JPH0770761A - Surface treating method of aluminum and alloy thereof by discharge in liquid - Google Patents
Surface treating method of aluminum and alloy thereof by discharge in liquidInfo
- Publication number
- JPH0770761A JPH0770761A JP23884193A JP23884193A JPH0770761A JP H0770761 A JPH0770761 A JP H0770761A JP 23884193 A JP23884193 A JP 23884193A JP 23884193 A JP23884193 A JP 23884193A JP H0770761 A JPH0770761 A JP H0770761A
- Authority
- JP
- Japan
- Prior art keywords
- electric discharge
- electrode
- surface layer
- powder
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はアルミニウム及びその合
金の液中放電による表面硬化方法に関し、特に、航空
機、自動車等において燃料費の改善等のためのアルミ化
による軽量化に対し、金型、エンジン用部品等の耐摩耗
性を要する個所に充分な硬さ(Hv300〜1500)と
共に高い形状精度を与えることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for surface hardening aluminum and its alloys by submerged discharge, and particularly to a die for reducing weight by making aluminum for improving fuel cost in aircrafts, automobiles, etc. It is possible to provide a sufficient hardness (Hv 300 to 1500) and a high shape accuracy to a portion of an engine part or the like that requires wear resistance.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】アルミ
ニウム及びその合金に耐摩耗性を付与する場合、従来は
Al−Si合金に代表される高硬度(Hv200)を持つAl
合金が適用されてきたが、機械加工性が悪く、また硬度
も不充分であった。2. Description of the Related Art When imparting wear resistance to aluminum and its alloys, Al having a high hardness (Hv200) represented by Al-Si alloys has hitherto been used.
Alloys have been applied, but they have poor machinability and insufficient hardness.
【0003】更に、次に示すような硬化処理も行われて
いるが、それぞれ一長一短がある。 (1)硬質アルマイト:厚さ1μm以下、硬さHv450
以下 (2)イオン窒化:厚さ数μm/5hr、硬さHv2000 (3)イオンビームミキシング:厚さ18〜36μm/h
r、硬さHv1000以下 (4)熱CVD(WC):厚さ620μm/hr、硬さHv2
000 〃 (W):厚さ620μm/hr、硬さHv50〜60
0 但し、処理温度Tp=600℃ (5)めっき:Ni−Pめっき、Cuめっき等を行った
後、加熱によって拡散を行う。めっき時間は数時間、加
熱温度は400〜600℃のものが多い。厚さは数μm
〜60μm、硬さはHv450〜800である。 (6)溶射(Mo、TiN/Ti):厚さ300μm、硬さH
v500〜600Further, the following curing treatments are also performed, but each has its advantages and disadvantages. (1) Hard alumite: Thickness 1 μm or less, hardness Hv450
Below (2) Ion nitriding: thickness of several μm / 5 hr, hardness Hv2000 (3) Ion beam mixing: thickness of 18 to 36 μm / h
r, hardness Hv 1000 or less (4) Thermal CVD (WC): thickness 620 μm / hr, hardness Hv 2
000〃 (W): Thickness 620 μm / hr, hardness Hv50-60
0 However, processing temperature Tp = 600 ° C. (5) Plating: Ni-P plating, Cu plating, etc. are performed, and then diffusion is performed by heating. In many cases, the plating time is several hours and the heating temperature is 400 to 600 ° C. Thickness is a few μm
.About.60 .mu.m and hardness is Hv450-800. (6) Thermal spraying (Mo, TiN / Ti): thickness 300 μm, hardness H
v500-600
【0004】以上の表面皮膜のうち、溶射は成膜速度は
速いが、密着性が悪く、形状精度を得るためには再加工
を必要とする。(1)〜(5)の場合は密着性は良い
が、成膜速度が遅く、処理設備としても真空槽、電解槽
等を必要とする。また高温処理を要するものは形状精度
が悪い。Of the above-mentioned surface coatings, thermal spraying has a high film-forming rate, but the adhesion is poor, and reprocessing is required to obtain shape accuracy. In the cases of (1) to (5), the adhesion is good, but the film formation rate is slow, and a vacuum tank, an electrolytic tank, etc. are required as processing equipment. In addition, those requiring high temperature treatment have poor shape accuracy.
【0005】その他に、アーク溶融、プラズマ溶融、電
子ビームアロイング、レーザアロイング等による合金化
法があるが、密着性が良く、短時間で処理できる長所を
持っているものの、マクロな偏析による組織の欠陥、気
孔の発生、表面の再加工の必要などの欠点がある。また
一般にこれらの機械加工特性は悪い。In addition, there are alloying methods such as arc melting, plasma melting, electron beam alloying and laser alloying, which have the advantages of good adhesion and short treatment time, but due to macroscopic segregation. There are drawbacks such as tissue defects, generation of pores, and the need to rework the surface. Also, their machining characteristics are generally poor.
【0006】以上のような従来技術は、アルミニウム及
びその合金の表面硬化技術として多くの欠点を持ってい
る。すなわち、次のような複数の条件を満足し、しかも
経済的に成り立ち、更に作業環境を清潔に保つことが困
難である。また高い寸法精度で硬化する領域を限定する
ことが困難である。 成膜速度を大きくする。 密着性が良い。 数10μmの厚膜が形成できる。 必要にして充分な硬度を制御できる。 母材に熱影響による寸法変化等を与えない。 表面層にクラック等を生じない。 作業性が良い(真空槽を必要としない、特別な防塵装
置を必要としない、自動化が容易)。The above-mentioned conventional techniques have many drawbacks as surface hardening techniques for aluminum and its alloys. That is, it is difficult to satisfy the following plural conditions, to be economically viable, and to keep the working environment clean. Further, it is difficult to limit the area that is cured with high dimensional accuracy. Increase the film formation rate. Good adhesion. A thick film of several tens of μm can be formed. If necessary, sufficient hardness can be controlled. Does not give dimensional changes to the base material due to heat. No cracks or the like occur on the surface layer. Good workability (no vacuum tank required, no special dustproof device, easy automation).
【0007】本発明は、上記従来技術の欠点を解消し
て、アルミニウム及びその合金の表面に、特に高硬度で
耐摩耗性に優れ、また密着性及び寸法精度の良い表面硬
化層を効率的に形成することができる表面処理方法を提
供することを目的としている。The present invention solves the above-mentioned drawbacks of the prior art and efficiently forms a surface-hardened layer on the surface of aluminum and its alloys, which has particularly high hardness and excellent wear resistance, and also has good adhesion and dimensional accuracy. An object is to provide a surface treatment method that can be formed.
【0008】[0008]
【課題を解決するための手段】本発明者は、前記課題を
解決するために鋭意実験研究を重ねた結果、液中におけ
るパルス放電技術を適用することにより可能であること
を見い出した。The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, have found that it is possible to apply the pulse discharge technique in liquid.
【0009】すなわち、本発明は、炭化しやすい金属の
単体粉末又は2種以上の混合粉末に結合金属を加えて所
望の形状に圧縮成形したものを放電加工用の電極とし、
放電によって炭素を分解生成する加工液中において、被
処理材料であるアルミニウム及びその合金を他方の電極
として放電加工することにより、上記金属とその炭化物
とを混合した表面層を被処理材料表面に形成することを
特徴とするアルミニウム及びその合金の液中放電による
表面処理方法を要旨としている。That is, according to the present invention, an electrode for electric discharge machining is formed by adding a binding metal to a powder of a metal which is easily carbonized or a mixed powder of two or more kinds, and compression-molding the powder into a desired shape.
In the working fluid that decomposes and produces carbon by electric discharge, aluminum and its alloy, which is the material to be treated, are subjected to electrical discharge machining as the other electrode to form a surface layer on the surface of the material to be treated in which the above metal and its carbide are mixed. The gist is a surface treatment method of aluminum and its alloys by in-liquid discharge.
【0010】また、他の本発明は、上記の放電加工を一
次処理とし、この一次処理を行った後、比較的消耗の少
ない材料からなる電極を用いて、放電加工(二次処理)を
行うことにより、一次処理で形成された表面層を再溶融
させて緻密な表面層を形成すると共に寸法精度を高める
ことを特徴とするアルミニウム及びその合金の液中放電
による表面処理方法を要旨としている。According to another aspect of the present invention, the electric discharge machining described above is used as a primary treatment, and after the primary treatment is performed, an electric discharge machining (secondary treatment) is performed by using an electrode made of a material with relatively little wear. Thus, the gist is a surface treatment method by in-liquid discharge of aluminum and its alloy, which is characterized by remelting the surface layer formed by the primary treatment to form a dense surface layer and improving dimensional accuracy.
【0011】[0011]
【作用】以下に本発明を更に詳述する。The present invention will be described in more detail below.
【0012】本発明に用いる加工用電極には、炭化しや
すい金属の単体粉末又は2種以上の混合粉末に結合金属
を加えて所望の形状に圧縮成形したものを用いる。炭化
しやすい金属としては、Ti、Zr、V、Ta、Cr、M
o、W、Mn、Nb又はこれらの元素を含む合金が挙げら
れる。特にNbを1〜10wt%含む電極を用いると表面
層の靭性を高めることができる。For the working electrode used in the present invention, a single powder of a metal that is easily carbonized or a mixed powder of two or more kinds of powders, to which a binding metal is added and compression-molded into a desired shape, is used. Metals that are easily carbonized include Ti, Zr, V, Ta, Cr, and M.
Examples include o, W, Mn, Nb or alloys containing these elements. Especially when an electrode containing 1 to 10 wt% of Nb is used, the toughness of the surface layer can be enhanced.
【0013】結合金属として、上記金属の粉末を成形す
る際にバインダーの作用を有する金属であれば良く、例
えば、アルミニウム粉末、錫粉末、亜鉛粉末の1種以上
を加える。As the binding metal, any metal may be used as long as it has a function of a binder when the powder of the above metal is molded, and for example, one or more kinds of aluminum powder, tin powder and zinc powder are added.
【0014】他方の電極には被処理材料であるアルミニ
ウム又は種々のアルミニウム合金が用いられる。被処理
材料は通常の放電加工によって予め所望の加工形状を作
っておくのが望ましい。For the other electrode, aluminum or various aluminum alloys which are the materials to be treated are used. It is desirable that the material to be processed has a desired processed shape in advance by ordinary electric discharge machining.
【0015】放電加工液としては、放電によって炭素を
分解生成する液体を用いる。例えば、石油、灯油、又は
炭素化合物を含む液体などが挙げられる。このような加
工液は、放電によって分解して炭素を生成し、上記の炭
化しやすい金属と反応して炭化物を形成することによ
り、被処理材料の表面に炭化物と上記金属とが混合した
表面層を形成する。なお、表面層中の炭化物の混合割合
は、放電電気条件(電流値、パルス幅、デューティファ
クタなど)及び加工液の吐出流量を変えることにより制
御できる。A liquid which decomposes and produces carbon by electric discharge is used as the electric discharge machining liquid. Examples thereof include petroleum, kerosene, and liquids containing carbon compounds. Such a working liquid is decomposed by electric discharge to generate carbon, and reacts with the above-mentioned metal that is easily carbonized to form a carbide, whereby a surface layer in which the carbide and the metal are mixed on the surface of the material to be treated. To form. The mixing ratio of the carbide in the surface layer can be controlled by changing the electrical discharge conditions (current value, pulse width, duty factor, etc.) and the discharge flow rate of the working liquid.
【0016】放電加工条件は、表面層中の炭化物の混合
割合のほか、成膜厚み等々を考慮して適宜決めれば良
い。The electric discharge machining conditions may be appropriately determined in consideration of the mixing ratio of carbides in the surface layer, the film forming thickness and the like.
【0017】更に、本発明においては、上述の放電加工
を一次処理とし、この一次処理を行って得られた表面層
につき、二次処理として比較的消耗の少ない材料からな
る電極を用いた放電加工を行うことにより、一次処理で
形成された表面層を再溶融させて緻密な表面層を形成す
ることができ、また寸法精度を高めることができる。Further, in the present invention, the above-mentioned electric discharge machining is used as a primary treatment, and the surface layer obtained by performing this primary treatment is subjected to an electric discharge machining using an electrode made of a material with relatively little wear as a secondary treatment. By performing the above, the surface layer formed by the primary treatment can be remelted to form a dense surface layer, and the dimensional accuracy can be improved.
【0018】二次処理の放電加工に際しては、一次処理
用の電極に変えて、Cu、グラファイト、タングステン
などの比較的消耗の少ない材料からなる電極を用いる。
この電極の形状は、目標寸法に到達するための修正加工
を可能とする所望の形状を有する電極が望ましい。その
ためには、一次処理に先立って通常の放電加工により形
状加工する際の電極(消耗しにくい電極)を二次処理用電
極として使用してもよい。In the electric discharge machining of the secondary treatment, instead of the electrode for the primary treatment, an electrode made of a material with relatively low wear such as Cu, graphite and tungsten is used.
The shape of this electrode is preferably an electrode having a desired shape that enables correction processing to reach a target dimension. For that purpose, the electrode (the electrode which is less likely to be worn) when the shape is processed by the usual electric discharge machining prior to the primary processing may be used as the secondary processing electrode.
【0019】目標寸法に到達するための修正加工のため
には、厚み又は形状を測定することによって表面層の寸
法を修正しつつ放電処理を行う。In order to perform the correction processing to reach the target dimension, the discharge treatment is performed while the dimension of the surface layer is corrected by measuring the thickness or the shape.
【0020】次に本発明の実施例を示す。Next, examples of the present invention will be described.
【0021】[0021]
【実施例1】本例は図1及び図2に示す装置を用いて一
次処理(放電加工)を行った例である。図中、1は圧粉体
で構成された加工用電極で、銅などの金属棒5の先端に
導電性接着剤4を用いて接着されている。電極1は放電
加工電源10に接続され(陽極、陰極の転極可能)、加工
液3を収納した加工槽3´の中に浸漬されている。Example 1 This example is an example in which primary treatment (electric discharge machining) was performed using the apparatus shown in FIGS. 1 and 2. In the figure, reference numeral 1 denotes a processing electrode made of a green compact, which is adhered to the tip of a metal rod 5 made of copper or the like using a conductive adhesive 4. The electrode 1 is connected to an electric discharge power source 10 (anode and cathode can be reversed), and is immersed in a machining tank 3 ′ containing a machining liquid 3.
【0022】加工用電極1は、サーボ装置6により昇降
可能で、放電極間の距離を調整することができる。15
はZ軸スケールで、16は主軸側の進度位置を示す指針
であり、この信号は放電電気条件のプログラム装置13
に入力される。11は放電電流検出用のカーレントトラ
ンス、12は放電電流電圧観測用のシンクロスコープで
ある。14は加工液吐出量のプログラム装置で、タンク
7´内の加工液7を送給する加工液送給ポンプ8をコン
トロールする。9は加工液の噴流を発生させるエゼクタ
ーである。The machining electrode 1 can be moved up and down by the servo device 6, and the distance between the discharge electrodes can be adjusted. 15
Is a Z-axis scale, 16 is a pointer indicating the progress position on the spindle side, and this signal is a program device 13 for discharge electrical conditions.
Entered in. Reference numeral 11 is a current transformer for detecting the discharge current, and 12 is a synchroscope for observing the discharge current voltage. Reference numeral 14 denotes a machining fluid discharge amount programming device, which controls a machining fluid feed pump 8 for feeding the machining fluid 7 in the tank 7 '. Reference numeral 9 is an ejector for generating a jet of the working fluid.
【0023】18は母材(Al又はその合金)の被処理材
料で、放電加工電源10に接続されている。2は被処理
材料表面である。母材18の裏面には表面層の厚さを直
接的に測定するための超音波厚み計17が設けられ、そ
の信号は放電電気条件のプログラム装置13に入力され
る。Reference numeral 18 denotes a material to be processed which is a base material (Al or its alloy) and is connected to the electric discharge machining power source 10. 2 is the surface of the material to be treated. An ultrasonic thickness gauge 17 for directly measuring the thickness of the surface layer is provided on the back surface of the base material 18, and the signal thereof is input to the program device 13 for electrical discharge conditions.
【0024】まず、被処理材料にはアルミニウム合金A
DC12(Si11.2%、Cu2.74%を含む)の平板
(厚さ2.5mm)を用いた。電極材料には、炭化しやすい
金属であるTi粉末に結合金属としてのAl粉末をTi:
Al=36:64(wt%)の割合で混合した混合粉末(粉末
粒度44μm以下)を圧縮成形(成形圧力Pe:24.5〜
441MPa)した圧粉体電極を用いた。放電加工液及び
放電電気条件は以下のとおりである。First, aluminum alloy A is used as the material to be treated.
Flat plate of DC12 (including 11.2% Si and 2.74% Cu)
(Thickness of 2.5 mm) was used. For the electrode material, Ti powder, which is a metal that is easily carbonized, and Al powder as a binding metal, were used as Ti:
A mixture powder (powder particle size 44 μm or less) mixed at a ratio of Al = 36: 64 (wt%) is compression molded (molding pressure Pe: 24.5 to
A powder electrode of 441 MPa) was used. The electric discharge machining liquid and electric discharge conditions are as follows.
【0025】〈放電加工液〉 加工液:灯油、噴流圧力Pi:0〜78KPa 〈放電電気条件〉 パルス幅(一発の放電電流の流れている時間)τp:32
〜512μs 放電電流値(電流の最大値)Ip:5〜24A 有効パルスRp(デューティファクタD)=τp/(τp+τ
r)=0.8〜68% (ここでτr:休止時間)<Electric Discharge Machining Fluid> Machining fluid: kerosene, jet pressure Pi: 0 to 78 KPa <Discharge electrical condition> Pulse width (time during which one discharge current flows) τp: 32
Discharge current value (maximum current value) Ip: 5 to 24 A Effective pulse Rp (Duty factor D) = τp / (τp + τ)
r) = 0.8 to 68% (where τr: rest time)
【0026】上記条件で放電加工(一次処理)を行い、母
材表面に表面層を形成した。この表面層は、図3のX線
回折図形より、TiC、TiAl、Al、TiAl3からなる
表面層であることが確認された。同図の表面層が得られ
たときの放電処理条件は、パルス幅τp=512μs、放
電電流値Ip=20A、Rp=D=33%(τr:1040
μs)、Pe:441MPa、加工液噴流圧力Pi=9.8K
Paである。Electrical discharge machining (primary treatment) was performed under the above conditions to form a surface layer on the surface of the base material. From the X-ray diffraction pattern of FIG. 3, it was confirmed that this surface layer was a surface layer composed of TiC, TiAl, Al and TiAl 3 . The discharge treatment conditions when the surface layer in the figure is obtained are: pulse width τp = 512 μs, discharge current value Ip = 20 A, Rp = D = 33% (τr: 1040
μs), Pe: 441 MPa, working fluid jet pressure Pi = 9.8K
It is Pa.
【0027】図4に、パルス幅τpと表面層の厚さh及
び表面層中の炭化物TiCの体積率との関係を調べた結
果を示す。加工時間は3分間と一定であるが、パルス幅
τpの増加と共に表面層の厚さh及び表面層中の炭化物
TiCの体積率が増加していることがわかる。加工時間
が2分程度で厚さ50μm程度に達し、高成膜速度であ
る。FIG. 4 shows the results of examining the relationship between the pulse width τp, the surface layer thickness h, and the volume ratio of the carbide TiC in the surface layer. Although the processing time is constant at 3 minutes, it can be seen that the thickness h of the surface layer and the volume fraction of the carbide TiC in the surface layer increase as the pulse width τp increases. The processing time is about 2 minutes and the thickness reaches about 50 μm, which is a high film forming rate.
【0028】図5に、表面層中の炭化物TiCの体積率
に及ぼす加工時間tw及びTi粒度の影響を調べた結果を
示す。加工時間が150秒程度でTiCの体積率は50
%を超え、加工時間が長くなると共にTiCの体積率の
増大する傾向が見られる。またTi粒度が小さいほど短
時間にTiCの体積率が増加している。FIG. 5 shows the results of examining the effects of the processing time tw and the Ti grain size on the volume fraction of the carbide TiC in the surface layer. The processing time is about 150 seconds and the volume ratio of TiC is 50.
%, There is a tendency that the volume ratio of TiC increases as the processing time increases. Further, the smaller the Ti grain size, the more quickly the TiC volume ratio increases.
【0029】図6に、放電処理を連続的に行った場合と
断続的に行った場合の表面層中のTiCの体積率を加工
液の噴流圧力Piの大小による関係を調べた結果を示
す。TiCの体積率は連続的に行った方が断続的に行っ
た場合よりも大きく、また加工液の噴流圧力Piが小さ
い方がTiCの体積率が大きい。これは放電によって生
成された炭素を排除した方が体積率を小さくすることを
示している。FIG. 6 shows the results of examining the relationship between the volume ratio of TiC in the surface layer when the discharge treatment is continuously performed and when the discharge treatment is intermittently performed, depending on the magnitude of the jet pressure Pi of the working fluid. The volume ratio of TiC is higher when it is continuously performed than when it is intermittent, and the volume ratio of TiC is higher when the jet pressure Pi of the working fluid is smaller. This indicates that removing the carbon generated by the discharge reduces the volume ratio.
【0030】図7に、表面層厚さhに対する加工液の噴
流圧力Piの及ぼす影響を調べた結果を示す。噴流圧力
Piが大きいほど表面層厚さhが小さくなる。FIG. 7 shows the results of examining the influence of the jet pressure Pi of the working liquid on the surface layer thickness h. The larger the jet pressure Pi, the smaller the surface layer thickness h.
【0031】図8に、表面層断面の元素分布を調べた結
果を示す。表面層中で傾斜的に組成化しており、表面層
の最外面はTi成分、C成分が多く、母材を構成するA
l、Siの成分は少ない。したがって、最外面はTiCの
体積率が高いことを示している。このことは、図9に表
面層の硬度分布を示すように、最外面の硬度が高く、母
材表面に近づくに従って母材成分が増加し、硬度が低下
することを意味すると共に、表面処理された物体が使用
温度の高下によっても、表面組成と内部構造とに対し緩
衝的に作用するため、クラック等の発生を予防するよう
な表面構造を与えることができる。FIG. 8 shows the results of examining the element distribution in the surface layer cross section. The composition is graded in the surface layer, and the outermost surface of the surface layer contains a large amount of Ti and C components, and A constituting the base material
There are few components of l and Si. Therefore, the outermost surface shows that the volume ratio of TiC is high. This means that, as shown in the hardness distribution of the surface layer in FIG. 9, the hardness of the outermost surface is high, the base material component increases as it approaches the surface of the base material, and the hardness decreases. The object acts as a buffer against the surface composition and the internal structure even when the operating temperature is high or low, so that a surface structure that prevents the occurrence of cracks can be provided.
【0032】[0032]
【実施例2】本例は、実施例1の各種の実験に基づい
て、表面層として最外面の硬度が高く(TiCの濃度が高
く)、母材に接する最内面ではTiCの濃度が低くなるよ
うな分布の表面層を形成する例である。Example 2 In this example, based on various experiments of Example 1, the hardness of the outermost surface as the surface layer is high (the concentration of TiC is high), and the concentration of TiC is low on the innermost surface in contact with the base material. This is an example of forming a surface layer having such a distribution.
【0033】放電処理の初期はTiC濃度を小さくした
いので、パルス幅τpを20μs程度と狭く選び、また加
工液流も強く噴射するようにプログラムする。時間の経
過と共にパルス幅τpをτp=100μs、τp=500μ
sと大きく設定すれば、TiC濃度の異なる3つの層を表
面層として形成することができる。Since it is desired to reduce the TiC concentration in the initial stage of the electric discharge process, the pulse width τp is selected to be as narrow as about 20 μs, and the machining liquid flow is programmed to be strongly jetted. With the passage of time, the pulse width τp is τp = 100μs, τp = 500μ
If s is set to be large, three layers having different TiC concentrations can be formed as the surface layers.
【0034】その際、どの段階で各プログラムを切り替
えるかについては、表面層の厚さを直接的に測定する超
音波厚み計17を使用して監視すればよい。それ以外の
場合には、圧粉体電極が消耗を多くするべく作成されて
いることから、Z軸スケール15に対する主軸側の進度
16をそのまま加工進度とすることができないので、予
備的実験で被処理材料への付着厚さHと電極の消耗長さ
Lの比率(付着率ε)を圧粉体電極の材料毎に調べてお
き、次式から付着厚さHを用いる。すなわち、H=L−
S(ここでSは主軸の進度)であるから、H=S/(1
/ε−1)で計算される。ε=0.1程度とすれば、H−
S/9となり、主軸の進度Sで付着厚さHがわかる。At this time, at which stage each program is switched may be monitored using an ultrasonic thickness gauge 17 which directly measures the thickness of the surface layer. In other cases, since the powder compact electrode is made to consume much, the progress 16 on the spindle side with respect to the Z-axis scale 15 cannot be directly used as the machining progress. The ratio (adhesion rate ε) of the adhesion thickness H to the processing material and the electrode wear length L is investigated for each material of the powder compact electrode, and the adhesion thickness H is used from the following equation. That is, H = L-
Since S (where S is the degree of progress of the main axis), H = S / (1
/ Ε-1). If ε = 0.1, then H−
It becomes S / 9, and the adhesion thickness H can be known from the progress S of the spindle.
【0035】[0035]
【実施例3】本例は、靭性を持った表面層を形成する例
である。実験には、圧粉体電極として、実施例1と同じ
Ti:Al=36:64(wt%)の割合で混合した電極と、
Ti:Al:Nb=32:58:10(wt%)の割合で混合
した電極とを使用し、Pe:441MPa、放電電流値
(電流の最大値)Ip=20A、パルス幅τp=200μ
s、有効パルスRp=0.33%の条件で、加工液噴流圧
力Pi=9.8KPaとして放電処理を行った。その結
果、厚さが約100μmの表面層が得られた。折り曲げ
試験を行ったところ、(Ti+Al)圧粉体電極の場合に
は90゜の曲げでクラックを生じたが、(Ti+Al+N
b)圧粉体電極の場合には90゜の曲げでクラックを生じ
なかった。Example 3 This example is an example of forming a surface layer having toughness. In the experiment, as the green compact electrode, an electrode mixed with Ti: Al = 36: 64 (wt%) as in Example 1,
An electrode mixed with Ti: Al: Nb = 32: 58: 10 (wt%) was used, and Pe: 441 MPa, discharge current value.
(Maximum value of current) Ip = 20A, pulse width τp = 200μ
Under the conditions of s, effective pulse Rp = 0.33%, the discharge treatment was performed with the working liquid jet pressure Pi = 9.8 KPa. As a result, a surface layer having a thickness of about 100 μm was obtained. When a bending test was conducted, cracks occurred at 90 ° bending in the case of (Ti + Al) green compact electrode, but (Ti + Al + N
b) In the case of the powder compact electrode, no crack was generated at 90 ° bending.
【0036】[0036]
【実施例4】本例は一次処理の放電処理を行った後、二
次処理の放電加工を行う例である。実施例1に示した
(Ti+Al)圧粉体電極による一次処理で得られた表面
層に対し、被処理材の加工物形状にほぼ対応する形状を
持ち且つ比較的消耗の少ない材料からなる電極を用いて
放電処理(二次処理)を行う。[Embodiment 4] This example is an example in which the electrical discharge machining of the secondary treatment is performed after the electrical discharge treatment of the primary treatment is performed. As shown in Example 1
For the surface layer obtained by the primary treatment with the (Ti + Al) green compact electrode, an electric discharge treatment is performed using an electrode made of a material that has a shape that substantially corresponds to the shape of the workpiece to be processed and that consumes relatively little. Next process) is performed.
【0037】図10に二次処理用の装置を示す。図1に
示した一次処理用の装置に付加的に電極交換機構19、
母材移動機構20が設けられている。通常の放電加工に
より形状加工した際に用いた電極を、一次処理後に一次
処理用電極と交換して、二次処理用電極として使用す
る。加工条件は電極低消耗電気条件を使用すれば、加工
機主軸(サーボ機構6)の進度をもって加工進度として差
し支えない。FIG. 10 shows an apparatus for secondary processing. In addition to the apparatus for primary treatment shown in FIG.
A base material moving mechanism 20 is provided. The electrode used when the shape is processed by the usual electric discharge machining is replaced with the electrode for primary treatment after the primary treatment and used as the electrode for secondary treatment. If the electrode low consumption electrical condition is used as the processing condition, the progress of the processing machine spindle (servo mechanism 6) may be used as the processing progress.
【0038】皮膜層の厚さを正確に計測して二次処理に
より修正加工するには、次のような工程で行う。In order to accurately measure the thickness of the coating layer and correct it by the secondary treatment, the following steps are performed.
【0039】始めに、被処理材料の形状加工を通常の放
電加工により行った後、加工電極を交換機構に格納する
と共に測定用の工具を交換機構より取付け、被処理材料
の上面を基準として加工深さを計測し、これを記憶装置
に記憶しておく(深さD)。First, after the shape of the material to be processed is processed by ordinary electric discharge machining, the machining electrode is housed in the exchange mechanism and a measuring tool is attached from the exchange mechanism, and the upper surface of the material to be processed is used as a reference. The depth is measured and stored in a storage device (depth D).
【0040】次に一次処理を行い、二次処理の切り替え
に当たっては、まず表面層厚さHを定めたならば、先に
記憶装置に記憶した数値より表面層厚さを差し引き、主
軸の進入深さM(M=D−H)を定める。Next, when the primary processing is performed and the secondary processing is switched, first, if the surface layer thickness H is determined, the surface layer thickness is subtracted from the value previously stored in the storage device to determine the penetration depth of the spindle. Define M (M = D-H).
【0041】二次処理(修正加工)ではMだけの進入加工
を行うが、加工終了後、更に計測用の工具を自動的に切
り替えて計測を行う。厚さの許容値の範囲内に入ったな
らば、作業完了となる。これらの工程図を図11に示
す。In the secondary processing (correction processing), only M ingress processing is performed, but after the processing is completed, the measurement tool is automatically switched to perform measurement. When the thickness is within the allowable range, the work is completed. These process drawings are shown in FIG.
【0042】図12は金型表面処理に二次処理(修正加
工)を行った例である。金型はその形状精度を±0.01
mm程度に保つ必要がある場合が多い。図4からもわかる
ように、圧粉体電極を用いた一次処理で得られる表面層
の厚さは数分内の放電加工で数10μmの厚さに達す
る。そのため形状精度を±0.01mm(±10μm)に保つ
ためには二次処理を必要とする場合がある。図12中、
(1)は通常の放電加工用電極(Cu)を用いて放電加工
により金型形状を加工した状態を示し、(2)は電極を
一次処理用の圧粉体電極(Ti:Fe=50:50(wt%))
に取り替えて一次処理の放電処理により表面層を形成し
た状態を示し、(3)は再び電極を通常の放電加工用電
極に取り替えて±0.01mmの加工精度に二次処理(修正
加工)により仕上げ加工した状態を示している。FIG. 12 shows an example in which a secondary treatment (correction processing) is performed on the die surface treatment. The mold has a shape accuracy of ± 0.01
It is often necessary to keep it around mm. As can be seen from FIG. 4, the thickness of the surface layer obtained by the primary treatment using the powder compact electrode reaches several tens of μm by electric discharge machining within a few minutes. Therefore, in order to maintain the shape accuracy within ± 0.01 mm (± 10 μm), secondary processing may be required. In FIG.
(1) shows a state in which a die shape is machined by electric discharge machining using a normal electric discharge machining electrode (Cu), and (2) shows a green compact electrode for primary treatment (Ti: Fe = 50: 50 (wt%))
Shows the state in which the surface layer was formed by the electric discharge treatment of the primary treatment, and (3) shows that the electrode is again replaced with a normal electric discharge machining electrode and the secondary treatment (correction machining) is performed with a machining accuracy of ± 0.01 mm. It shows the finished state.
【0043】[0043]
【発明の効果】以上詳述したように、本発明によれば、
数10μmの厚みの成膜速度が速く、高い密着性を持
ち、必要にして充分な硬度を持ち、母材に熱影響による
寸法変化を与えず、また表面層にクラック等を生じない
表面硬化処理を行うことができる。また真空層や防塵装
置も必要とせず、本来、作業性が良く、また自動化も容
易である。金型、エンジン用部品等々の表面硬化処理と
して好適である。As described in detail above, according to the present invention,
Surface hardening treatment with fast film deposition rate of several tens of μm, high adhesion, sufficient hardness as necessary, no dimensional change due to heat effect on the base material, and no cracks in the surface layer It can be performed. In addition, it does not require a vacuum layer or a dustproof device, and is originally good in workability and easy to automate. It is suitable for surface hardening of molds, engine parts, etc.
【図1】液中放電による表面処理装置の概略を示す説明
図である。FIG. 1 is an explanatory diagram showing an outline of a surface treatment apparatus using in-liquid discharge.
【図2】図1の表面処理装置における表面層の厚さ計測
手段を説明する図である。FIG. 2 is a diagram for explaining a surface layer thickness measuring means in the surface treatment apparatus of FIG.
【図3】実施例で得られた表面層のX線回折図形であ
る。FIG. 3 is an X-ray diffraction pattern of the surface layer obtained in the example.
【図4】パルス幅τpと表面層の厚さh及び表面層中の
炭化物TiCの体積率との関係を示す図である。FIG. 4 is a diagram showing a relationship between a pulse width τp, a surface layer thickness h, and a volume ratio of a carbide TiC in the surface layer.
【図5】表面層中の炭化物TiCの体積率に及ぼす加工
時間tw及びTi粒度の影響を示す図である。FIG. 5 is a diagram showing the influence of processing time tw and Ti grain size on the volume fraction of carbide TiC in the surface layer.
【図6】放電処理を連続的に行った場合と断続的に行っ
た場合の表面層中のTiCの体積率を加工液の噴流圧力
Piの大小による関係を示す図である。FIG. 6 is a diagram showing the relationship between the volume ratio of TiC in the surface layer when the discharge treatment is continuously performed and when the discharge treatment is intermittently performed, depending on the magnitude of the jet pressure Pi of the working fluid.
【図7】表面層厚さhに対する加工液の噴流圧力Piの
及ぼす影響を示す図である。FIG. 7 is a diagram showing the influence of the jet pressure Pi of the working liquid on the surface layer thickness h.
【図8】表面層断面の元素分布を示す図である。FIG. 8 is a diagram showing an element distribution in a cross section of a surface layer.
【図9】表面層の硬度分布を示す図である。FIG. 9 is a diagram showing a hardness distribution of a surface layer.
【図10】二次処理用の装置の概略を示す説明図であ
る。FIG. 10 is an explanatory diagram showing an outline of an apparatus for secondary processing.
【図11】通じようの放電加工による形状加工、一次処
理、二次処理の工程図である。FIG. 11 is a process drawing of shape processing, primary processing, and secondary processing by electric discharge machining that is common to all.
【図12】(a)〜(c)は金型表面処理に二次処理を
適用した場合の各工程の説明図である。12 (a) to 12 (c) are explanatory views of each step when a secondary treatment is applied to the mold surface treatment.
1 圧粉体電極(一次処理用) 2 被処理材料表面 3 加工液 3´ 加工槽 4 導電性接着剤 5 金属棒 6 放電極間のサーボ機構 7 加工液 7´ 加工液循環タンク 8 加工液送給ポンプ 9 エゼクター 10 放電加工用電極 11 放電電流検出用カーレントトランス 12 放電電流電圧観測用シンクロスコープ 13 放電電気条件プログラム装置 14 加工液吐出量プログラム装置 15 Z軸スケール 16 主軸側の進度位置を示す指針 17 超音波厚み計 18 母材 19 電極交換機構 20 テーブル移動機構 1 Powder compact electrode (for primary treatment) 2 Surface of material to be treated 3 Processing liquid 3'Processing tank 4 Conductive adhesive 5 Metal rod 6 Servo mechanism between discharge electrodes 7 Processing liquid 7'Processing liquid circulation tank 8 Processing liquid feeding Feed pump 9 Ejector 10 Electrode for electric discharge machining 11 Current transformer for detecting discharge current 12 Synchroscope for observing discharge current and voltage 13 Discharge electrical condition programming device 14 Machining fluid discharge amount programming device 15 Z-axis scale 16 Indicates the progress position on the spindle side Pointer 17 Ultrasonic thickness gauge 18 Base material 19 Electrode replacement mechanism 20 Table movement mechanism
Claims (8)
上の混合粉末に結合金属を加えて所望の形状に圧縮成形
したものを放電加工用の電極とし、放電によって炭素を
分解生成する加工液中において、被処理材料であるアル
ミニウム及びその合金を他方の電極として放電加工する
ことにより、上記金属とその炭化物とを混合した表面層
を被処理材料表面に形成することを特徴とするアルミニ
ウム及びその合金の液中放電による表面処理方法。1. A machining fluid that decomposes and produces carbon by electric discharge by using an electrode for electric discharge machining, which is obtained by adding a binding metal to a powder of a metal that easily carbonizes or a mixed powder of two or more kinds, and compression-molding it into a desired shape. In, aluminum and its alloy, which is a material to be treated, is formed on the surface of the material to be treated by electric discharge machining of the other electrode to form a surface layer in which the metal and its carbide are mixed. Surface treatment method of liquid alloy by electric discharge.
a、Cr、Mo、W、Mn、Nbである請求項1に記載の方
法。2. A metal which is easily carbonized is Ti, Zr, V or T.
The method according to claim 1, wherein a, Cr, Mo, W, Mn, Nb.
%含有させる請求項2に記載の方法。3. The amount of Nb in the electric discharge machining electrode is 1 to 10 wt.
The method according to claim 2, wherein the content is%.
粉末、亜鉛粉末の1種以上を加える請求項1に記載の方
法。4. The method according to claim 1, wherein at least one of aluminum powder, tin powder and zinc powder is added as a binding metal.
である請求項1に記載の方法。5. The method according to claim 1, wherein the working liquid is a liquid containing petroleum or a carbon compound.
し、この一次処理を行った後、比較的消耗の少ない材料
からなる電極を用いて、放電加工(二次処理)を行うこと
により、一次処理で形成された表面層を再溶融させて緻
密な表面層を形成すると共に寸法精度を高めることを特
徴とするアルミニウム及びその合金の液中放電による表
面処理方法。6. The electric discharge machining according to claim 1 is used as a primary treatment, and after the primary treatment is performed, an electric discharge machining (secondary treatment) is performed by using an electrode made of a material with relatively little wear. A method for surface treatment of aluminum and its alloys by submerged discharge, which comprises remelting the surface layer formed by the primary treatment to form a dense surface layer and improving dimensional accuracy.
ァイト、タングステンである請求項6に記載の方法。7. The method according to claim 6, wherein the relatively low wear material is Cu, graphite, or tungsten.
面層の寸法を修正しつつ放電加工(二次処理)を行う請求
項6に記載の方法。8. The method according to claim 6, wherein the electrical discharge machining (secondary treatment) is performed while the dimension of the surface layer is corrected by measuring the thickness or shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23884193A JP3271836B2 (en) | 1993-08-31 | 1993-08-31 | Surface treatment method for aluminum and its alloys by submerged discharge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23884193A JP3271836B2 (en) | 1993-08-31 | 1993-08-31 | Surface treatment method for aluminum and its alloys by submerged discharge |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0770761A true JPH0770761A (en) | 1995-03-14 |
JP3271836B2 JP3271836B2 (en) | 2002-04-08 |
Family
ID=17036073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23884193A Expired - Fee Related JP3271836B2 (en) | 1993-08-31 | 1993-08-31 | Surface treatment method for aluminum and its alloys by submerged discharge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3271836B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001023640A1 (en) * | 1999-09-30 | 2001-04-05 | Mitsubishi Denki Kabushiki Kaisha | Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method |
WO2001036709A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment |
WO2001036710A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment |
WO2001055481A1 (en) * | 2000-01-24 | 2001-08-02 | Mitsubishi Denki Kabushiki Kaisha | Power supply for discharge surface treatment and discharge surface treatment method |
WO2004011696A1 (en) | 2002-07-30 | 2004-02-05 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
US6793982B1 (en) * | 1998-05-13 | 2004-09-21 | Mitsubishi Denki Kabushiki Kaisha | Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment |
WO2004108988A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
WO2004108990A1 (en) | 2003-06-05 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method |
JP2006016672A (en) * | 2004-07-02 | 2006-01-19 | Mitsubishi Electric Corp | Discharge surface treatment method and die subjected to surface treatment |
JPWO2004106586A1 (en) * | 2003-05-29 | 2006-07-20 | 三菱電機株式会社 | Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus |
WO2007148716A1 (en) * | 2006-06-21 | 2007-12-27 | Bosch Corporation | Surface treating method by electric discharge, and dressing method |
EP1930623A1 (en) * | 2005-09-30 | 2008-06-11 | HONDA MOTOR CO., Ltd. | Belt-type continuously variable transmission and method for operating the same |
DE112006002588T5 (en) | 2005-09-30 | 2008-08-21 | Mitsubishi Electric Corp. | Electrode for a discharge surface treatment, discharge surface treatment method and film |
US7641945B2 (en) | 2003-06-11 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
DE19882983B4 (en) * | 1998-03-11 | 2011-05-12 | Mitsubishi Denki K.K. | Green compact electrode for spark discharge coating and method for its production |
US9347137B2 (en) | 2006-09-11 | 2016-05-24 | Ihi Corporation | Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment |
-
1993
- 1993-08-31 JP JP23884193A patent/JP3271836B2/en not_active Expired - Fee Related
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19882983B4 (en) * | 1998-03-11 | 2011-05-12 | Mitsubishi Denki K.K. | Green compact electrode for spark discharge coating and method for its production |
US6793982B1 (en) * | 1998-05-13 | 2004-09-21 | Mitsubishi Denki Kabushiki Kaisha | Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment |
WO2001023640A1 (en) * | 1999-09-30 | 2001-04-05 | Mitsubishi Denki Kabushiki Kaisha | Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method |
CN1322165C (en) * | 1999-09-30 | 2007-06-20 | 三菱电机株式会社 | Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method |
WO2001036709A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment |
WO2001036710A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Denki Kabushiki Kaisha | Method and device for electric discharge surface treatment |
WO2001055481A1 (en) * | 2000-01-24 | 2001-08-02 | Mitsubishi Denki Kabushiki Kaisha | Power supply for discharge surface treatment and discharge surface treatment method |
US7537808B2 (en) | 2002-07-30 | 2009-05-26 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
EP1526191A1 (en) * | 2002-07-30 | 2005-04-27 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
EP1526191A4 (en) * | 2002-07-30 | 2008-11-05 | Mitsubishi Electric Corp | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
WO2004011696A1 (en) | 2002-07-30 | 2004-02-05 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus |
US8377339B2 (en) | 2002-07-30 | 2013-02-19 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment |
JP4554516B2 (en) * | 2003-05-29 | 2010-09-29 | 三菱電機株式会社 | Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus |
JPWO2004106586A1 (en) * | 2003-05-29 | 2006-07-20 | 三菱電機株式会社 | Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus |
US7834291B2 (en) | 2003-05-29 | 2010-11-16 | Mitsubishi Denki Kabushiki Kaisha | Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment |
JPWO2004108988A1 (en) * | 2003-06-04 | 2006-07-20 | 三菱電機株式会社 | Discharge surface treatment method and discharge surface treatment apparatus |
JP4523546B2 (en) * | 2003-06-04 | 2010-08-11 | 三菱電機株式会社 | Discharge surface treatment method and discharge surface treatment apparatus |
US7892410B2 (en) | 2003-06-04 | 2011-02-22 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
WO2004108988A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
KR100753275B1 (en) * | 2003-06-05 | 2007-08-29 | 미쓰비시덴키 가부시키가이샤 | Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method |
US7910176B2 (en) | 2003-06-05 | 2011-03-22 | Mitsubishi Denki Kabushiki Kaisha | Electrode for discharge surface treatment, manufacturing method and evaluation method for electrode for discharge surface treatment, discharge surface treatment apparatus, and discharge surface treatment method |
JPWO2004108990A1 (en) * | 2003-06-05 | 2006-07-20 | 三菱電機株式会社 | Discharge surface treatment electrode, discharge surface treatment electrode manufacturing method and evaluation method, discharge surface treatment apparatus, and discharge surface treatment method |
WO2004108990A1 (en) | 2003-06-05 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method |
JP4563318B2 (en) * | 2003-06-05 | 2010-10-13 | 三菱電機株式会社 | Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method |
US8658005B2 (en) | 2003-06-11 | 2014-02-25 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
US7641945B2 (en) | 2003-06-11 | 2010-01-05 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method |
US7691454B2 (en) | 2003-06-11 | 2010-04-06 | Mitsubishi Denki Kabushiki Kaisha | Electrical-discharge surface-treatment method using a metallic powder or metallic powder compound in combination with other elements as electrode |
JP2006016672A (en) * | 2004-07-02 | 2006-01-19 | Mitsubishi Electric Corp | Discharge surface treatment method and die subjected to surface treatment |
JP4534633B2 (en) * | 2004-07-02 | 2010-09-01 | 三菱電機株式会社 | Discharge surface treatment method and surface-treated mold |
EP1930623A4 (en) * | 2005-09-30 | 2008-10-08 | Honda Motor Co Ltd | Belt-type continuously variable transmission and method for operating the same |
DE112006002588T5 (en) | 2005-09-30 | 2008-08-21 | Mitsubishi Electric Corp. | Electrode for a discharge surface treatment, discharge surface treatment method and film |
US7951032B2 (en) | 2005-09-30 | 2011-05-31 | Honda Motor Co., Ltd. | Belt type non-stage transmission and operating method thereof |
EP1930623A1 (en) * | 2005-09-30 | 2008-06-11 | HONDA MOTOR CO., Ltd. | Belt-type continuously variable transmission and method for operating the same |
JP4801155B2 (en) * | 2006-06-21 | 2011-10-26 | ボッシュ株式会社 | Surface treatment method by electric discharge and dressing method |
WO2007148716A1 (en) * | 2006-06-21 | 2007-12-27 | Bosch Corporation | Surface treating method by electric discharge, and dressing method |
US9347137B2 (en) | 2006-09-11 | 2016-05-24 | Ihi Corporation | Method of manufacturing electrode for electrical-discharge surface treatment, and electrode for electrical-discharge surface treatment |
Also Published As
Publication number | Publication date |
---|---|
JP3271836B2 (en) | 2002-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3271836B2 (en) | Surface treatment method for aluminum and its alloys by submerged discharge | |
Bleys et al. | Surface and sub‐surface quality of steel after EDM | |
Yan et al. | The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium | |
US7723636B2 (en) | Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component | |
JP3271844B2 (en) | Surface treatment method for metallic materials by submerged discharge | |
US7537808B2 (en) | Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus | |
Nguyen et al. | Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining | |
Molinetti et al. | Surface modification of AISI H13 tool steel with silicon or manganese powders mixed to the dielectric in electrical discharge machining process | |
JP3376174B2 (en) | Surface treatment method and apparatus by electric discharge machining | |
Aspinwall et al. | Electrical discharge surface alloying of Ti and Fe workpiece materials using refractory powder compact electrodes and Cu wire | |
US5434380A (en) | Surface layer forming apparatus using electric discharge machining | |
Luzia et al. | Recast layer mechanical properties of tool steel after electrical discharge machining with silicon powder in the dielectric | |
Gill et al. | Investigation of micro-hardness in electrical discharge alloying of En31 tool steel with Cu–W powder metallurgy electrode | |
Chigilipalli et al. | Investigation of the corrosion behavior of wire arc additively manufactured alloy 825 | |
Sundriyal et al. | Study on the influence of metallic powder in near-dry electric discharge machining | |
Mukanov et al. | Surface modification of titanium VT6 alloy obtained by additive technologies using reactive electrospark treatment | |
Ranjith et al. | Influence of titanium-coated (B 4 C+ SiC) particles on electric discharge machining OF AA7050 hybrid composites | |
Wang et al. | Electrochemical dissolution behavior of S-04 high-strength stainless steel in NaNO 3 aqueous solution | |
Kushwaha et al. | Assessment of surface integrity during electrical discharge machining of titanium grade 5 Alloys (Ti-6Al-4V) | |
Manjhi et al. | Effect of CMT-WAAM process parameters on bead geometry, microstructure and mechanical properties of AZ31 Mg alloy | |
RU2418074C1 (en) | Procedure for strengthening items out of metal materials for production of nano structured surface layers | |
Rahang et al. | Application of masking technique in EDM for generation of rectangular shaped pattern | |
Kalra et al. | Experimental study on developed electrochemical micro machining of hybrid MMC | |
Ananthi et al. | Effect of WC–Cu composite electrodes on material deposition rate, microhardness and microstructure of electrical discharge coated magnesium alloy | |
Naik et al. | Analysis on surface integrity and sustainability assessment in electrical discharge machining of engineered Al-22% SiC metal matrix composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |