the storage amount of the liquid-phase refrigerant L in the liquid receiver 1
Although the mode of detecting the liquid level of the liquid-phase refrigerant L in 2 is adopted, the detection of the stored amount is not limited to the mode of detecting the liquid level, and various detection modes can be adopted. A means for detecting the stored amount of the liquid phase refrigerant L in the liquid receiver 12 including the two-liquid level sensor 14b is referred to as a liquid amount detecting means 14b.

【0058】(2)前述の実施例の如く、受液器12に
おける液相冷媒貯留量(液位)の検出情報に基づき、各
運転モードにおいて受液器12の液相冷媒貯留量(液
位)が運転モードごとに設定してある目標貯留量n1〜
n5(目標液位x1〜x5)になるように受液器調整弁
vRを調整する制御形態に代えて、圧縮機6の吐出圧力
poや吸入圧力psそのものを調整指標として受液器調
整弁vRを調整する制御形態を採用してもよい。
(2) As in the above-described embodiment, based on the detection information of the liquid phase refrigerant storage amount (liquid level) in the liquid receiver 12, the liquid phase refrigerant storage amount (liquid level) in the liquid receiver 12 in each operation mode. ) Is the target storage amount n1 set for each operation mode
Instead of the control mode in which the receiver adjustment valve vR is adjusted so that it becomes n5 (target liquid level x1 to x5), the receiver adjustment valve vR using the discharge pressure po of the compressor 6 or the suction pressure ps itself as an adjustment index. It is also possible to adopt a control mode that adjusts.

【0059】つまり、図6に示すように、圧縮機6の吐
出圧力poを検出する圧力検出手段P1又は圧縮機6の
吸入圧力psを検出する圧力検出手段P2を設け、そし
て、これら圧力検出手段P1,P2の検出情報に基づい
て、圧縮機6の吐出圧力po又は吸入圧力Psが目標圧
力になるように、制御器13により受液器調整弁vRを
自動調整する構成を採用してもよい。
That is, as shown in FIG. 6, pressure detecting means P1 for detecting the discharge pressure po of the compressor 6 or pressure detecting means P2 for detecting the suction pressure ps of the compressor 6 is provided, and these pressure detecting means are provided. A configuration may be adopted in which the controller 13 automatically adjusts the liquid receiver adjustment valve vR so that the discharge pressure po or the suction pressure Ps of the compressor 6 becomes the target pressure based on the detection information of P1 and P2. .

【0060】なお、前述の制御器13の如く、液量検出
手段14bにより検出される受液器12の液相冷媒貯留
量や、圧力検出手段P1,P2により検出される圧縮機
6の吐出・吸入圧力po,ps等に基づき受液器調整弁
vRを自動調整する手段を総称して制御手段13と称す
る。
As in the controller 13 described above, the amount of the liquid-phase refrigerant stored in the liquid receiver 12 detected by the liquid amount detecting means 14b and the discharge of the compressor 6 detected by the pressure detecting means P1 and P2. The means for automatically adjusting the liquid receiver adjustment valve vR based on the suction pressures po, ps, etc. is collectively referred to as the control means 13.

【0061】(3)受液器調整弁vRの調整形態とし
て、複数の運転モードのうち特定の運転モードについて
は、受液器12における液相冷媒貯留量の検出情報に基
づき、受液器12の液相冷媒貯留量が実施運転モードに
対し設定してある目標貯留量になるように、制御手段1
3により受液器調整弁vRを自動調整し、そして、上記
の特定モード以外の運転モードについては、圧縮機6の
吐出圧力po又は吸入圧力psを検出する圧力検出手段
P1,P2の検出情報に基づいて、圧縮機6の吐出圧力
po又は吸入圧力Psが目標圧力になるように、制御手
段13により受液器調整弁vRを自動調整するといった
形態を採用してもよい。
(3) As a mode of adjusting the liquid receiver adjustment valve vR, for a specific operation mode among a plurality of operation modes, the liquid receiver 12 is detected based on the detection information of the amount of liquid refrigerant stored in the liquid receiver 12. Control means 1 so that the liquid-phase refrigerant storage amount of the target storage amount set for the operation mode is
3, the receiver adjusting valve vR is automatically adjusted, and for operating modes other than the specific mode described above, the detection information of the pressure detecting means P1 and P2 for detecting the discharge pressure po or the suction pressure ps of the compressor 6 is used. Based on this, a configuration may be adopted in which the control means 13 automatically adjusts the liquid receiver adjustment valve vR so that the discharge pressure po or the suction pressure Ps of the compressor 6 becomes the target pressure.

【0062】(4)又、受液器調整弁vRの調整形態と
して、各運転モードの開始時に受液器12における液相
冷媒貯留量の検出情報に基づき、受液器12の液相冷媒
貯留量が実施運転モードに対し設定してある目標貯留量
になるように、制御手段13により受液器調整弁vRを
自動調整し、そして、その後は、圧縮機6の吐出圧力p
o又は吸入圧力psを検出する圧力検出手段P1,P2
の検出情報に基づいて、圧縮機6の吐出圧力po又は吸
入圧力Psが目標圧力になるように、制御手段13によ
り受液器調整弁vRを自動調整するといった形態を採用
してもよい。
(4) As the adjustment mode of the receiver adjustment valve vR, the liquid refrigerant storage of the receiver 12 is based on the detection information of the liquid refrigerant storage amount in the receiver 12 at the start of each operation mode. The control means 13 automatically adjusts the receiver adjustment valve vR so that the amount becomes the target storage amount set for the operation mode, and thereafter, the discharge pressure p of the compressor 6 is adjusted.
o or pressure detecting means P1, P2 for detecting the suction pressure ps
A configuration may be adopted in which the liquid receiver adjusting valve vR is automatically adjusted by the control means 13 so that the discharge pressure po or the suction pressure Ps of the compressor 6 becomes the target pressure based on the detection information.

【0063】(5)受液器12は、気液分離器10から
の送出液相冷媒Lを膨張手段exVへ導く液冷媒路rr
に連通させるのもと、温熱発生凝縮器Ciからの送出液
相冷媒Lを導く液冷媒路rr’に連通させるものとを各
別に設けるようにしてもよく、また、気液分離器10か
らの液相冷媒送出が常時行われる装置については、気液
分離器10からの送出液相冷媒Lを膨張手段exVへ導
く液冷媒路rrにのみ受液器12を連通させる構成を採
用したり、あるいは、温熱発生凝縮器Ciからの液相冷
媒送出が常時行われる装置については、温熱発生凝縮器
Ciからの送出液相冷媒Lを導く液冷媒路rr’にのみ
受液器12を連通させる構成を採用したりしてもよい。
(5) The liquid receiver 12 guides the liquid-phase refrigerant L from the gas-liquid separator 10 to the expansion means exV.
And the fluid refrigerant passage rr 'for guiding the delivery liquid phase refrigerant L from the heat-generating condenser Ci may be separately provided. For a device in which the liquid-phase refrigerant is constantly delivered, a configuration is adopted in which the liquid receiver 12 is communicated only with the liquid refrigerant passage rr that guides the delivered liquid-phase refrigerant L from the gas-liquid separator 10 to the expansion means exV, or In the device in which the liquid-phase refrigerant is constantly delivered from the heat-generating condenser Ci, the liquid receiver 12 is communicated only with the liquid-refrigerant passage rr 'that guides the delivered liquid-phase refrigerant L from the heat-generating condenser Ci. You may adopt it.

【0064】(6)前述の実施例は、複数の運転モード
を切り換え実施するヒートポンプ装置について本発明を
適用した例を示すが、本発明の第1特徴構成、及び、第
3特徴構成は、運転モードの切り換えを行わないヒート
ポンプ装置、すなわち、冷媒経路の切り換えによる運転
状態の変更を行わないヒートポンプ装置についても適用
できる。
(6) The above-mentioned embodiment shows an example in which the present invention is applied to a heat pump device for switching and operating a plurality of operation modes. The first and third characteristic configurations of the present invention are The present invention can also be applied to a heat pump device that does not switch modes, that is, a heat pump device that does not change the operating state by switching the refrigerant path.

【0065】(7)温熱発生凝縮器Ciによる発生温熱
の用途は、暖房や冷却除湿空気に対する再熱等の空調用
途に限定されるものではなく、物品の加熱や保温等、ど
のような用途であってもよい。また、冷熱発生蒸発器E
iによる発生冷熱の用途も、冷房や空気の冷却除湿等の
空調用途に限定されるものではなく、物品の冷却や保冷
等、どのような用途であってもよい。
(7) The use of the heat generated by the heat-generating condenser Ci is not limited to air-conditioning such as heating or reheating of dehumidified air for cooling, but may be used for heating or keeping heat of an article. It may be. In addition, the cold heat generation evaporator E
The application of the generated cold heat by i is not limited to the air conditioning application such as cooling and dehumidification of air, and may be any application such as cooling and keeping heat of an article.

【0066】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】除湿冷房モードの冷媒流れを示す冷媒回路図FIG. 1 is a refrigerant circuit diagram showing a refrigerant flow in a dehumidifying and cooling mode.

【図2】通常冷房モードの冷媒流れを示す冷媒回路図FIG. 2 is a refrigerant circuit diagram showing a refrigerant flow in a normal cooling mode.

【図3】通常暖房モードの冷媒流れを示す冷媒回路図FIG. 3 is a refrigerant circuit diagram showing a refrigerant flow in a normal heating mode.

【図4】強冷房モードの冷媒流れを示す冷媒回路図FIG. 4 is a refrigerant circuit diagram showing a refrigerant flow in strong cooling mode.

【図5】強暖房モードの冷媒流れを示す冷媒回路図FIG. 5 is a refrigerant circuit diagram showing a refrigerant flow in the strong heating mode.

【図6】別実施例を示す冷媒回路図FIG. 6 is a refrigerant circuit diagram showing another embodiment.

【図7】従来装置における冷温熱並行モードの冷媒流れ
を示す冷媒回路図
FIG. 7 is a refrigerant circuit diagram showing a refrigerant flow in a cold-heat parallel mode in a conventional device.

【図8】従来装置における冷熱単独モードの冷媒流れを
示す冷媒回路図
FIG. 8 is a refrigerant circuit diagram showing a refrigerant flow in a cold heat only mode in a conventional device.

【図9】従来装置における温熱単独モードの冷媒流れを
示す冷媒回路図
FIG. 9 is a refrigerant circuit diagram showing a refrigerant flow in a heating only mode in a conventional device.

【符号の説明】 A 高圧冷媒送出部 Ci 温熱発生凝縮器 Ei 冷熱発生蒸発器 exV 膨張手段 Gh 気相冷媒 GL,L 高圧冷媒 L 液相冷媒 n1〜n5 目標貯留量 P1,P2 圧力検出手段 po 吐出圧力 ps 吸入圧力 rp 気相連通路 rr,rr’ 液冷媒路 vR 調整弁 6 圧縮機 10 気液分離器 12 受液器 13 制御手段 14b 液量検出手段[Explanation of Codes] A high-pressure refrigerant delivery section Ci hot-heat generating condenser Ei cold-heat generating evaporator exV expansion means Gh gas-phase refrigerant GL, L high-pressure refrigerant L liquid-phase refrigerant n1 to n5 target storage amount P1, P2 pressure detection means po discharge Pressure ps Suction pressure rp Gas phase communication passage rr, rr 'Liquid refrigerant passage vR Adjustment valve 6 Compressor 10 Gas-liquid separator 12 Liquid receiver 13 Control means 14b Liquid amount detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧冷媒送出部(A)から送給される高
圧冷媒(GL),(L)を気相冷媒(Gh)と液相冷媒
(L)とに分離する気液分離器(10)と、 その気液分離器(10)から送出される気相冷媒(G
h)を凝縮させる温熱発生凝縮器(Ci)と、 前記気液分離器(10)から送出される液相冷媒(L)
を膨張手段(exV)に対し通過させたのち蒸発させる
冷熱発生蒸発器(Ei)とを設けたヒートポンプ装置で
あって、 前記気液分離器(10)から送出される液相冷媒(L)
を前記膨張手段(exV)へ導く液冷媒路(rr)、又
は、前記温熱発生凝縮器(Ci)から送出される液相冷
媒(L)を導く液冷媒路(rr’)に連通する受液器
(12)と、 前記気液分離器(10)における気相冷媒(Gh)を前
記受液器(12)に導通する気相連通路(rp)と、 その気相連通路(rp)における気相冷媒(Gh)の導
通量を調整する調整弁(vR)とを設けたヒートポンプ
装置。
1. A gas-liquid separator (10) for separating high-pressure refrigerant (GL), (L) fed from a high-pressure refrigerant delivery section (A) into a gas-phase refrigerant (Gh) and a liquid-phase refrigerant (L). ) And the gas-phase refrigerant (G
a heat-generating condenser (Ci) for condensing h), and a liquid-phase refrigerant (L) delivered from the gas-liquid separator (10)
A heat pump device provided with a cold heat generation evaporator (Ei) for evaporating after passing the expansion means (exV) to a liquid phase refrigerant (L) sent from the gas-liquid separator (10).
Receiving liquid communicating with a liquid refrigerant passage (rr) that guides the refrigerant to the expansion means (exV) or a liquid refrigerant passage (rr ′) that guides the liquid-phase refrigerant (L) sent from the heat-generating condenser (Ci). (12), a gas-phase communication passage (rp) for conducting the gas-phase refrigerant (Gh) in the gas-liquid separator (10) to the liquid receiver (12), and a gas phase in the gas-phase communication passage (rp) A heat pump device provided with an adjusting valve (vR) for adjusting the amount of conduction of the refrigerant (Gh).
【請求項2】 前記受液器(12)における液相冷媒
(L)の貯留量を検出する液量検出手段(14b)を設
け、 冷媒経路を切り換えてヒートポンプ運転状態を異ならせ
る複数の運転モード夫々において、前記受液器(12)
における液相冷媒(L)の貯留量が運転モードごとに設
定してある目標貯留量(n1〜n5)になるように、前
記液量検出手段(14b)の検出情報に基づき前記調整
弁(vR)を調整する制御手段(13)を設けた請求項
1記載のヒートポンプ装置。
2. A plurality of operation modes in which a liquid amount detecting means (14b) for detecting a stored amount of the liquid-phase refrigerant (L) in the liquid receiver (12) is provided, and a refrigerant path is switched to change a heat pump operating state. In each of them, the liquid receiver (12)
Based on the detection information of the liquid amount detection means (14b), the adjustment valve (vR) so that the storage amount of the liquid-phase refrigerant (L) in (1) becomes the target storage amount (n1 to n5) set for each operation mode. The heat pump device according to claim 1, further comprising a control means (13) for adjusting
【請求項3】 冷媒を循環させる圧縮機(6)の吐出圧
力(po)、又は吸入圧力(ps)を検出する圧力検出
手段(P1),(P2)を設け、 前記圧縮機(6)の吐出圧力(po)、又は吸入圧力
(ps)が目標圧力になるように、前記圧力検出手段
(P1),(P2)の検出情報に基づき前記調整弁(v
R)を調整する制御手段(13)を設けた請求項1記載
のヒートポンプ装置。
3. Pressure detecting means (P1), (P2) for detecting a discharge pressure (po) or a suction pressure (ps) of a compressor (6) for circulating a refrigerant is provided, Based on the detection information of the pressure detection means (P1) and (P2), the adjustment valve (v) is adjusted so that the discharge pressure (po) or the suction pressure (ps) becomes the target pressure.
The heat pump device according to claim 1, further comprising a control means (13) for adjusting R).
JP21948793A 1993-09-03 1993-09-03 Heat pump device Pending JPH0771830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21948793A JPH0771830A (en) 1993-09-03 1993-09-03 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21948793A JPH0771830A (en) 1993-09-03 1993-09-03 Heat pump device

Publications (1)

Publication Number Publication Date
JPH0771830A true JPH0771830A (en) 1995-03-17

Family

ID=16736219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21948793A Pending JPH0771830A (en) 1993-09-03 1993-09-03 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0771830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524797A (en) * 2006-09-29 2009-07-02 キャリア コーポレイション Refrigerant vapor compression system with flash tank receiver

Similar Documents

Publication Publication Date Title
US8047011B2 (en) Refrigeration system
US9322562B2 (en) Air-conditioning apparatus
EP2224191B1 (en) Air conditioner and method of controlling the same
US7360372B2 (en) Refrigeration system
CN108027179B (en) Air conditioner
EP2889554B1 (en) Air conditioning system
JP6895901B2 (en) Air conditioner
US20100024454A1 (en) Refrigeration apparatus
US20150059380A1 (en) Air-conditioning apparatus
JP2009174800A (en) Reheating dehumidifier and air conditioner
CN109790995B (en) Air conditioner
US20110146306A1 (en) Start-up for refrigerant system with hot gas reheat
WO2020021593A1 (en) Air-conditioning apparatus
US20220163241A1 (en) Hybrid multi-air conditioning system
KR20190005445A (en) Method for controlling multi-type air conditioner
CN107238226B (en) Multi-split system and control method thereof
US20240102700A1 (en) Heating, Ventilation, and Air-Conditioning Systems and Methods
WO2016189739A1 (en) Air conditioning device
JPH0771830A (en) Heat pump device
JPH02223757A (en) Air conditioner
JPH0755272A (en) Heat pump circuit
JP2839066B2 (en) Heat pump defrost system
JPH04236062A (en) Air conditioner
CN112833514B (en) Air supplementing and enthalpy increasing control method for air conditioning system and air conditioning system
JP3945523B2 (en) Refrigeration equipment