JPH0770650A - Production of cold rolled steel sheet extremely excellent in deep drawability - Google Patents
Production of cold rolled steel sheet extremely excellent in deep drawabilityInfo
- Publication number
- JPH0770650A JPH0770650A JP21866193A JP21866193A JPH0770650A JP H0770650 A JPH0770650 A JP H0770650A JP 21866193 A JP21866193 A JP 21866193A JP 21866193 A JP21866193 A JP 21866193A JP H0770650 A JPH0770650 A JP H0770650A
- Authority
- JP
- Japan
- Prior art keywords
- less
- rolling
- cooling
- deep drawability
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、自動車用鋼板等の使
途に有用な深絞り性に優れる冷延鋼板の製造に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of cold-rolled steel sheets having excellent deep drawability, which are useful for applications such as automobile steel sheets.
【0002】[0002]
【従来の技術】自動車のパネル等に使用される冷延鋼板
には、プレス加工が施されるため深絞り性の優れること
が要求される。優れた深絞り性を得るには、鋼板の機械
的特性として高いr値(ランクフォード値)や伸び(E
l) をそなえることが必要である。2. Description of the Related Art Cold-rolled steel sheets used for automobile panels and the like are required to have excellent deep drawability because they are pressed. In order to obtain excellent deep drawability, high r value (Rankford value) and elongation (E
l) is required.
【0003】このため連続焼鈍に代表される短時間での
加熱、冷却からなる焼鈍プロセスによって優れた深絞り
性を有する極低炭素IF(Interstitial Free) 鋼が開発さ
れ、広く用いられるようになった。一方、昨今の製鋼脱
ガス技術の進歩とそれに伴う脱ガス装置の普及により、
鋼中のC,N量が20ppm 以下といった鋼が効率的にかつ
大量に製造されるようになってきた。Therefore, an ultra-low carbon IF (Interstitial Free) steel having excellent deep drawability has been developed by an annealing process consisting of heating and cooling in a short time typified by continuous annealing and has been widely used. . On the other hand, due to the recent advances in steelmaking degassing technology and the widespread use of degassing equipment,
Steel with a C and N content of 20 ppm or less has been manufactured efficiently and in large quantities.
【0004】このような極低炭素鋼では、伸びの向上は
図れるものの、熱延板時に結晶粒の粗大化が起こりやす
く、このため冷間圧延、焼鈍後の製品の深絞り性が低下
してしまう。すなわち、さらなる深絞り性に優れた冷延
鋼板を製造すべく、深絞り性向上に有効であることが知
られているC量の低減を行う場合に、鋼中のC量を極端
に下げると、熱間圧延後の熱延板に粗大な結晶粒が生成
し、この粗大な結晶粒が冷間圧延鋼板の深絞り性をかえ
って低下されることになるため、深絞り性の向上が図れ
なかったのである。したがって、これまで以上の高いr
値を得るためには、熱延板の結晶粒径の微細化を図る技
術が重要である。In such an ultra-low carbon steel, although the elongation can be improved, the crystal grains are likely to be coarsened during hot rolling, which deteriorates the deep drawability of the product after cold rolling and annealing. I will end up. That is, when the amount of C, which is known to be effective in improving the deep drawability, is reduced in order to produce a cold-rolled steel sheet having further excellent deep drawability, if the amount of C in the steel is extremely lowered, , Coarse crystal grains are generated in the hot rolled sheet after hot rolling, and the coarse crystal grains are reduced rather than the deep drawability of the cold rolled steel sheet, so that the deep drawability cannot be improved. It was. Therefore, higher r than ever before
In order to obtain the value, a technique for reducing the crystal grain size of the hot rolled sheet is important.
【0005】深絞り性の良好な鋼板を、C量が0.005 wt
%以下の鋼から製造する方法は既に知られている。例え
ば特開昭61-276930 号公報には、成分を調整した極低炭
素Ti−Nb系の鋼に熱延仕上温度、冷却速度及び冷却域、
巻取温度、冷延圧下率、所定のヒートサイクルの連続焼
鈍といった条件を組み合わせて、伸びと深絞り性との良
好な冷延鋼板を製造する方法が開示されている。この方
法は、熱間圧延直後に急冷を開始することによってγ粒
の成長を抑制しつつα変態をさせ、熱延板の組織の微細
化を図り、ひいては深絞り性に優れた冷延鋼板を製造す
るものであり、特徴となる点は熱間圧延後の平均冷却速
度にあると言える。しかしながら、この方法では、平均
冷却速度10℃/s以上で熱延材を冷却するといっても、具
体的な数値の記載は実施例の30℃/sのみに止まり、この
ため得られる熱延板のα粒径にも限度があり、さほど高
い深絞り性を有する冷延鋼板が製造されていなかった。A steel sheet having a good deep drawability has a C content of 0.005 wt.
A method for producing steel from less than 1% is already known. For example, in Japanese Patent Laid-Open No. 61-276930, ultra low carbon Ti-Nb-based steel with adjusted components is used for hot rolling finishing temperature, cooling rate and cooling range,
A method for producing a cold-rolled steel sheet having excellent elongation and deep drawability by combining conditions such as a coiling temperature, a cold rolling reduction rate, and continuous annealing in a predetermined heat cycle is disclosed. This method, the α transformation while suppressing the growth of γ grains by starting the quenching immediately after hot rolling, aims at the refinement of the structure of the hot rolled sheet, and by extension, a cold rolled steel sheet excellent in deep drawability. It is manufactured, and it can be said that the characteristic point is the average cooling rate after hot rolling. However, in this method, even if it is said that the hot rolled material is cooled at an average cooling rate of 10 ° C / s or more, the description of specific numerical values is limited to 30 ° C / s in Examples, and thus the hot rolled sheet obtained There is also a limit to the α grain size, and a cold rolled steel sheet having a very high deep drawability has not been manufactured.
【0006】上掲特開昭61-276930 号公報で残された課
題、すわなち深絞り性の向上を図った方法として、特開
平1-177322号公報ではC:15ppm 以下の極低炭素鋼を熱
間圧延後、急冷することにより、深絞り性の優れた冷延
鋼板を得ることが開示されている。この方法は、熱延後
の冷却速度を110 〜400 ℃/sに高めることで、γ粒の成
長、回復をより抑制し細粒のα粒を生成させることを特
徴としている。しかしながら、C量を15ppm 以下に低減
してさらにSi, Mn, P及びSの量もかなり低減している
ため、γ粒の成長、回復はかなり速く、熱延後の急冷だ
けではr値として2.48が最高であり、やはり深絞り性の
向上には限界があった。As a method for improving the deep drawing property, that is, the problem left over in Japanese Patent Laid-Open No. 61-276930, Japanese Laid-Open Patent Application No. 1-177322 discloses an ultra-low carbon steel having C: 15 ppm or less. It is disclosed that a cold-rolled steel sheet having excellent deep drawability is obtained by hot-rolling and rapidly cooling. This method is characterized in that by increasing the cooling rate after hot rolling to 110 to 400 ° C./s, the growth and recovery of γ grains are further suppressed and fine α grains are generated. However, since the amount of C was reduced to 15 ppm or less and the amounts of Si, Mn, P and S were also considerably reduced, the growth and recovery of γ grains were fairly fast, and the rapid cooling after hot rolling alone resulted in an r value of 2.48. Was the highest, and there was still a limit to improving the deep drawability.
【0007】[0007]
【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、鋼成分及び製造条件を規制
することにより、従来よりも格段に優れた深絞り性を有
する冷延鋼板を製造できる方法を提案することを目的と
する。SUMMARY OF THE INVENTION The present invention advantageously solves the above problems, and by controlling the steel composition and manufacturing conditions, a cold-rolled steel sheet having deep drawability far superior to conventional ones. It is an object of the present invention to propose a method capable of manufacturing.
【0008】[0008]
【課題を解決するための手段】発明者らは、深絞り性を
向上させるべく鋭意研究を重ねた結果、以下のように鋼
成分及び製造条件を限定することにより、優れた深絞り
性を有する冷延鋼板が製造可能となることを見出した。As a result of intensive studies to improve the deep drawability, the inventors of the present invention have excellent deep drawability by limiting the steel composition and manufacturing conditions as follows. It has been found that a cold rolled steel sheet can be manufactured.
【0009】上記知見に立脚するこの発明の要旨は次の
とおりである。 (1) C:0.0015wt%以下、Si:0.1 wt%以下、Mn:0.5
wt%以下、Al:0.1 wt%以下、P:0.05wt%以下、S:
0.01wt%以下及びN:0.003 wt%以下を含み、かつTi:
0.1 wt%以下及びNb:0.05wt%以下のうちの少なくとも
1種を含有し、残部はFe及び不可避的不純物よりなる鋼
を素材として、この鋼素材に熱間圧延を施す際、仕上圧
延での出側3パスにおける累積圧下率を50%以上として
Ar3 変態点以上で仕上圧延を終了し、この仕上圧延終了
から0.5 秒以内に冷却を開始して冷却開始温度から(Ar
3 変態点−60℃)までの温度域を50〜400 ℃/sの冷却速
度で冷却した後、800 〜550 ℃の範囲の温度で巻取り、
その後、冷間圧延、次いで連続焼鈍を行うことを特徴と
する極めて深絞り性に優れる冷延鋼板の製造方法(第1
発明)。The gist of the present invention based on the above knowledge is as follows. (1) C: 0.0015 wt% or less, Si: 0.1 wt% or less, Mn: 0.5
wt% or less, Al: 0.1 wt% or less, P: 0.05 wt% or less, S:
0.01 wt% or less and N: 0.003 wt% or less, and Ti:
Steel containing at least one of 0.1 wt% or less and Nb: 0.05 wt% or less, and the balance being Fe and inevitable impurities is used as a material, and when this steel material is hot-rolled, it is The cumulative rolling reduction in the 3 passes on the delivery side is 50% or more
Finish rolling is completed at the Ar 3 transformation point or higher, and cooling is started within 0.5 seconds after the finish rolling is completed.
3 transformation point -60 ℃) at a cooling rate of 50 ~ 400 ℃ / s, and then wound at a temperature in the range of 800 ~ 550 ℃,
After that, cold rolling and then continuous annealing are performed, which is a method for producing a cold rolled steel sheet having excellent deep drawability (first
invention).
【0010】(2) C:0.0015wt%以下、Si:0.1 wt%以
下、Mn:0.5 wt%以下、B:0.0001〜0.0030wt%、Al:
0.1 wt%以下、P:0.05wt%以下、S:0.01wt%以下及
びN:0.003 wt%以下を含み、かつTi:0.1 wt%以下及
びNb:0.05wt%以下のうちの少なくとも1種を含有し、
残部はFe及び不可避的不純物よりなる鋼を素材として、
この鋼素材に熱間圧延を施す際、仕上圧延での出側3パ
スにおける累積圧下率を50%以上としてAr3 変態点以上
で仕上圧延を終了し、この仕上圧延終了から0.5秒以内
に冷却を開始して冷却開始温度から(Ar3 変態点−60
℃)までの温度域を50〜400 ℃/sの冷却速度で冷却した
後、800 〜550 ℃の範囲の温度で巻取り、その後、冷間
圧延、次いで連続焼鈍を行うことを特徴とする極めて深
絞り性に優れる冷延鋼板の製造方法(第2発明)。(2) C: 0.0015 wt% or less, Si: 0.1 wt% or less, Mn: 0.5 wt% or less, B: 0.0001 to 0.0030 wt%, Al:
0.1 wt% or less, P: 0.05 wt% or less, S: 0.01 wt% or less and N: 0.003 wt% or less, and at least one of Ti: 0.1 wt% or less and Nb: 0.05 wt% or less Then
The balance is made of steel consisting of Fe and unavoidable impurities,
When hot rolling this steel material, finish rolling at the Ar 3 transformation point or higher with a cumulative rolling reduction of 50% or more in the exit 3 passes in finish rolling, and cool within 0.5 seconds after the finish rolling. From the cooling start temperature (Ar 3 transformation point −60
(C) is cooled at a cooling rate of 50 to 400 ° C / s, then wound at a temperature in the range of 800 to 550 ° C, then cold rolled and then continuously annealed. A method for producing a cold rolled steel sheet having excellent deep drawability (second invention).
【0011】以下、この発明を開発する基礎となった研
究結果を述べる。C:0.0008wt%、Si:0.008 wt%、M
n:0.1 wt%、P:0.012 wt%、S:0.001 wt%、Al:
0.05wt%、N:0.0018wt%、Ti:0.01wt%、Nb:0.003
wt%、B:0.0005wt%の組成になる鋼スラブを1150℃で
加熱−均熱後、熱延仕上温度920 ℃で熱間圧延を終了
し、圧延終了から0.3 秒後直ちに860 ℃まで冷却を施し
た。引続き得られた熱延板を750 ℃で巻取り、次いで圧
下率80%の冷間圧延を施した後、860 ℃,20sの再結晶
焼鈍を行った。The results of the research on which the present invention is based will be described below. C: 0.0008 wt%, Si: 0.008 wt%, M
n: 0.1 wt%, P: 0.012 wt%, S: 0.001 wt%, Al:
0.05wt%, N: 0.0018wt%, Ti: 0.01wt%, Nb: 0.003
A steel slab having a composition of wt% and B: 0.0005 wt% is heated and soaked at 1150 ° C, then hot rolling is completed at a hot rolling finishing temperature of 920 ° C, and 0.3 seconds after the completion of rolling, immediately cooling to 860 ° C is completed. gave. Subsequently, the hot rolled sheet thus obtained was wound at 750 ° C., cold rolled at a rolling reduction of 80%, and then recrystallized at 860 ° C. for 20 seconds.
【0012】冷延−焼鈍後のr値に及ぼす仕上圧延での
出側3パス累積圧下率及び熱延後の冷却速度の影響を図
1に示す。図1から、冷延−焼鈍後のr値は仕上圧延時
の最終圧下率及び熱延後の冷却速度に依存し、仕上圧下
率特に出側3パスでの累積圧下率を50%以上、好ましく
は60%以上としかつ熱延後の冷却速度を高めることによ
り、熱延板結晶粒径の微細化が図られ高r値が得られる
ことが分かった。FIG. 1 shows the effects of the exit side three-pass cumulative rolling reduction in finish rolling and the cooling rate after hot rolling on the r value after cold rolling and annealing. From FIG. 1, the r value after cold rolling-annealing depends on the final reduction rate during finish rolling and the cooling rate after hot rolling, and the finish reduction rate is 50% or more, preferably the cumulative reduction rate in the three passes on the outlet side, preferably. It was found that the crystal grain size of the hot-rolled sheet was made finer and a high r value was obtained by increasing the cooling rate after hot rolling to 60% or more.
【0013】[0013]
【作用】発明者らは、以上の実験結果をもとに研究を重
ねた結果、以下のように発明範囲を限定した。 (1) 鋼素材の成分について C:0.0015wt%以下、Si:0.1 wt%以下、Mn:0.5 wt%
以下、Al:0.1 wt%以下、P:0.05wt%以下、S:0.01
wt%以下及びN:0.003 wt%以下を含み、かつTi:0.1
wt%以下及びNb:0.05wt%以下のうちの少なくとも1種
を含有し、さらに必要に応じてB:0.0001〜0.0030wt%
を含有して残部はFe及び不可避的不純物よりなる鋼。以
下、各々の成分について限定理由を示す。As a result of repeated studies based on the above experimental results, the inventors have limited the scope of the invention as follows. (1) Steel material composition C: 0.0015 wt% or less, Si: 0.1 wt% or less, Mn: 0.5 wt%
Below, Al: 0.1 wt% or less, P: 0.05 wt% or less, S: 0.01
wt% or less and N: 0.003 wt% or less and Ti: 0.1
At least one of wt% or less and Nb: 0.05 wt% or less is further contained, and if necessary, B: 0.0001 to 0.0030 wt%
A steel that contains Fe and the unavoidable impurities as the balance. The reasons for limitation of each component are shown below.
【0014】(a) C:0.0015wt%以下 Cは少なければ少ないほど深絞り性及び延性が向上する
ので好ましく、またCが低いほうがこれを固定するため
のTiやNbの添加量が少なくて済み、生成する炭化物量も
少ないため、極めて優れた深絞り性が得られる。C含有
量の上限は、近年の精錬技術で達成できる極低炭素鋼に
おいて許容できる範囲として0.0015wt%とした。(A) C: 0.0015 wt% or less The smaller the content of C, the better the deep drawability and the ductility, and the lower the content of C, the smaller the amount of Ti and Nb added for fixing the same. Since the amount of carbides generated is small, extremely excellent deep drawability can be obtained. The upper limit of the C content is 0.0015 wt% as an allowable range in the ultra-low carbon steel that can be achieved by the recent refining technology.
【0015】(b) Si:0.1 wt%以下 Siは、鋼を硬化させる作用があり、深絞り性及び表面性
状に悪影響を与えるので0.1 wt%以下に限定した。 (c) Mn:0.5 wt%以下 Mnも鋼を硬化させる作用があり、深絞り性に悪影響を与
えるので0.5 wt%以下に限定した。 (d) P:0.05wt%以下 Pも鋼を硬化する作用があり、深絞り性、ぜい性に悪影
響を与えるので0.05wt%と限定した。(B) Si: 0.1 wt% or less Since Si has the effect of hardening the steel and adversely affects the deep drawability and surface properties, it is limited to 0.1 wt% or less. (c) Mn: 0.5 wt% or less Mn also has the effect of hardening the steel and adversely affects the deep drawability, so it was limited to 0.5 wt% or less. (d) P: 0.05 wt% or less P also acts to harden the steel and adversely affects deep drawability and brittleness, so it was limited to 0.05 wt%.
【0016】(e) S:0.01wt%以下 SはMnと結合してMnS を形成し析出する。MnS が多量に
析出すると鋼を硬化させ、プレス成形性を低下させる。
したがって、S量が少なければ少ないほど深絞り性が向
上するので、0.01wt%以下に限定した。なおより一層の
深絞り性向上のためには、0.005 wt%以下とすることが
好ましい。(E) S: 0.01 wt% or less S combines with Mn to form MnS and precipitates. If a large amount of MnS precipitates, it hardens the steel and reduces press formability.
Therefore, the smaller the S content, the better the deep drawability, so the content was limited to 0.01 wt% or less. In order to further improve the deep drawability, it is preferably 0.005 wt% or less.
【0017】(f) Al:0.1 wt%以下 Alは溶鋼を脱酸してTiやMbの歩留まりを向上させるため
に添加する。しかしAlを過剰に添加すると鋼板のプレス
成形性を損なうので0.1wt %以下に限定した。(F) Al: 0.1 wt% or less Al is added in order to deoxidize molten steel and improve the yield of Ti and Mb. However, excessive addition of Al impairs the press formability of the steel sheet, so it was limited to 0.1 wt% or less.
【0018】(g) N:0.003 wt%以下 Nは少なければ少ないほど深絞り性が向上し、またNが
低いとTiやNbの添加量が少なくて済み、また生成する窒
化物も少なく、優れた深絞り性が得られるので0.003 wt
%以下と限定した。なおより一層の深絞り性向上のため
には、0.002 wt%以下とすることが好ましい。(G) N: 0.003 wt% or less The smaller the amount of N, the better the deep drawability, and the lower the amount of N, the smaller the amount of Ti and Nb added, and the less the nitrides produced. 0.003 wt
Limited to less than or equal to%. In order to further improve the deep drawability, it is preferably 0.002 wt% or less.
【0019】(h) Ti:0.1 wt%以下 Tiは、鋼中の固溶Cや固溶Nを炭, 窒化物として析出固
定させて低減し、良好なプレス成形性を得るために有用
な成分である。そのためこの発明では、Tiを単独で又は
Nbと共に添加する。このTiの添加量は0.1 wt%で十分で
あり、0.1 wt%を超えて添加してもそれ以上の効果は得
られず、逆に延性の劣化につながるので0.1 wt%以下に
限定した。下限については、固溶C、固溶Nを十分析出
固定するため、0.005 wt%程度以上が好ましい。(H) Ti: 0.1 wt% or less Ti is a component useful for obtaining a good press formability by precipitating and fixing solute C and solute N in steel as carbon and nitride to reduce them. Is. Therefore, in the present invention, Ti alone or
Add with Nb. The amount of Ti added should be 0.1 wt%, and even if added in excess of 0.1 wt%, no further effect can be obtained, and conversely it leads to deterioration of ductility, so it was limited to 0.1 wt% or less. The lower limit is preferably about 0.005 wt% or more so that solid solution C and solid solution N are sufficiently precipitated and fixed.
【0020】(i) Nb:0.05wt%以下 Nbは鋼中の固溶Cを炭化物として析出固定させて低減
し、良好なプレス成形性を得るために有用な成分であ
り、そのためこの発明では、Nbを単独で又はTiとともに
添加する。Nbの添加量は0.05wt%で十分であり、0.05wt
%を超えて添加してもそれ以上の効果は得られず、逆に
延性の劣化につながるので0.05wt%以下と限定した。下
限については、固溶Cを十分析出固定するため0.003 wt
%程度以上が好ましい。(I) Nb: 0.05 wt% or less Nb is a component useful for obtaining a good press formability by precipitating and fixing solid solution C in the steel as a carbide to reduce it. Therefore, in the present invention, Add Nb alone or with Ti. The amount of Nb added is sufficient to be 0.05 wt%.
%, No further effect can be obtained and, conversely, it leads to deterioration of ductility, so it was limited to 0.05 wt% or less. The lower limit is 0.003 wt in order to precipitate and fix solid solution C sufficiently.
% Or more is preferable.
【0021】(j) B:0.0001〜0.003wt % Bは、第2発明において耐二次加工ぜい性の改善のため
に添加される。その添加量が0.0001wt%未満では効果が
なく、一方0.003wt %を超えて添加してもそれ以上の効
果は得られず逆に深絞り性が劣化するため0.0001〜0.00
3wt %と限定した。(J) B: 0.0001 to 0.003 wt% B is added in the second invention for improving the secondary processing brittleness resistance. If the added amount is less than 0.0001 wt%, there is no effect, while if added over 0.003 wt%, no further effect is obtained and conversely the deep drawability deteriorates.
Limited to 3wt%.
【0022】(2) 鋼素材に施す製造工程について 熱間圧延を施す際、仕上圧延での出側3パスにおける累
積圧下率を50%以上としてAr3 変態点以上で仕上圧延を
終了し、この仕上圧延終了から0.5 秒以内に冷却を開始
して冷却開始温度から(Ar3 変態点−60℃)までの温度
域を50〜400 ℃/sの冷却速度で冷却した後、800 〜550
℃の範囲の温度で巻取り、その後、冷間圧延、次いで連
続焼鈍を行う。以下、各々の製造工程の限定理由につい
て説明する。(2) Manufacturing process applied to steel material When hot rolling is performed, finishing rolling is completed at an Ar 3 transformation point or higher with a cumulative reduction of 50% or more in 3 passes on the exit side in finishing rolling. Cooling is started within 0.5 seconds after finishing rolling, and the temperature range from the cooling start temperature to (Ar 3 transformation point −60 ° C) is cooled at a cooling rate of 50 to 400 ° C / s, and then 800 to 550.
Winding is carried out at a temperature in the range of ° C, followed by cold rolling and then continuous annealing. The reasons for limiting each manufacturing process will be described below.
【0023】(i) 熱延工程 熱延工程は、この発明において最も重要であり、粗圧延
終了後の仕上圧延における最終3パスにて累積圧下率が
50%以上になる圧延加工を施し、Ar3 変態点以上で熱間
圧延を終了し、この熱延終了から0.5 秒以内に、冷却開
始温度から(Ar3変態点−60℃) までの温度域を50〜400
℃/sの冷却速度で冷却することが必要である。(I) Hot Rolling Step The hot rolling step is the most important in the present invention, and the cumulative rolling reduction is achieved in the final three passes in the finish rolling after the rough rolling.
Rolling is performed to 50% or more, hot rolling is completed at the Ar 3 transformation point or higher, and within 0.5 seconds after the hot rolling is completed, the temperature range from the cooling start temperature to (Ar 3 transformation point −60 ° C.) 50 to 400
It is necessary to cool at a cooling rate of ° C / s.
【0024】鋼スラブの加熱から粗圧延、仕上圧延、冷
却、コイル巻取りに至る熱延鋼板の製造プロセスにおけ
る鋼スラブの冶金的組織変化は、スラブ加熱時の粗大オ
ーステナイト(γ)粒が粗圧延、仕上圧延中に変形−再
結晶を繰り返して細粒化され、その後の冷却過程で細粒
γからフェライト(α)粒を主体とする組織に変態する
というものである。この再結晶γ粒からのγ→α変態
は、γ粒界へのα核生成に始まり、そのα核の成長によ
り進行し、それぞれのα粒がぶつかり合って終了する。
したがって、変態前のγ粒が小さいほどα核の生成場所
が多くなるため、ぶつかり合うまでの距離が短くなって
α粒が細かくなる。従来は、このような再結晶によって
γ粒の微細化を図り、ひいてはα粒の微細化による深絞
り性の向上を目指していた。The metallurgical change of the steel slab in the manufacturing process of the hot rolled steel sheet from heating of the steel slab to rough rolling, finish rolling, cooling and coil winding is caused by the rough rolling of coarse austenite (γ) grains during the heating of the slab. During the finish rolling, deformation-recrystallization is repeated to form fine grains, and in the subsequent cooling process, the fine grains γ are transformed into a structure mainly composed of ferrite (α) grains. The γ → α transformation from the recrystallized γ grains begins with the formation of α nuclei at the γ grain boundaries, proceeds with the growth of the α nuclei, and ends when the α grains collide with each other.
Therefore, the smaller the γ grains before transformation are, the more the α nuclei are generated, so that the distance until they hit each other becomes shorter and the α grains become finer. Heretofore, such a recrystallization has been aimed at miniaturization of γ grains, and further aimed at improvement of deep drawability by miniaturization of α grains.
【0025】ところで、γ→α変態前の状態である仕上
圧延の後段では、圧延温度が低いために圧延直後はγ粒
の再結晶が起こり難く、加工されたままの状態となる。
このような加工γ粒は、再結晶粒より伸びた粒のため単
位面積当たりの粒界面積が大きい。しかも粒内には変形
帯と呼ばれる加工組織が形成されてα核生成の場所とな
る。したがって、加工γ粒は、上述した単なる再結晶γ
粒より格段にα核生成場所が多いため、この加工γ粒か
ら変態したα粒は、再結晶γ粒からのα粒よりも細かく
なる。By the way, in the latter stage of the finish rolling which is the state before the γ → α transformation, the recrystallization of the γ grains is difficult to occur immediately after the rolling because the rolling temperature is low, and the state remains the processed state.
Such processed γ-grains have a larger grain boundary area per unit area because they are grains that are longer than recrystallized grains. In addition, a processed structure called a deformation zone is formed in the grain and becomes a place for α nucleation. Therefore, the processed γ grains are simply recrystallized γ described above.
Since there are significantly more α-nucleation sites than the grains, the α-grains transformed from the processed γ-grains are finer than the α-grains from the recrystallized γ-grains.
【0026】この発明のポイントは、上記した加工状態
にあるγ粒を多量に蓄積させ、この加工γ粒からの変態
を利用してα粒の細粒化を図る点にある。すなわち、通
常のプロセスでは、圧延温度が高いため加工が容易でか
つ再結晶が直ちに生ずる仕上圧延前段での圧下率が高い
一方で、仕上圧延の後段では、形状補正や板厚の微量調
整を施すものであって圧下率が低い。そのため従来のプ
ロセスでは、熱間仕上圧延により加工を施しているとい
っても、強加工を施す圧延温度が高いためにγ粒はその
後再結晶し、結局のところ圧延終了時に加工γ粒は少量
しか蓄積されていない。しかも鋼板が仕上圧延設備の出
側から水冷設備に達するまでに非水冷ゾーンが数秒間存
在するため、その間に加工γ粒は再結晶及び回復(変形
帯の消失)が進行してしまい、加工状態のγ粒からの変
態は期待できなかった。The point of the present invention is to accumulate a large amount of γ grains in the above-mentioned processed state, and to utilize the transformation from the processed γ grains to make α grains finer. That is, in the normal process, the rolling temperature is high, so that the processing is easy and the re-crystallization immediately occurs where recrystallization is high. However, the reduction rate is low. Therefore, in the conventional process, even if processing is performed by hot finish rolling, the γ-grains are recrystallized afterwards due to the high rolling temperature at which strong working is performed, and after all, a small amount of γ-grains are processed at the end of rolling. Only accumulated. Moreover, since there is a non-water cooling zone for several seconds before the steel sheet reaches the water cooling equipment from the exit side of the finish rolling equipment, reworking and recovery (disappearance of deformation zone) of the processed γ-grains progresses during that time, and the processed state The transformation from the γ-grains could not be expected.
【0027】これに対しこの発明においては、圧延温度
の低い仕上圧延の後段における圧下率を高めて、鋼に多
量の加工γ粒を蓄積させ、加えて仕上圧延後は直ちに鋼
板温度を低下させて鋼板のγ域での滞留時間を短縮する
ことによって、再結晶温度、回復速度とも急速に低下さ
せるため、加工状態を保ったままα変態へ至らせること
ができ、従来にない細粒化が可能となったのである。こ
のようなこの発明のα粒微細化のメカニズムから、仕上
圧延における最終3パスでの累積圧下率を50%以上とす
る。On the other hand, in the present invention, the reduction ratio in the latter stage of finish rolling having a low rolling temperature is increased to accumulate a large amount of processed γ grains in the steel, and in addition, the steel sheet temperature is immediately reduced after the finish rolling. By shortening the residence time in the γ region of the steel sheet, both the recrystallization temperature and the recovery rate are rapidly reduced, so it is possible to reach the α transformation while maintaining the processing state, and it is possible to achieve finer grain refinement than before. It became. Due to the α grain refinement mechanism of the present invention, the cumulative rolling reduction in the final three passes in finish rolling is set to 50% or more.
【0028】仕上圧延終了温度はAr3 変態点以上であ
る。終了温度がAr3 変態点よりも低いと、熱延板に粗大
粒が発生したり、加工組織が残留し、冷延・焼鈍後の鋼
板の深絞り性を損なう。また、Ar3 変態点以上の適当な
温度から冷却を開始することができる。すなわち、冷却
開始温度がAr3 変態点以上でさえあれば、冷却開始時期
は仕上圧延の直後でなくてもよく、ランナウトテーブル
の適当な位置で冷却を開始できる。したがって、この発
明では仕上圧延機の後に板厚計や温度計が配置されてい
る通常の圧延機でも、冷却による水蒸気などの影響を受
けることなしに、圧延材の板厚や温度の計測、管理、制
御が可能である。The finish rolling finish temperature is not lower than the Ar 3 transformation point. If the end temperature is lower than the Ar 3 transformation point, coarse grains will be generated in the hot rolled sheet or the work structure will remain, impairing the deep drawability of the steel sheet after cold rolling and annealing. Further, cooling can be started from an appropriate temperature above the Ar 3 transformation point. That is, as long as the cooling start temperature is at or above the Ar 3 transformation point, the cooling start timing does not have to be immediately after finish rolling, and cooling can be started at an appropriate position on the runout table. Therefore, in the present invention, even in a normal rolling mill in which the strip thickness gauge and the thermometer are arranged after the finishing rolling mill, the strip thickness and temperature of the rolled material are measured and managed without being affected by steam or the like due to cooling. , Controllable.
【0029】(ii)冷却工程 次にこの発明で仕上圧延後の冷却速度は、冷却開始温度
から(Ar3変態点−60℃) までの温度域を50〜400 ℃/sの
冷却速度とする。すなわち、冷却の開始温度はAr3 変態
点以上であり、冷却の終了温度は(Ar3変態点−60℃) 以
下であり、かかる冷却開始温度から(Ar3変態点−60℃)
までの温度域を50〜400 ℃/sで冷却することが必要であ
る。この冷却方法を上記のように仕上圧延の後段で圧下
率を上げ、強圧下で仕上げた素材に施すことによって、
冷延・焼鈍後の鋼板の深絞り性を極めて高くすることを
可能とした。具体的には、仕上圧延後、冷却条件のみを
規定した従来の方法(特開平1-177322号公報)では冷延
・焼鈍板のr値が2.5 が最高であったのに対し、仕上圧
延での最終3パスの累積圧率を50%以上とし、この素材
に上記冷却条件で冷却を施すことによって、冷延・焼鈍
板のr値として、2.7 を得ることを可能とした。(Ii) Cooling Step Next, the cooling rate after finish rolling in the present invention is such that the temperature range from the cooling start temperature to (Ar 3 transformation point −60 ° C.) is 50 to 400 ° C./s. . That is, the cooling start temperature is Ar 3 transformation point or higher, the cooling end temperature is (Ar 3 transformation point −60 ° C.) or lower, and from such cooling start temperature (Ar 3 transformation point −60 ° C.)
It is necessary to cool the temperature range up to 50 to 400 ° C / s. By applying this cooling method to the material finished under high pressure by increasing the reduction rate in the latter stage of finish rolling as described above,
It has made it possible to enhance the deep drawability of the steel sheet after cold rolling and annealing. Specifically, after the finish rolling, the conventional method in which only the cooling conditions were specified (Japanese Patent Laid-Open No. 1-177322) had a maximum r value of 2.5 for the cold-rolled / annealed sheet. By setting the cumulative pressure ratio of the final 3 passes to 50% or more and cooling this material under the above cooling conditions, it was possible to obtain an r value of 2.7 for the cold rolled and annealed sheet.
【0030】ここに、Ar3 変態点以下から冷却を開始し
たり、冷却速度を100 ℃/s以下とすると、γ域での滞留
時間が長くなって、その間にγ粒は再結晶及び回復(変
形帯の消失)が進行してしまい加工状態のγ粒からの変
態は期待できない。したがってこの発明では、熱間圧延
直後に冷却を行うことにより、加工γ粒状態を凍結(圧
延歪みを蓄積した状態)し、その後のγ→α変態による
α粒の微細化を図る。この時、冷却装置は通常仕上圧延
機の後に配置される温度計や板厚計の作動に支障を与え
ない範囲で、仕上圧延機にできるだけ近付けて配置する
ことが望ましい。これは冷却をAr3 変態点以上から開始
するためである。なお、その冷却方法は、水による冷
却、気体による冷却などいずれでもよい。If the cooling is started from the Ar 3 transformation point or lower or the cooling rate is 100 ° C./s or lower, the residence time in the γ region becomes long, during which the γ grains are recrystallized and recovered ( Disappearance of deformation zone) progresses, and transformation from γ grains in the processed state cannot be expected. Therefore, in the present invention, by cooling immediately after hot rolling, the processed γ grain state is frozen (state in which rolling strain is accumulated), and the α grain is refined by the subsequent γ → α transformation. At this time, it is desirable that the cooling device is arranged as close as possible to the finish rolling mill within a range that does not hinder the operation of the thermometer and the plate thickness gauge that are usually arranged after the finish rolling mill. This is because cooling starts from the Ar 3 transformation point or higher. The cooling method may be either water cooling or gas cooling.
【0031】(iii) 巻取り工程 次にこの発明での巻取り温度は800 ℃〜550 ℃である。
巻取り時の効果は析出物を完全に析出させ、さらに析出
物の成長粗大化を図ることにある。この発明では、巻取
り前にAlN が多量に析出しており、低温巻取りでも十分
析出固定できるが、巻取り温度が550 ℃を下回るような
あまりに低温の巻取りでは、巻き形状が悪くなったり、
深絞り性の向上が望めない。また800 ℃よりも高温の巻
取りでは、スケールの発生により熱延板の酸洗性が低下
するために800 ℃を上限とした。なお熱延スラブ加熱温
度については特に限定するものではないが、1000℃以上
1300℃以下とすれば良好な材質が得られる。また、熱延
スラブは連続鋳造後直ちに、又は一旦冷却したものが使
用できる。(Iii) Winding Step Next, the winding temperature in the present invention is 800 ° C to 550 ° C.
The effect at the time of winding is to completely precipitate the precipitate and further to increase the growth coarseness of the precipitate. In the present invention, a large amount of AlN is precipitated before winding, and it can be sufficiently deposited and fixed even at low temperature winding, but if the winding temperature is too low such that the winding temperature falls below 550 ° C, the winding shape will deteriorate. Or
Cannot improve deep drawability. Further, when winding at a temperature higher than 800 ° C, the pickling property of the hot rolled sheet deteriorates due to the generation of scale, so 800 ° C was set as the upper limit. The hot rolling slab heating temperature is not particularly limited, but is 1000 ° C or higher.
If the temperature is 1300 ° C or lower, a good material can be obtained. The hot-rolled slab can be used immediately after continuous casting or after being cooled once.
【0032】(iv)冷間圧延工程 冷間圧延の条件は特に規定するものではないが、冷延圧
下率は50〜95%、望ましくは70〜90%とすることによ
り、特に優れた深絞り性を有する冷延鋼板が得られる。(Iv) Cold rolling process The conditions for cold rolling are not particularly specified, but a cold rolling reduction ratio of 50 to 95%, preferably 70 to 90%, results in a particularly excellent deep drawing. A cold-rolled steel sheet having properties is obtained.
【0033】(v) 焼鈍工程 冷間圧延工程を経た冷延鋼帯は、再結晶焼鈍を施す必要
がある。焼鈍方法は、箱型焼鈍法及び連続型焼鈍法のい
ずれでもよい。焼鈍温度はあまりにも高い温度や再結晶
以下の低い温度は好ましくはなく、望ましくは700 ℃〜
900 ℃の範囲が良い。焼鈍後の鋼帯には形状矯正、表面
粗度等の調整のために、5%以下の調質圧延を加えても
よい。なお、この発明にて得られた冷延板は、加工表面
処理鋼板の原板にも適用できる。表面処理としては、亜
鉛めっき(合金系を含む)、すずめっき、ほうろう等が
ある。(V) Annealing Step The cold rolled steel strip that has undergone the cold rolling step needs to be subjected to recrystallization annealing. The annealing method may be either a box-type annealing method or a continuous-type annealing method. The annealing temperature is not too high and the temperature below recrystallization is not preferable, and it is preferably 700 ℃ ~
The range of 900 ℃ is good. The annealed steel strip may be subjected to temper rolling of 5% or less in order to correct the shape and adjust the surface roughness. The cold-rolled sheet obtained by the present invention can also be applied to an original sheet of a worked surface-treated steel sheet. The surface treatment includes zinc plating (including alloy system), tin plating, enamel and the like.
【0034】[0034]
【実施例】表1に示す成分組成になる鋼スラブを、表2
に示す熱延条件にて仕上圧延を行った。得られた熱延板
を酸洗後、80%の冷間圧延を施し板厚:0.7 mmの冷延鋼
帯とした後、連続焼鈍設備にて860 ℃−20s の条件で再
結晶焼鈍処理を施し、次いで0.7 %の調質圧延を施し
た。かくして得られた冷延鋼板の鋼板のr値、熱延板の
結晶粒度について調査した結果を表2に併記する。r値
はJIS 5号引張試験片を使用し15%引張予ひずみを与え
た後、3点法にて測定し、L方向(圧延方向)、D方向
(圧延方向に45度方向)及びC方向(圧延方向に90度方
向)の平均値を r=(rL +2rD +rC )/4 として求めた。EXAMPLE A steel slab having the composition shown in Table 1 is shown in Table 2
Finish rolling was performed under the hot rolling conditions shown in. The obtained hot-rolled sheet was pickled, cold-rolled to 80% to form a cold-rolled steel strip with a thickness of 0.7 mm, and then recrystallized in a continuous annealing facility at 860 ° C for 20s. And then a 0.7% temper rolling. Table 2 also shows the results of an examination of the r value of the cold rolled steel sheet thus obtained and the grain size of the hot rolled sheet. The r value is measured by the 3-point method after applying a 15% tensile prestrain using JIS No. 5 tensile test piece, and L direction (rolling direction), D direction (45 ° direction to rolling direction) and C direction. The average value (in the direction of 90 degrees in the rolling direction) was determined as r = (r L + 2r D + r C ) / 4.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【表2】 [Table 2]
【0037】表2に示すように、この発明の範囲内の化
学成分になる鋼スラブを用い、この発明に従う条件にな
る熱延での仕上圧延率、圧延終了温度、冷却開始温度、
冷却終了温度、及び冷却速度で熱延を施すことによっ
て、極めて深絞り性に優れた冷延鋼板を製造することが
できることが分かる。As shown in Table 2, a steel slab having a chemical composition within the scope of the present invention was used, and the finish rolling rate in hot rolling, the rolling end temperature, the cooling start temperature under the conditions according to the present invention,
It can be seen that by performing hot rolling at the cooling end temperature and the cooling rate, it is possible to manufacture a cold rolled steel sheet having extremely excellent deep drawability.
【0038】[0038]
【発明の効果】この発明によれば、鋼成分及び製造条件
を限定することにより、従来よりも格段に優れた深絞り
性を有する冷延鋼板の製造が可能となる。According to the present invention, by limiting the steel composition and manufacturing conditions, it is possible to manufacture a cold-rolled steel sheet having a deep drawability that is far superior to conventional ones.
【図1】冷延−焼鈍後のr値に及ぼす仕上圧延での出側
3パス累積圧下率及び熱延後の冷却速度の影響を示すグ
ラフである。FIG. 1 is a graph showing influences of a delivery-side three-pass cumulative reduction rate in finish rolling and a cooling rate after hot rolling on an r value after cold rolling-annealing.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 敬 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Sakata 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Corporation (72) Toshiyuki Kato 1 Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Corporation Technical Research Division
Claims (2)
的不純物よりなる鋼を素材として、 この鋼素材に熱間圧延を施す際、仕上圧延での出側3パ
スにおける累積圧下率を50%以上としてAr3 変態点以上
で仕上圧延を終了し、 この仕上圧延終了から0.5 秒以内に冷却を開始して冷却
開始温度から(Ar3 変態点−60℃)までの温度域を50〜
400 ℃/sの冷却速度で冷却した後、 800 〜550 ℃の範囲の温度で巻取り、その後、冷間圧
延、次いで連続焼鈍を行うことを特徴とする極めて深絞
り性に優れる冷延鋼板の製造方法。1. C: 0.0015 wt% or less, Si: 0.1 wt% or less, Mn: 0.5 wt% or less, Al: 0.1 wt% or less, P: 0.05 wt% or less, S: 0.01 wt% or less and N: 0.003. containing at least one of Ti: 0.1 wt% or less and Nb: 0.05 wt% or less, with the balance being Fe and unavoidable impurities as a raw material. When rolling, finish rolling at the Ar 3 transformation point or higher with a cumulative rolling reduction of 50% or more on the exit side 3 passes in finishing rolling, and start cooling within 0.5 seconds after the completion of finishing rolling and start cooling. The temperature range from temperature to (Ar 3 transformation point -60 ° C) is 50 ~
After cooling at a cooling rate of 400 ° C / s, it is wound at a temperature in the range of 800 to 550 ° C, then cold rolled, and then continuously annealed. Production method.
的不純物よりなる鋼である極めて深絞り性に優れる冷延
鋼板の製造方法。2. The method according to claim 1, wherein the steel material is C: 0.0015 wt% or less, Si: 0.1 wt% or less, Mn: 0.5 wt% or less, Al: 0.1 wt% or less, B: 0.0001 to 0.0030 wt. %, P: 0.05 wt% or less, S: 0.01 wt% or less and N: 0.003 wt% or less, and at least one of Ti: 0.1 wt% or less and Nb: 0.05 wt% or less, and the balance Is a steel consisting of Fe and unavoidable impurities, which is a method for producing a cold-rolled steel sheet with excellent deep drawability.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21866193A JPH0770650A (en) | 1993-09-02 | 1993-09-02 | Production of cold rolled steel sheet extremely excellent in deep drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21866193A JPH0770650A (en) | 1993-09-02 | 1993-09-02 | Production of cold rolled steel sheet extremely excellent in deep drawability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0770650A true JPH0770650A (en) | 1995-03-14 |
Family
ID=16723447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21866193A Pending JPH0770650A (en) | 1993-09-02 | 1993-09-02 | Production of cold rolled steel sheet extremely excellent in deep drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0770650A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1136575A1 (en) * | 1999-08-10 | 2001-09-26 | Nkk Corporation | Method of producing cold rolled steel sheet |
JP2010077513A (en) * | 2008-09-29 | 2010-04-08 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet and method for producing the same |
JP2010077512A (en) * | 2008-09-29 | 2010-04-08 | Sumitomo Metal Ind Ltd | Method for producing cold-rolled steel sheet |
JP2011214068A (en) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | Method for manufacturing cold-rolled steel sheet |
JP2013023694A (en) * | 2011-07-15 | 2013-02-04 | Jfe Steel Corp | Cold-rolled steel sheet excellent in shape-freezing property and production method thereof |
WO2014057519A1 (en) * | 2012-10-11 | 2014-04-17 | Jfeスチール株式会社 | Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor |
CN104060071A (en) * | 2014-06-18 | 2014-09-24 | 攀钢集团攀枝花钢铁研究院有限公司 | Cold-rolled steel sheet and preparation method thereof as well as hot-galvanized steel sheet and preparation method thereof |
EP2806046A1 (en) * | 2006-03-16 | 2014-11-26 | JFE Steel Corporation | Cold-rolled steel sheet, method of producing the same, battery, and method of producing the same |
CN111748735A (en) * | 2020-06-22 | 2020-10-09 | 武汉钢铁有限公司 | Band steel with excellent low-temperature secondary processing performance and tensile strength of 390MPa and production method thereof |
CN111763882A (en) * | 2020-06-22 | 2020-10-13 | 武汉钢铁有限公司 | Strip steel with excellent low-temperature secondary processing performance and tensile strength of 340MPa and production method thereof |
-
1993
- 1993-09-02 JP JP21866193A patent/JPH0770650A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1136575A4 (en) * | 1999-08-10 | 2008-04-23 | Jfe Steel Corp | Method of producing cold rolled steel sheet |
EP1136575A1 (en) * | 1999-08-10 | 2001-09-26 | Nkk Corporation | Method of producing cold rolled steel sheet |
EP2806046A1 (en) * | 2006-03-16 | 2014-11-26 | JFE Steel Corporation | Cold-rolled steel sheet, method of producing the same, battery, and method of producing the same |
JP2010077513A (en) * | 2008-09-29 | 2010-04-08 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet and method for producing the same |
JP2010077512A (en) * | 2008-09-29 | 2010-04-08 | Sumitomo Metal Ind Ltd | Method for producing cold-rolled steel sheet |
JP2011214068A (en) * | 2010-03-31 | 2011-10-27 | Sumitomo Metal Ind Ltd | Method for manufacturing cold-rolled steel sheet |
JP2013023694A (en) * | 2011-07-15 | 2013-02-04 | Jfe Steel Corp | Cold-rolled steel sheet excellent in shape-freezing property and production method thereof |
WO2014057519A1 (en) * | 2012-10-11 | 2014-04-17 | Jfeスチール株式会社 | Cold-rolled steel sheet with superior shape fixability and manufacturing method therefor |
JPWO2014057519A1 (en) * | 2012-10-11 | 2016-08-25 | Jfeスチール株式会社 | Cold-rolled steel sheet having excellent shape freezing property and manufacturing method thereof |
CN104060071A (en) * | 2014-06-18 | 2014-09-24 | 攀钢集团攀枝花钢铁研究院有限公司 | Cold-rolled steel sheet and preparation method thereof as well as hot-galvanized steel sheet and preparation method thereof |
CN104060071B (en) * | 2014-06-18 | 2016-06-15 | 攀钢集团攀枝花钢铁研究院有限公司 | Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof |
CN111748735A (en) * | 2020-06-22 | 2020-10-09 | 武汉钢铁有限公司 | Band steel with excellent low-temperature secondary processing performance and tensile strength of 390MPa and production method thereof |
CN111763882A (en) * | 2020-06-22 | 2020-10-13 | 武汉钢铁有限公司 | Strip steel with excellent low-temperature secondary processing performance and tensile strength of 340MPa and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5405463A (en) | Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility | |
JPH0770650A (en) | Production of cold rolled steel sheet extremely excellent in deep drawability | |
JP3915460B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JPH08176735A (en) | Steel sheet for can and production thereof | |
JP3046145B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JP3137754B2 (en) | Efficient production method of cold rolled steel sheet with excellent deep drawability | |
JPH1036917A (en) | Production of high strength hot-rolled steel plate excellent in stretch-flanging property | |
JP3596045B2 (en) | Manufacturing method of bake hardening type cold rolled steel sheet with excellent formability | |
JP3067892B2 (en) | Manufacturing method of ferritic stainless steel sheet with excellent surface properties and deep drawability | |
JP2776203B2 (en) | Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature | |
JPH05171285A (en) | Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance | |
JP3194120B2 (en) | Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing | |
JP2003112204A (en) | High-strength hot-rolled steel sheet and method for manufacturing the same | |
JP2510367B2 (en) | Method for producing non-aging cold rolled steel sheet excellent in bake hardenability and workability | |
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JPH01177322A (en) | Manufacture of cold rolled steel sheet extremely excellent in deep drawability | |
JP2002003951A (en) | Method for manufacturing cold rolled steel sheet having small anisotropy | |
JPH10280048A (en) | Production of coating/baking haredening type cold rolled steel sheet excellent in strain aging resistance | |
JPH0668129B2 (en) | Method for producing hot rolled steel sheet with excellent deep drawability | |
JP3261037B2 (en) | Manufacturing method of cold rolled steel sheet with good aging resistance | |
JPH05331553A (en) | Manufacture of baking hardensability steel sheet for deep drawing excellent in delayed aging property | |
JPH05222460A (en) | Production of cold rolled steel sheet excellent in press formability | |
JPH02415B2 (en) | ||
JPH01177321A (en) | Manufacture of cold rolled steel sheet excellent in deep drawability | |
JPH08260047A (en) | Production of bar steel and wire rod for cold forging |