[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH076915A - Magnetic multilayered film, magnetoresistive element, and manufacture thereof - Google Patents

Magnetic multilayered film, magnetoresistive element, and manufacture thereof

Info

Publication number
JPH076915A
JPH076915A JP5172709A JP17270993A JPH076915A JP H076915 A JPH076915 A JP H076915A JP 5172709 A JP5172709 A JP 5172709A JP 17270993 A JP17270993 A JP 17270993A JP H076915 A JPH076915 A JP H076915A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic thin
multilayer film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5172709A
Other languages
Japanese (ja)
Inventor
Satoru Araki
悟 荒木
Daisuke Miyauchi
大助 宮内
Osamu Shinoura
治 篠浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP5172709A priority Critical patent/JPH076915A/en
Publication of JPH076915A publication Critical patent/JPH076915A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enhance the magnetic field sensitivity while reducing the hysteresis by a method wherein the coersive force of adjacent magnetic thin film are changed from one another through the intermediary of non-magnetic thin films. CONSTITUTION:The coersive forces of adjacent magnetic thin films M1, M2, Mn-1, Mn-2 throught the intermediary of non-magnetic thin films N1, N2, Nn-2, Nn-1 are changed from one another while securing the thickness of the first magnetic thin films M1, Mn-1 having small coersive force, the thickness of the second magnetic thin films M2, Mn-2 having large coersive force and the thickness of the non-magnetic thin films N1, N2, Nn-2, Nn-1 respectively to be t1, t2 and t3, 4Angstrom <t2<20Angstrom , 5Angstrom <t1<=20Angstrom , t1<t2, 32Angstrom <3t<50Angstrom . On the other hand, the squareness ratio of the first magnetic thin films M1, Mn-1 having small coersive force is to be 0.7-1.0 while that of the second magnetic thin films M2, Mn-2 having large coersive force is to be 0.1-0.8. Through these specifications, the large gradient of the magnetoresistive variation within the magnetic field range of -500e-+500e, the high magnetic sensitivity and the reduced hysteresis can be assured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体等の磁界
強度を信号として読み取るための磁気抵抗変化素子のう
ち、特に小さな磁場変化を大きな電気抵抗変化信号とし
て読み取ることのできる磁気抵抗変化素子と、それに好
適な磁性多層膜と、それらの製造方法とに関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive change element capable of reading a particularly small magnetic field change as a large electric resistance change signal, among magnetoresistive change elements for reading the magnetic field strength of a magnetic recording medium or the like as a signal. The present invention relates to a magnetic multilayer film suitable for it, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、磁気センサの高感度化や磁気記録
における高密度化が進められており、これに伴い磁気抵
抗変化を用いた磁気抵抗効果型磁気センサ(以下、、M
Rセンサという。)や、磁気抵抗効果型磁気ヘッド(以
下、MRヘッドという。)の開発が盛んに進められてい
る。MRセンサもMRヘッドも、磁性材料を用いた読み
取りセンサ部の抵抗変化により、外部磁界信号を読み出
すものであるが、MRセンサやMRヘッドでは、記録媒
体との相対速度が再生出力に依存しないことから、MR
センサでは高感度が、MRヘッドでは高密度磁気記録に
おいても高い出力がが得られるという特長がある。
2. Description of the Related Art In recent years, magnetic sensors have been made highly sensitive and magnetic recording has been made highly dense. Along with this, magnetoresistive effect type magnetic sensors (hereinafter referred to as M
It is called R sensor. ) Or a magnetoresistive effect type magnetic head (hereinafter referred to as an MR head) is being actively developed. Both the MR sensor and the MR head read the external magnetic field signal by the resistance change of the reading sensor section using a magnetic material. However, in the MR sensor and the MR head, the relative speed with the recording medium does not depend on the reproduction output. From MR
The sensor has high sensitivity, and the MR head has a feature that high output can be obtained even in high-density magnetic recording.

【0003】しかし、従来の異方性磁気抵抗効果による
Ni0.8 Fe0.2 (パーマロイ)やNiCo等磁性体を
利用したMRセンサでは、抵抗変化率△R/Rがせいぜ
い2〜4%位と小さく、数GBPIオーダーの超高密度
記録の読み出し用MRヘッド材料としては感度が不足す
る。
However, in a conventional MR sensor using a magnetic material such as Ni 0.8 Fe 0.2 (permalloy) or NiCo due to the anisotropic magnetoresistive effect, the resistance change rate ΔR / R is as small as about 2 to 4%, The sensitivity is insufficient as a read MR head material for ultra-high density recording on the order of several GBPI.

【0004】ところで、金属の原子径オーダーの厚さの
薄膜が周期的に積層された構造をもつ人工格子は、バル
ク状の金属とは異なった特性を示すために、近年注目さ
れてきている。このような人工格子の1種として、基板
上に強磁性金属薄膜と反強磁性金属薄膜とを交互に積層
した磁性多層膜があり、これまで、鉄−クロム型、ニッ
ケル−クロム型および鉄−マンガン型(特開昭60−1
89906号公報)等の磁性多層膜が知られている。こ
のうち、鉄−クロム型(Fe/Cr)については、超低
温(4.2K)において40%を超える磁気抵抗変化を
示すという報告がある(Phys. Rev. Lett 第61巻、2
472頁、1988年)。しかし、この人工格子磁性多
層膜では最大抵抗変化の起きる外部磁場(動作磁界強
度)が十数kOe 〜数十kOe と大きく、このままでは実用
性がない。この他、Co/Cu,Co/Ag等の人工格
子磁性多層膜も提案されているが、これらでも動作磁場
強度が大きすぎる。
By the way, an artificial lattice having a structure in which thin films having a thickness on the order of atomic diameter of metal are periodically laminated has attracted attention in recent years because it exhibits characteristics different from those of bulk metal. As one type of such an artificial lattice, there is a magnetic multilayer film in which ferromagnetic metal thin films and antiferromagnetic metal thin films are alternately laminated on a substrate. So far, iron-chromium type, nickel-chromium type and iron- Manganese type (JP-A-60-1)
No. 89906), a magnetic multilayer film is known. Among them, it is reported that the iron-chromium type (Fe / Cr) exhibits a magnetoresistance change of more than 40% at ultralow temperature (4.2K) (Phys. Rev. Lett, Vol. 61, 2).
472, 1988). However, in this artificial lattice magnetic multilayer film, the external magnetic field (operating magnetic field strength) at which the maximum resistance change occurs is as large as ten dozen kOe to several dozen kOe, and it is not practical as it is. In addition to these, artificial lattice magnetic multilayer films of Co / Cu, Co / Ag, etc. have been proposed, but these have too high operating magnetic field strength.

【0005】そこで、このような事情から、非磁性層を
介して保磁力の異なる2つの磁性層を積層した誘導フェ
リ磁性による巨大MR変化を示す3元系人工格子磁性多
層膜が提案されている。例えば、非磁性層を介して隣合
う磁性薄膜のHcが異なっており、各層の厚さが200
A 以下であるもの(特開平4−218982号公報;下
記c)など、下記の文献が発表されている。
Under these circumstances, therefore, there has been proposed a ternary artificial lattice magnetic multilayer film which exhibits a giant MR change due to induced ferrimagnetism by laminating two magnetic layers having different coercive forces via a non-magnetic layer. . For example, the Hc of adjacent magnetic thin films are different via the non-magnetic layer, and the thickness of each layer is 200.
The following documents, such as those of A or less (Japanese Patent Laid-Open No. 4-218982; c below), have been published.

【0006】a.Journal of The Physical Society of
Japan, 59(1990)3061T.Shinjo and H.Yamamoto [Co(30)/Cu(50)/NiFe(30)/C
u(50)]×15[( )内は各層の膜厚(A )、×
の数値は繰り返し数、以下同]において印加磁場3kOe
で9.9%、500Oeでは約8.5%のMR変化率を得
ている。
A. Journal of The Physical Society of
Japan, 59 (1990) 3061T. Shinjo and H. Yamamoto [Co (30) / Cu (50) / NiFe (30) / C
u (50)] × 15 [() indicates the film thickness of each layer (A), ×
Is the number of repetitions, the same applies below] in the applied magnetic field 3 kOe
The MR change rate was about 9.9% at 500 Oe, and about 8.5% at 500 Oe.

【0007】b.Journal of Magnetism and Magnetic
Materials, 99(1991)243H.Ymamamoto, T.Okuyama, H.Do
hnomae, and T.Shinjo aに加えて構造解析結果、MR変化率や比抵抗の温度変
化、外部磁場の角度による変化、MR曲線のマイナール
ープ、積層回数依存性、Cu層厚依存性、磁化曲線の変
化について述べられている。
B. Journal of Magnetism and Magnetic
Materials, 99 (1991) 243 H.Ymamamoto, T.Okuyama, H.Do
In addition to hnomae, and T. Shinjo a, structural analysis results, temperature change of MR change rate and resistivity, change with angle of external magnetic field, minor loop of MR curve, dependence of stacking number, dependence of Cu layer thickness, magnetization curve The changes are discussed.

【0008】c.特開平4−218982号公報 保磁力の異なる磁性薄膜を非磁性薄膜を介して積層した
磁性多層膜に関するものであってNi−FeとCoとを
それぞれ25A または30A とし、これをCu層を介し
て積層した実施例が開示されている。
C. [Patent Document 1] JP-A-4-218982 [Patent Document 1] Japanese Patent Application Laid-Open No. 4-218982 SUMMARY OF THE INVENTION The present invention relates to a magnetic multilayer film in which magnetic thin films having different coercive forces are laminated via a non-magnetic thin film. Laminated examples are disclosed.

【0009】d.特開平4−247607号公報 (Nix Co1-xx'Fe1-x'と(Coy Ni1-yz
Fe1-z (x=0.6〜1.0、x’=0.7〜1.
0、y=0.4〜1.0、z=0.8〜1.0)とを非
磁性層を介して積層した磁性多層膜を開示しており、そ
の実施例では2種の30A の磁性層を50A の非磁性層
を介して積層している。
D. JP-4-247607 discloses (Ni x Co 1-x) x 'Fe 1-x' and (Co y Ni 1-y) z
Fe 1-z (x = 0.6 to 1.0, x ′ = 0.7 to 1.
0, y = 0.4 to 1.0, and z = 0.8 to 1.0) are disclosed via a non-magnetic layer, and in the embodiment, two kinds of 30A are used. The magnetic layers are laminated via a 50 A non-magnetic layer.

【0010】e.電気学会マグネティクス研究会資料,
MAG−91−161 星野、細江、神保、神田、綱島、内山 a、bの追試である。Cu層厚依存性、NiFe層厚依
存性について追試している。加えて磁化曲線から外挿し
て疑似的に求めたCoのHcのCu層厚依存性の結果が
ある。またNiFe(30)−Cu(320)とCo
(30)−Cu(320)から求めたそれぞれの磁化曲
線を合成してNiFe(30)−Cu(160)−Co
(30)−Cu(160)の磁化曲線と比較している。
この場合はCu中間厚が3元系人工格子のものと違うの
で、直接角型比とHcとを比較することはできない。
E. The Institute of Electrical Engineers of Japan Magnetics Research Material,
MAG-91-161 Hoshino, Hosoe, Jinbo, Kanda, Tsunashima, Uchiyama a, b. Additional studies are being made on the dependence on the Cu layer thickness and the NiFe layer thickness. In addition, there is a result of the Cu layer thickness dependency of Hc of Co obtained by extrapolation from the magnetization curve. In addition, NiFe (30) -Cu (320) and Co
NiFe (30) -Cu (160) -Co was synthesized by combining the respective magnetization curves obtained from (30) -Cu (320).
It is compared with the magnetization curve of (30) -Cu (160).
In this case, since the Cu intermediate thickness is different from that of the ternary artificial lattice, it is not possible to directly compare the squareness ratio and Hc.

【0011】また、このFig.7とFig.8には、
非磁性層を80A に固定したときのNiFe層厚t1
存性とCo層厚t2 依存性とが示されている。このう
ち、Fig.7にはCo層厚t2 を30A と固定し、N
iFe層厚t1 を5〜50A と変化させたときのMR変
化率が示されている。また、Fig.8には(t1 ,t
2 )=(20,10)、(20,5)のデータ点があ
る。しかし、これらのMR変化率はすべて4%に及ばな
い。
In addition, as shown in FIG. 7 and FIG. In 8,
The dependence of the NiFe layer thickness t 1 and the Co layer thickness t 2 when the nonmagnetic layer is fixed at 80 A is shown. Of these, FIG. 7 has a Co layer thickness t 2 fixed at 30 A,
The MR change rate when the iFe layer thickness t 1 is changed to 5 to 50 A is shown. In addition, FIG. 8 has (t 1 , t
2 ) = There are data points of (20,10) and (20,5). However, these MR change rates are all less than 4%.

【0012】f.電気学会マグネティクス研究会資料,
MAG−91−242 奥山、山本、新庄 誘導フェリ磁性による巨大MR変化についての現像論的
解析が述べられている。Hcの小さなNiFe層の磁気
モーメントの回転につれてMRも同様に変化し、人工的
に生成されたスピンの反平行状態によって巨大MR現象
が発現することが確認されている。また、この現像はN
iFe等の異方性MR効果とは異なることがMRの印加
磁場角度変化の違いによって証明されている。
F. The Institute of Electrical Engineers of Japan Magnetics Research Material,
MAG-91-242 Okuyama, Yamamoto, Shinjo Developmental analysis of giant MR changes due to induced ferrimagnetism is described. It has been confirmed that the MR similarly changes with the rotation of the magnetic moment of the NiFe layer having a small Hc, and a giant MR phenomenon appears due to the antiparallel state of the artificially generated spins. Also, this development is N
It has been proved that it is different from the anisotropic MR effect of iFe by the difference in the applied magnetic field angle of MR.

【0013】g.日本応用磁気学会誌,17(199
3)365.(発行日1993.4.1) 宮内、荒木、成宮 本発明者らの論文。NiFe、CoおよびCuとを用い
た3種類の材料を積層した多層膜(以下このようなもの
を3元系磁性多層膜と称する。)。Fig.8には、C
r(50)[Cu(50)−Co(10)−Cu(5
0)−NiFe(10)]×10の−10〜10Oeの範
囲のMR変化曲線が掲載されている。また、Fig.7
には(NiFe厚t1 ,Co厚t2 )=(10,1
0)、(20,10)、(30,10)、(30,1
5)、(20,20)のデータ点があり、またFig.
3には(t1 ,t2 )=(10,10)、(15,1
0)、(20,10)、(30,10)の磁気抵抗変化
の傾きのデータがあるが、Cu層厚はすべて50A であ
る。
G. Journal of Japan Applied Magnetics, 17 (199)
3) 365. (Issue date 1993.4.1) Miyauchi, Araki, Narimiya The present inventors' paper. A multilayer film in which three kinds of materials using NiFe, Co, and Cu are laminated (hereinafter, such a film is referred to as a ternary magnetic multilayer film). Fig. 8 for C
r (50) [Cu (50) -Co (10) -Cu (5
0) -NiFe (10)] × 10 MR change curve in the range of −10 to 10 Oe is shown. In addition, FIG. 7
(NiFe thickness t 1 , Co thickness t 2 ) = (10, 1
0), (20,10), (30,10), (30,1)
5) and (20, 20) data points, and FIG.
3 has (t 1 , t 2 ) = (10, 10), (15, 1
0), (20, 10), and (30, 10) have data on the gradient of the change in magnetoresistance, but the Cu layer thickness is all 50 A.

【0014】このような3元系人工格子磁性多層膜で
は、Fe/Cr,Co/Cu,Co/Ag等に比較して
MR変化率の大きさは劣るものの、数100Oe以下の印
加磁場で10%程度の巨大なMR変化率を示している。
しかし、これらの文献等で開示されている内容は数10
〜100Oe程度の印加磁場でのMR変化についてのみで
ある。
In such a ternary artificial lattice magnetic multilayer film, the magnitude of the MR change rate is inferior to that of Fe / Cr, Co / Cu, Co / Ag, etc., but it is 10 at an applied magnetic field of several 100 Oe or less. It shows a huge MR change rate of about%.
However, the contents disclosed in these documents are several tens.
Only for MR changes with an applied magnetic field of about 100 Oe.

【0015】ところで、実際の超高密度磁気記録におけ
るMRヘッド材料としては、印加磁場−50Oeから50
OeまでのMR変化曲線が重要である。しかし、これら従
来の3元系人工格子は、印加磁場0でのMR変化はあま
り増加しておらず、ほとんど0に近い。MR変化の増加
率は60Oe程度で最大となり、このとき9%程度のMR
変化率を示す。すなわち、変化曲線の立ち上がりが遅
い。一方、パーマロイ(NiFe)の場合は、0磁場に
おけるMR変化の傾きはほぼ0であり、ほとんどMR変
化率はかわらず、MR変化率の微分値は0に近い。
By the way, as an MR head material in actual ultra-high density magnetic recording, an applied magnetic field of -50 Oe to 50 is used.
The MR change curve up to Oe is important. However, in these conventional ternary artificial lattices, the MR change at an applied magnetic field of 0 does not increase so much and is almost zero. The rate of increase in MR change reaches a maximum at about 60 Oe, at which time MR is about 9%.
The rate of change is shown. That is, the rising of the change curve is slow. On the other hand, in the case of permalloy (NiFe), the gradient of MR change in a 0 magnetic field is almost 0, the MR change rate is almost unchanged, and the differential value of the MR change rate is close to 0.

【0016】このような特性を解決する手段として、N
iFe等では、Ti等の比抵抗の小さなシャント層を設
けて動作点をシフトさせて用いている。また、このシャ
ント層に加えてCoZrMo、NiFeRh等の比抵抗
の大きな軟磁性材料のソフトフィルムバイアス層を設け
てバイアス磁界を印加して用いている。しかし、このよ
うなバイアス層等をもつ構造は、工程が複雑となり、特
性を安定させることが困難であり、コストアップを招
く。またMR変化曲線のなだらかなところを使うことに
なるのでS/Nの低下等を招く。
As a means for solving such a characteristic, N
With iFe or the like, a shunt layer having a small specific resistance such as Ti is provided to shift the operating point. In addition to this shunt layer, a soft film bias layer made of a soft magnetic material having a large specific resistance such as CoZrMo or NiFeRh is provided to apply a bias magnetic field. However, the structure having such a bias layer complicates the process, makes it difficult to stabilize the characteristics, and causes an increase in cost. In addition, since a gentle portion of the MR change curve is used, the S / N is lowered.

【0017】さらに、MRヘッド等では、複雑な積層構
造をとりパターニング、平坦化等の工程でレジスト材料
のベーキングやキュア等の熱処理を必要とし、250℃
程度の耐熱性が必要である。しかし、従来の3元系人工
格子磁性多層膜では、このような熱処理で特性が劣化し
てしまう。
Further, the MR head or the like requires a heat treatment such as baking or curing of the resist material in the steps of patterning, flattening, etc. in a complicated laminated structure, and the temperature is 250 ° C.
Some heat resistance is required. However, in the conventional ternary artificial lattice magnetic multilayer film, such heat treatment deteriorates the characteristics.

【0018】このように、従来の3元系磁性多層膜では
−50〜50Oeの磁場範囲での磁気抵抗変化の傾き(M
R傾き)が0.15%/Oeに及ばず、特性上満足できな
い。ただし、前記本発明者らの論文gのFig.8では
−10〜10Oeでの直線的な抵抗変化が示されている。
As described above, in the conventional ternary magnetic multilayer film, the gradient (M) of the magnetoresistance change in the magnetic field range of -50 to 50 Oe.
The R slope) is less than 0.15% / Oe, which is not satisfactory in terms of characteristics. However, FIG. 8 shows a linear resistance change at -10 to 10 Oe.

【0019】他方、MRヘッドでは、磁気抵抗変化曲線
(MRカーブ)の最大ヒステリシス幅が小さいことも重
要である。この最大ヒステリシス幅は10Oe以下、特に
6Oe以下であることが好ましい。しかし、従来の3元系
磁性多層膜のほとんどは、この要求を満足できない。た
だし、前記本発明者らの論文gのFig.8ではきわめ
て小さいヒステリシス幅をもっている。
On the other hand, in the MR head, it is also important that the maximum hysteresis width of the magnetoresistance change curve (MR curve) is small. This maximum hysteresis width is preferably 10 Oe or less, particularly 6 Oe or less. However, most of the conventional ternary magnetic multilayer films cannot satisfy this requirement. However, FIG. In No. 8, the hysteresis width is extremely small.

【0020】さらにまた、MRヘッドは、高密度記録再
生用として1MHz 以上の高周波磁界下で用いられること
が要求される。しかし、従来の各種3元系磁性多層膜の
膜厚構造では、1MHz 以上の高周波磁界での磁気抵抗変
化曲線の傾き(高周波でのMR傾き)を0.03%/Oe
以上にして、高い高周波感度を得ることが難しい。
Furthermore, the MR head is required to be used under a high frequency magnetic field of 1 MHz or more for high density recording / reproducing. However, in the film thickness structure of various conventional ternary magnetic multilayer films, the slope of the magnetoresistance change curve (MR slope at high frequency) in a high frequency magnetic field of 1 MHz or more is 0.03% / Oe.
As described above, it is difficult to obtain high high frequency sensitivity.

【0021】[0021]

【発明が解決しようとする課題】本発明の目的は、磁気
抵抗変化曲線の最大ヒステリシス幅が例えば10Oe以下
と小さく、−50〜50Oeの磁場範囲で直線的で例えば
0.15%/Oe以上の大きな磁気抵抗変化の傾き(MR
傾き)を示し、例えば5%以上と大きな磁気抵抗変化率
をもち、1MHz 以上の高周波磁界での磁気抵抗変化の傾
き(高周波MR傾き)が例えば0.03%/Oe以上と大
きく、しかも耐熱温度の高い磁性多層膜とそれを用いた
磁気抵抗変化素子と、それらの製造方法とを提供するこ
とである。
The object of the present invention is to provide a magnetoresistive change curve having a maximum hysteresis width as small as 10 Oe or less, linearly in the magnetic field range of -50 to 50 Oe, for example, 0.15% / Oe or more. Large magnetic resistance change gradient (MR
Slope, which has a large magnetoresistance change rate of, for example, 5% or more, and has a large magnetoresistance change gradient (high-frequency MR slope) of, for example, 0.03% / Oe or more in a high-frequency magnetic field of 1 MHz or more, and a heat-resistant temperature. To provide a high magnetic multi-layer film, a magnetoresistive variable element using the same, and a manufacturing method thereof.

【0022】[0022]

【課題を解決するための手段】このような目的は、下記
(1)〜(16)の本発明により達成される。 (1)非磁性薄膜を介して積層された少なくとも2層の
磁性薄膜を有し、この非磁性薄膜を介して隣合う磁性薄
膜の保磁力が異なっており、保磁力の小さい第1の磁性
薄膜の厚さをt1 、保磁力の大きい第2の磁性薄膜の厚
さをt2 、非磁性薄膜の厚さをt3 としたとき、4 A<
2 <20 A、5A<t1 ≦20 A、t1 >t2 、32
A<t3 <50A である磁性多層膜。 (2)保磁力の小さい第1の磁性薄膜の角型比SQ1
0.7〜1.0であり、保磁力の大きい第2の磁性薄膜
の角型比SQ2 が0.1〜0.8である上記(1)の磁
性多層膜。 (3)SQ2 /SQ1 が0.3〜1.0である上記
(1)または(2)の磁性多層膜。 (4)6A ≦t2 、t1 ≦18 A、t1 ≧1.05t
2 、36A ≦t3 ≦48Aである上記(1)〜(3)の
いずれかの磁性多層膜。 (5)磁気抵抗変化曲線の最大ヒステリシス幅が10Oe
以下である上記(1)〜(4)のいずれかの磁性多層
膜。 (6)−50〜−50Oeの磁場範囲での磁気抵抗変化の
傾きが0.15%/Oe以上である上記(1)〜(5)の
いずれかの磁性多層膜。 (7)[(比抵抗の最大値−比抵抗の最小値)/比抵抗
の最小値]×100で表される磁気抵抗変化率が5%以
上である上記(1)〜(6)のいずれかの磁性多層膜。 (8)1MHz での高周波磁界での磁気抵抗変化の傾きが
0.03%/Oe以上である上記(1)〜(7)のいずれ
かの非磁性多層膜。 (9)前記第1の磁性薄膜の組成が(Nix Fe1-x
y Co1-y (ただし、0.7≦x≦0.9、0.5≦y
≦1.0である。)で表される上記(1)〜(8)のい
ずれかの磁性多層膜。 (10)前記第2の磁性薄膜の組成が(Coz Ni
1-zw Fe1-w (ただし、0.4≦z≦1.0、0.
5≦w≦1.0である。)で表される上記(1)〜
(9)のいずれかの磁性多層膜。 (11)前記非磁性薄膜はAu、AgもしくはCuまた
はそれらの1〜3種を70%以上含む合金から選ばれた
ものである上記(1)〜(10)のいずれかの磁性多層
膜。 (12)成膜後、400℃以下の温度で熱処理を行う上
記(1)〜(11)のいずれかの磁性多層膜の製造方法。 (13)10-8Torr以下の圧力で成膜を行う上記(1)
〜(11)のいずれかの磁性多層膜の製造方法。 (14)基板上に上記(1)〜(11)のいずれかの磁性
多層膜を有する磁気抵抗効果素子。 (15)バイアス磁界印加機構を有しない上記(14)の
磁気抵抗効果素子。 (16)上記(12)または(13)の製造方法により、基
板上に非磁性薄膜を介して少なくとも2層の磁性薄膜を
形成し、上記(1)〜(11)のいずれかの磁性多層膜を
設けた磁気抵抗効果素子の製造方法。
The above object is achieved by the present invention described in (1) to (16) below. (1) A first magnetic thin film having a small coercive force, which has at least two layers of magnetic thin films laminated via a non-magnetic thin film, and adjacent magnetic thin films have different coercive forces via the non-magnetic thin film. Is set to be t 1 , the thickness of the second magnetic thin film having a large coercive force is t 2 , and the thickness of the nonmagnetic thin film is t 3 , then 4 A <
t 2 <20 A, 5 A <t 1 ≦ 20 A, t 1 > t 2 , 32
A magnetic multilayer film with A <t 3 <50A. (2) The squareness ratio SQ 1 of the first magnetic thin film having a small coercive force is 0.7 to 1.0, and the squareness ratio SQ 2 of the second magnetic thin film having a large coercive force is 0.1 to 0. The magnetic multilayer film according to (1) above, which is 0.8. (3) The magnetic multilayer film according to (1) or (2), wherein SQ 2 / SQ 1 is 0.3 to 1.0. (4) 6 A ≤t 2 , t 1 ≤18 A, t 1 ≥1.05t
2 , The magnetic multilayer film according to any one of (1) to (3) above, wherein 36 A ≤t 3 ≤48 A. (5) The maximum hysteresis width of the magnetic resistance change curve is 10 Oe
The magnetic multilayer film according to any one of (1) to (4) below. (6) The magnetic multilayer film according to any one of the above (1) to (5), wherein the gradient of magnetoresistance change in the magnetic field range of −50 to −50 Oe is 0.15% / Oe or more. (7) [(maximum value of specific resistance-minimum value of specific resistance) / minimum value of specific resistance] × 100 The magnetoresistance change rate is 5% or more, any of the above (1) to (6) The magnetic multilayer film. (8) The nonmagnetic multilayer film according to any one of the above (1) to (7), wherein the gradient of change in magnetoresistance in a high frequency magnetic field at 1 MHz is 0.03% / Oe or more. (9) the first composition of the magnetic thin film (Ni x Fe 1-x)
y Co 1-y (where 0.7 ≦ x ≦ 0.9, 0.5 ≦ y
≦ 1.0. ) The magnetic multilayer film according to any one of the above (1) to (8). (10) The composition of the second magnetic thin film is (Co z Ni
1-z ) w Fe 1-w (where 0.4 ≦ z ≦ 1.0, 0.
5 ≦ w ≦ 1.0. The above (1) represented by
The magnetic multilayer film according to any one of (9). (11) The magnetic multilayer film according to any one of (1) to (10) above, wherein the non-magnetic thin film is selected from Au, Ag or Cu or an alloy containing 70% or more of 1 to 3 of them. (12) The method for producing a magnetic multilayer film according to any one of (1) to (11) above, wherein after the film formation, heat treatment is performed at a temperature of 400 ° C. or lower. (13) The film is formed at a pressure of 10 -8 Torr or less (1)
(11) A method for manufacturing a magnetic multilayer film according to any one of (11). (14) A magnetoresistive effect element having the magnetic multilayer film according to any one of (1) to (11) above on a substrate. (15) The magnetoresistive effect element according to the above (14), which does not have a bias magnetic field applying mechanism. (16) According to the manufacturing method of (12) or (13), at least two magnetic thin films are formed on a substrate via a non-magnetic thin film, and the magnetic multilayer film according to any one of (1) to (11) above. And a method for manufacturing a magnetoresistive effect element.

【0023】[0023]

【作用】3元系人工格子磁性多層膜において、小さなヒ
ステリシス幅と、−50〜50Oeの磁場範囲でのリニア
リティーが良好で大きなMR傾きをもつ磁気抵抗変化曲
線(MR曲線)と、高い磁気抵抗変化率と、1MHz 以上
の高周波磁界での大きな磁気抵抗変化の傾きと、良好な
耐熱性とを得るためには、上記の文献でa〜gに示され
ているHcの差や、そこに示されている膜構造だけでは
不十分である。これらすべての特性を満足させるために
は、本発明に従い、第1および第2の磁性薄膜と非磁性
薄膜との膜厚t1 、t2 、t3 を規制しなければならな
い。そして、このような本発明の膜厚t1 、t2 、t3
は、文献a〜g等には記載されていない。
In the ternary artificial lattice magnetic multilayer film, the magnetoresistance change curve (MR curve) having a small hysteresis width, good linearity in the magnetic field range of -50 to 50 Oe and a large MR slope, and a high magnetoresistance change. In order to obtain a high rate, a large gradient of the magnetoresistance change in a high frequency magnetic field of 1 MHz or more, and good heat resistance, the difference between Hc shown in a to g in the above-mentioned literature, and the difference there. The structure of the film is not enough. In order to satisfy all of these characteristics, the film thicknesses t 1 , t 2 and t 3 of the first and second magnetic thin films and the non-magnetic thin film must be controlled according to the present invention. And, such film thicknesses t 1 , t 2 , t 3 of the present invention
Are not described in documents a to g and the like.

【0024】[0024]

【具体的構成】以下、本発明の具体的構成について詳細
に説明する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0025】本発明では、非磁性薄膜を介して隣合った
磁性薄膜の保磁力は互いに異なっていることが必要であ
る。その理由は、本発明の原理が、隣合った磁性層の磁
化の向きがズレているとき、伝導電子がスピンに依存し
た散乱を受け、抵抗が増え、磁化の向きが互いに逆向き
に向いたとき、最大の抵抗を示すことにあるからであ
る。すなわち、本発明では、図2で示すように外部磁場
が第1の磁性薄膜の保磁力Hc1 と第2の磁性薄膜層の
保磁力Hc2 の間(Hc1 <H<Hc2 )であるとき、
隣合った磁性層の磁化の方向が互いに逆向きの成分が生
じ、抵抗が増大するのである。
In the present invention, it is necessary that the coercive force of the magnetic thin films adjacent to each other with the non-magnetic thin film interposed therebetween be different from each other. The reason is that the principle of the present invention is that when the magnetization directions of the adjacent magnetic layers are deviated, conduction electrons are scattered depending on spin, resistance increases, and the magnetization directions are opposite to each other. This is because the maximum resistance is sometimes exhibited. That is, in the present invention, is between the external magnetic field of a coercive force Hc 2 of coercive force Hc 1 and the second magnetic thin film layer of the first magnetic thin film (Hc 1 <H <Hc 2 ) as shown in Figure 2 When
The components in which the magnetization directions of the adjacent magnetic layers are opposite to each other are generated, and the resistance increases.

【0026】ここで、3元系人工格子多層磁性膜の外部
磁場、保磁力および磁化の方向の関係を説明する。図1
は、本発明の実施例である人工格子磁性多層膜1の断面
図である。図1において、人工格子磁性多層膜1は、基
板4上に磁性薄膜M1 ,M2…,Mn-1 ,Mn を有し、
隣接する2層の磁性薄膜の間に、非磁性薄膜N1 ,N2
…,Nn-2 ,Nn-1 を有する。
The relationship among the external magnetic field, coercive force, and magnetization direction of the ternary artificial lattice multilayer magnetic film will be described. Figure 1
FIG. 3 is a cross-sectional view of an artificial lattice magnetic multilayer film 1 that is an example of the present invention. In FIG. 1, an artificial lattice magnetic multilayer film 1 has magnetic thin films M 1 , M 2, ..., M n-1 , M n on a substrate 4,
Between the two adjacent magnetic thin films, the non-magnetic thin films N 1 , N 2
, N n-2 and N n-1 .

【0027】今、簡素化して、保磁力の異なる2種類の
磁性薄膜のみを有する場合について説明する。図2に示
されるように、2種類の磁性薄膜層、のHcをそれ
ぞれHc1 およびHc2 とする(0<Hc1 <Hc
2 )。最初、外部磁場Hを、H<−Hm (Hm は、第2
の磁性薄膜の磁化が飽和する外部磁界である。)とな
るようにかけておく。第1および第2磁性薄膜層、
の磁化方向は、Hと同じ−(負)方向に向いている。次
に外部磁場を上げていくと、H<Hc1 の領域(I)で
は、まだ両磁性薄膜の磁化方向は一方向を向いている。
外部磁場を上げてHc1 <H<Hmの領域(II)になる
と、磁性薄膜の1部の磁化方向が反転をはじめ、磁性
薄膜、の磁化方向は互いに逆向きの成分が生じる。
さらに外部磁場を大きくしたHm<Hの領域(III )で
は、磁性薄膜、の磁化方向は、+方向に揃って向
く。
Now, a case in which only two kinds of magnetic thin films having different coercive forces are provided will be described in a simplified manner. As shown in FIG. 2, Hc of the two types of magnetic thin film layers is Hc 1 and Hc 2 , respectively (0 <Hc 1 <Hc
2 ). First, the external magnetic field H is changed to H <-Hm (Hm is the second
Is an external magnetic field at which the magnetization of the magnetic thin film is saturated. ). First and second magnetic thin film layers,
The magnetization direction of is the same as that of H in the- (negative) direction. Next, when the external magnetic field is increased, in the region (I) where H <Hc 1 , the magnetization directions of both magnetic thin films are still in one direction.
When the external magnetic field is increased to reach the region (II) where Hc 1 <H <Hm, the magnetization direction of a part of the magnetic thin film begins to reverse, and the magnetization directions of the magnetic thin film and the magnetization direction of the magnetic thin film have mutually opposite components.
Further, in the region (III) where Hm <H in which the external magnetic field is increased, the magnetization direction of the magnetic thin film is aligned with the + direction.

【0028】今度は外部磁場Hを減少させると、Hc2
<Hの領域(IV)では磁性薄膜、の磁化方向は+方
向のままであるが、−Hc2 <H<Hc2 の領域(V)
では、磁性薄膜層の磁化方向は一方向に反転をはじ
め、磁性薄膜、の磁化方向が互いに逆向きの成分が
生じる。さらに、H<−Hmの領域(VI)では、磁性薄
膜、の磁化方向は一方向に揃って向く。この磁性薄
膜、の磁化方向が互いに逆向きになっている領域
(II)および(V)で、伝導電子がスピンに依存した散
乱を受け、抵抗は大きくなる。第1の磁性薄膜に例え
ばHcの小さなNi 0.8 Fe0.2 (Hc数Oe)を選び、
第2磁性薄膜層にHcのやや大きい例えばCo(Hc
数十Oe)を選ぶことにより、外部磁場Hc2 付近の小外
部磁場で大きな抵抗変化率を示すMR素子が得られる。
Next, when the external magnetic field H is reduced, Hc2 
In the <H region (IV), the magnetization direction of the magnetic thin film is +
It is still facing, but -Hc2 <H <Hc2 Area (V)
Then, the magnetization direction of the magnetic thin film layer is reversed in one direction.
Therefore, there is a component in which the magnetization directions of the magnetic thin film are opposite to each other.
Occurs. Furthermore, in the region H <−Hm (VI), the magnetic thinness is
The magnetization directions of the film are aligned in one direction. This magnetic thin
Region where the magnetization directions of the film are opposite to each other
In (II) and (V), conduction electrons are scattered depending on spin.
The resistance increases due to the disturbance. For example, the first magnetic thin film
For example, Ni with a small Hc 0.8 Fe0.2 Select (Hc number Oe),
For example, Co (Hc
By selecting several tens Oe), the external magnetic field Hc2 Small outside
An MR element that exhibits a large resistance change rate in a partial magnetic field can be obtained.

【0029】本発明の磁性薄膜に用いる磁性体の種類は
特に制限されないが、具体的には、Fe,Ni,Co,
Mn,Cr,Dy,Er,Nd,Tb,Tm,Ce,G
d等が好ましい。また、これらの元素を含む合金や化合
物としては、例えば、Fe−Si,Fe−Ni,Fe−
Co,Fe−Al,Fe−Al−Si(センダスト
等),Fe−Y,Fe−Gd,Fe−Mn,Co−N
i,Cr−Sb,Fe系アモルファス合金、Co系アモ
ルファス合金、Co−Pt,Fe−Al,Fe−C,M
n−Sb,Ni−Mn,Co−O,Ni−O,Fe−
O,Fe−Al−Si−N,Ni−F,フェライト等が
好ましい。本発明では、これらの磁性材料のうちから保
磁力の異なる2種またはそれ以上を選択して磁性薄膜を
形成する。
The type of magnetic material used in the magnetic thin film of the present invention is not particularly limited, but specifically, Fe, Ni, Co,
Mn, Cr, Dy, Er, Nd, Tb, Tm, Ce, G
d and the like are preferable. Examples of alloys and compounds containing these elements include Fe-Si, Fe-Ni, and Fe-.
Co, Fe-Al, Fe-Al-Si (Sendust etc.), Fe-Y, Fe-Gd, Fe-Mn, Co-N
i, Cr-Sb, Fe-based amorphous alloy, Co-based amorphous alloy, Co-Pt, Fe-Al, Fe-C, M
n-Sb, Ni-Mn, Co-O, Ni-O, Fe-
O, Fe-Al-Si-N, Ni-F, ferrite and the like are preferable. In the present invention, two or more of these magnetic materials having different coercive forces are selected to form the magnetic thin film.

【0030】各磁性薄膜の膜厚の上限は20A である。
一方、磁性薄膜の厚さの下限は特にないが、4A 以下で
はキューリー点が室温より低くなって実用性がなくなっ
てくる。また、厚さを4A 超とすれば、膜厚を均一に保
つことが容易となり、膜質も良好となる。また、飽和磁
化の大きさが小さくなりすぎることもない。膜厚を20
A より大とすると、上記各特性をすべて満足できる構造
体を作製できなくなる。
The upper limit of the thickness of each magnetic thin film is 20A.
On the other hand, there is no particular lower limit to the thickness of the magnetic thin film, but if it is 4 A or less, the Curie point becomes lower than room temperature and the practicality is lost. Further, if the thickness exceeds 4A, it becomes easy to keep the film thickness uniform and the film quality becomes good. Further, the magnitude of saturation magnetization does not become too small. Film thickness 20
If it is larger than A, it becomes impossible to fabricate a structure satisfying all of the above properties.

【0031】各磁性薄膜の保磁力Hcは、適用される素
子における外部磁界強度や要求される抵抗変化率等に応
じて、例えば0.001Oe〜10kOe 、特に0.01〜
1000Oeの範囲から適宜選択すればよい。また、隣接
する磁性薄膜の保磁力の比は、1.2:1〜100:
1、特に1.5:1〜100:1より好ましくは2:1
〜80:1、特に3:1〜60:1、さらに好ましくは
5:1〜50:1、特に6:1〜30:1であることが
好ましい。比が大きすぎるとMR曲線がブロードになっ
てしまい、また小さすぎるとHcの差が近すぎ、反平行
状態が有効に働かなくなってしまう。
The coercive force Hc of each magnetic thin film is, for example, 0.001 Oe to 10 kOe, especially 0.01 to 10 kOe, depending on the external magnetic field strength of the applied element and the required resistance change rate.
It may be appropriately selected from the range of 1000 Oe. Further, the coercive force ratio of the adjacent magnetic thin films is 1.2: 1 to 100 :.
1, particularly 1.5: 1 to 100: 1, more preferably 2: 1
It is preferably ˜80: 1, especially 3: 1 to 60: 1, more preferably 5: 1 to 50: 1, especially 6: 1 to 30: 1. If the ratio is too large, the MR curve becomes broad, and if it is too small, the difference in Hc becomes too close, and the antiparallel state does not work effectively.

【0032】なお、Hcの測定に際しては、磁気抵抗効
果素子中に存在する磁性薄膜の磁気特性を直接測定する
ことはできないので、通常、下記のようにして測定す
る。すなわち、測定すべき磁性薄膜を、磁性薄膜の合計
厚さが200〜400A 程度になるまで非磁性薄膜と交
互に蒸着して測定用サンプルを作製し、これについて磁
気特性を測定する。この際、磁性薄膜の厚さ、非磁性薄
膜の厚さおよび非磁性薄膜の組成は、磁気抵抗効果測定
素子におけるものと同じものとする。
When measuring Hc, the magnetic characteristics of the magnetic thin film present in the magnetoresistive effect element cannot be directly measured, and therefore, it is usually measured as follows. That is, a magnetic thin film to be measured is alternately deposited with a non-magnetic thin film until the total thickness of the magnetic thin film reaches about 200 to 400 A to prepare a measurement sample, and the magnetic characteristics of the sample are measured. At this time, the thickness of the magnetic thin film, the thickness of the non-magnetic thin film, and the composition of the non-magnetic thin film are the same as those in the magnetoresistive effect measuring element.

【0033】本発明では、0磁場からリニアリティーの
高いMR曲線と高い耐熱性を得るために、Hcの小さい
第1の磁性薄膜とHcの大きい第2の磁性薄膜との0磁
場での残留磁化Mr、すなわち角型比SQ=Mr/Ms
を制御する。
In the present invention, in order to obtain a high linearity MR curve and a high heat resistance from a zero magnetic field, the residual magnetization Mr of the first magnetic thin film having a small Hc and the second magnetic thin film having a large Hc in the zero magnetic field is Mr. , That is, the squareness ratio SQ = Mr / Ms
To control.

【0034】第1の磁性薄膜では、0.7≦SQ1
1.0、より好ましくは0.8≦SQ1 ≦1.0とし、
第2の磁性薄膜では、0.1≦SQ2 ≦0.8、より好
ましくは0.3≦SQ2 ≦0.8とすることが好まし
い。
In the first magnetic thin film, 0.7 ≦ SQ 1
1.0, more preferably 0.8 ≦ SQ 1 ≦ 1.0,
In the second magnetic thin film, it is preferable that 0.1 ≦ SQ 2 ≦ 0.8, and more preferably 0.3 ≦ SQ 2 ≦ 0.8.

【0035】第1の磁性薄膜は、0磁場近傍でのMR変
化の立ち上がりを規定するものであるので角型比はより
1.0に近いほどよい。0.7より小さくなるとMR変
化曲線の立ち上がりがブロードになり、結果的にMR変
化率が小さくなる。一方、第2の磁性薄膜については0
磁場付近で磁化が残留磁化(Mr)より小さくなってい
るほうがよい。例えば角型比が0.7の場合、1方向に
そろっていた両磁性薄膜の磁化は、0磁場では第2の磁
性薄膜の30%が磁化反転する。その結果、0磁場にお
いて部分的に反平行状態を示す部分が生成し、このスピ
ンに依存したMR変化が生じる。従って、第2の磁性薄
膜の角型比を選択することにより0磁場で直線的に変化
するMR曲線を自由に設計することができる。
Since the first magnetic thin film regulates the rise of MR change in the vicinity of 0 magnetic field, the squareness ratio should be closer to 1.0. When it becomes smaller than 0.7, the rising edge of the MR change curve becomes broad, and as a result, the MR change rate becomes small. On the other hand, 0 for the second magnetic thin film
It is better that the magnetization is smaller than the residual magnetization (Mr) near the magnetic field. For example, when the squareness ratio is 0.7, the magnetization of both magnetic thin films aligned in one direction is reversed in magnetization by 30% of the second magnetic thin film at 0 magnetic field. As a result, a portion that partially shows an antiparallel state is generated in the 0 magnetic field, and this spin-dependent MR change occurs. Therefore, by selecting the squareness ratio of the second magnetic thin film, it is possible to freely design the MR curve that linearly changes with zero magnetic field.

【0036】このような特性を満足する磁性薄膜として
は、第1の磁性薄膜として(Nix Fe1-xy Co
1-y (ただし、0.7≦x≦0.9、0.5≦y≦1.
0)、また第1の磁性薄膜として(Coz Ni1-zw
Fe1-w (ただし、0.4≦z≦1.0、0.5≦w≦
1.0)の組成をもつものが好ましい。
As the magnetic thin film satisfying such characteristics, the first magnetic thin film is (Ni x Fe 1-x ) y Co.
1-y (however, 0.7 ≦ x ≦ 0.9, 0.5 ≦ y ≦ 1.
0) and (Co z Ni 1-z ) w as the first magnetic thin film.
Fe 1-w (however, 0.4 ≦ z ≦ 1.0, 0.5 ≦ w ≦
Those having a composition of 1.0) are preferable.

【0037】本発明では、これらの第1および第2の磁
性薄膜と非磁性薄膜との膜厚を最適化する。今、上記の
文献a〜gに示されるほとんどの具体例と同様、第1お
よび第2の磁性薄膜の厚さを同一とするときには、膜厚
が厚くなるほど両薄膜の角型比はともに1.0に近づ
く。このため磁化曲線では明確な磁化の折れ曲がりを示
さない。その結果、MR変化曲線は数10Oeで始めて立
ち上がる0磁場での直線性の悪いものになってしまう。
従って、磁性薄膜の膜厚は両方とも薄い方が直線性がよ
く、良好な立ち上がり特性を示す。また、両薄膜とも、
10A 程度以下と薄い場合でも、例えば250℃程度で
真空中で加熱を行っても角型比の劣化による影響は余り
受けず、耐熱性に問題はない。第1の磁性薄膜は厚くし
た方が角型が1.0に近づく。従って、第2の磁性薄膜
とは独立に第1の磁性薄膜を多少厚くした方が、プロセ
スでの熱処理後のMR特性がよいものが得られる。
In the present invention, the film thicknesses of the first and second magnetic thin films and the non-magnetic thin film are optimized. Now, as in most of the concrete examples shown in the above-mentioned documents a to g, when the thickness of the first and second magnetic thin films is the same, the squareness ratio of both thin films becomes 1. It approaches 0. Therefore, the magnetization curve does not show a clear bending of the magnetization. As a result, the MR change curve has a poor linearity in the 0 magnetic field which rises first at several 10 Oe.
Therefore, the thinner the magnetic thin film is, the better the linearity is, and the good rising characteristics are exhibited. Also, both thin films
Even when the thickness is as thin as about 10 A or less, even if it is heated in a vacuum at about 250 ° C., it is not significantly affected by the deterioration of the squareness ratio, and there is no problem in heat resistance. When the first magnetic thin film is made thicker, the rectangular shape approaches 1.0. Therefore, if the first magnetic thin film is made slightly thicker independently of the second magnetic thin film, the MR characteristic after the heat treatment in the process is better.

【0038】なお、SQ2 /SQ1 は0.3〜1.0、
特に0.3〜0.8であることが好ましい。
SQ 2 / SQ 1 is 0.3 to 1.0,
It is particularly preferably 0.3 to 0.8.

【0039】本発明では、第1および第2の磁性薄膜な
らびに非磁性薄膜の膜厚をそれぞれt1 およびt2 なら
びにt3 としたとき、4A <t2 <20A 、5A <t1
≦20A 、特に5A <t1 <20A 、t2 <t1 、かつ
32A <t3 <50A 、より好ましくは、6A ≦t2
18A 、6A <t1 ≦18A 、1.05t2 <t1 から
36A ≦t3 ≦48A に規制する。t2 が20A 以上と
なると第2の磁性薄膜の角型が大きくなってしまい、直
線性が失われ、立ち上がり特性が悪くなる。
In the present invention, when the film thicknesses of the first and second magnetic thin films and the nonmagnetic thin film are t 1, t 2 and t 3 , respectively, 4A <t 2 <20A, 5A <t 1
≦ 20A, in particular 5A <t 1 <20A, t 2 <t 1, and 32A <t 3 <50A, more preferably, 6A ≦ t 2 <
18A, 6A <t 1 ≤ 18A, 1.05t 2 <t 1 to 36A ≤ t 3 ≤ 48A. When t 2 is 20 A or more, the squareness of the second magnetic thin film becomes large, the linearity is lost, and the rising characteristics deteriorate.

【0040】このように第1および第2の磁性薄膜と非
磁性薄膜と膜厚を規制することにより、成膜直後の磁性
多層膜は、5%以上、特に6〜10%の高いMR変化率
とともに、0磁場にてリニアリティーが高く、MR傾き
(MR slope)の大きいMR変化を示す。より具体的に
は、印加磁場−50Oe〜+50OeまでのMR傾きは0.
15%/Oe以上、通常0.2〜0.5%程度となり、超
高密度記録の読み出し用のMRヘッドとして十分な特性
が得られる。
By thus controlling the film thickness of the first and second magnetic thin films and the non-magnetic thin film, the magnetic multilayer film immediately after film formation has a high MR change rate of 5% or more, particularly 6 to 10%. At the same time, the linearity is high at 0 magnetic field, and the MR change with a large MR slope is shown. More specifically, the MR gradient from the applied magnetic field of −50 Oe to +50 Oe is 0.
15% / Oe or more, usually about 0.2 to 0.5%, and sufficient characteristics can be obtained as a read MR head for ultrahigh density recording.

【0041】また、本発明では、上記のとおりt1 、t
2 、t3 を規制するので、良好な耐熱性が得られ、熱処
理による特性劣化、特にMR変化率の劣化がきわめて少
なくなる。すなわち、例えば真空中、250℃までの熱
処理によってもMR変化率を熱処理前の75%以上に維
持することができ、4.5%以上、特に5%以上のMR
変化率を示す。そして、熱処理後、SQ1 は0.7〜
1.0、特に0.8〜1.0、SQ2 は0.1〜0.
8、特に0.3〜0.8の値を維持する。
In the present invention, as described above, t 1 , t
Since 2 and t 3 are regulated, good heat resistance can be obtained, and deterioration of characteristics due to heat treatment, especially deterioration of MR change rate is extremely reduced. That is, for example, the MR change rate can be maintained at 75% or more before the heat treatment even by heat treatment up to 250 ° C. in vacuum, and the MR change rate of 4.5% or more, particularly 5% or more.
The rate of change is shown. After heat treatment, SQ 1 is 0.7 to
1.0, particularly 0.8 to 1.0, and SQ 2 is 0.1 to 0.
A value of 8, in particular 0.3-0.8 is maintained.

【0042】さらにまた、磁気抵抗変化曲線の最大ヒス
テリシス幅も10Oe以下、一般に4〜6Oeとすることが
でき、実用上きわめて有利である。そして、1MHz の高
周波磁界でのMR傾きは0.03%/Oe以上、通常0.
05〜0.5%/Oeとすることができ、高密度磁気記録
の読み出し用MRヘッドに好適である。
Furthermore, the maximum hysteresis width of the magnetic resistance change curve can be set to 10 Oe or less, generally 4 to 6 Oe, which is extremely advantageous in practical use. And, the MR gradient in a high frequency magnetic field of 1 MHz is 0.03% / Oe or more, and is usually 0.
It can be set to 05 to 0.5% / Oe, which is suitable for a read MR head for high density magnetic recording.

【0043】なお、MR変化率は、比抵抗の最大値およ
び最小値をρmax およびρsat としたとき、(ρmax −
ρsat )×100/ρsat (%)である。また、最大ヒ
ステリシス幅は−50〜+50Oeで磁気抵抗変化曲線
(MRカーブ)を測定して算出したヒステリシスの最大
値である。さらに、MR傾きは、MRカーブを測定し、
その微分曲線を求めて得られた−50〜+50Oeでの微
分値の最大値である。そして、高周波MR傾きは、1MH
z 30Oeの交流磁場でMR変化率を測定したときの−3
〜+3Oe間での傾きである。
The MR change rate is (ρmax −ρs) when the maximum and minimum values of the specific resistance are ρmax and ρsat.
ρsat) × 100 / ρsat (%). Further, the maximum hysteresis width is the maximum value of the hysteresis calculated by measuring the magnetoresistance change curve (MR curve) at -50 to +50 Oe. Furthermore, for the MR slope, measure the MR curve,
It is the maximum value of the differential value at −50 to +50 Oe obtained by obtaining the differential curve. And the high frequency MR tilt is 1MH
-3 when measuring the MR change rate in an alternating magnetic field of z 30 Oe
It is the inclination between +3 Oe.

【0044】用いる非磁性薄膜は、保磁力の異なる磁性
薄膜間の磁気相互作用を弱める役割をはたす材料であ
り、その種類に特に制限はなく各種金属ないし半金属非
磁性体や非金属非磁性体から適宜選択すればよい。金属
非磁性体としては、Au,Ag,Cu,Pt,Al,M
g,Mo,Zn,Nb,Ta,V,Hf,Sb,Zr,
Ga,Ti,Sn,Pb等やこれらの合金が好ましい。
半金属非磁性体としては、Si,Ge,C,B等やこれ
らに別の元素を添加したものが好ましい。非金属非磁性
体としては、SiO2 ,SiO,SiN,Al23
ZnO,MgO,TiN等やこれらに別の元素を添加し
たものが好ましい。これらのうちではAu、Agまたは
Cu、あるいはこれらの1〜3種を70%以上含む合金
が好ましい。
The non-magnetic thin film used is a material that weakens magnetic interaction between magnetic thin films having different coercive forces, and the kind thereof is not particularly limited, and various metals or semi-metal non-magnetic materials or non-metal non-magnetic materials are used. Can be selected as appropriate. As the metal non-magnetic material, Au, Ag, Cu, Pt, Al, M
g, Mo, Zn, Nb, Ta, V, Hf, Sb, Zr,
Ga, Ti, Sn, Pb and the like and alloys thereof are preferable.
As the semi-metal non-magnetic material, Si, Ge, C, B, etc., or those obtained by adding another element to these are preferable. As non-metal non-magnetic materials, SiO 2 , SiO, SiN, Al 2 O 3 ,
It is preferable to use ZnO, MgO, TiN, or the like, or those to which another element is added. Among these, Au, Ag or Cu, or an alloy containing 70% or more of 1 to 3 of these is preferable.

【0045】一般に報告されている、Cu層厚が50A
以下の薄い場合には3〜4%以下の小さなMR変化率し
か示していない。また、このときの磁性層厚も30A 程
度と厚い。しかし、本発明では50A 未満の非磁性薄膜
を20A 未満の薄い磁性薄膜と組み合わせることによ
り、直線的MR変化を示す。特に、非磁性薄膜厚t3
前記32A <t3 <50A となると、0磁場を中心とし
た直線的なMR変化曲線が実現できる。50A 以上とな
ると層間での磁気的結合が完全に切れて直線領域がせま
くなり、ヘッド特性として適さなくなる。また、32A
以下となると層間での磁気結合が強くなり、その結果、
0磁場より正方向に大きくずれてMR曲線が立ち上がる
直線性の悪いものになってしまう。なお、磁性薄膜や非
磁性薄膜の膜厚は、透過型電子顕微鏡、走査型電子顕微
鏡、オージェ電子分光分析等により測定することができ
る。また、薄膜の結晶構造は、X線回折や高速電子線回
折等により確認することができる。
Generally reported Cu layer thickness of 50A
In the following thin cases, only a small MR change rate of 3 to 4% or less is shown. Further, the magnetic layer thickness at this time is as thick as about 30A. However, the present invention exhibits a linear MR change by combining a non-magnetic thin film of less than 50 A with a thin magnetic thin film of less than 20 A. In particular, when the thickness t 3 of the non-magnetic thin film is 32 A <t 3 <50 A, a linear MR change curve centered at 0 magnetic field can be realized. When it is 50 A or more, the magnetic coupling between the layers is completely broken and the linear region is narrowed, which is not suitable for the head characteristics. Also 32A
Below, the magnetic coupling between layers becomes strong, and as a result,
The linearity that the MR curve rises largely deviates from the zero magnetic field in the positive direction, resulting in poor linearity. The thickness of the magnetic thin film and the non-magnetic thin film can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy, or the like. The crystal structure of the thin film can be confirmed by X-ray diffraction, high-speed electron beam diffraction, or the like.

【0046】本発明において、人工格子磁性多層膜の繰
り返し積層回数nに特に制限はなく、目的とする磁気抵
抗変化率等に応じて適宜選択すればよいが、十分な磁気
抵抗変化率を得るためには、nを3以上にするのが好ま
しい。また、積層数を増加するに従って、抵抗変化率も
増加するが、生産性が悪くなり、さらにnが大きすぎる
と素子全体の抵抗が低くなりすぎて実用上の不便が生じ
ることから、通常、nを50以下とするのが好ましい。
なお、長周期構造は、小角X線回折パターンにて、くり
返し周期に応じた1次2次ピーク等の出現により確認す
ることができる。
In the present invention, the number of times n of repeated lamination of the artificial lattice magnetic multilayer film is not particularly limited and may be appropriately selected according to the target magnetoresistance change rate, etc., but in order to obtain a sufficient magnetoresistance change rate. It is preferable that n is 3 or more. Further, as the number of laminated layers increases, the rate of change in resistance also increases, but productivity deteriorates. Further, if n is too large, the resistance of the entire device becomes too low, which causes practical inconvenience. Is preferably 50 or less.
The long-period structure can be confirmed by a small-angle X-ray diffraction pattern from the appearance of primary and secondary peaks according to the repeating period.

【0047】なお、以上の説明では、磁性薄膜として保
磁力の異なる2種類の磁性薄膜だけを用いているが、保
磁力がそれぞれ異なる3種以上の磁性薄膜を用いれば、
磁化方向が逆転する外部磁界を2箇所以上設定でき、動
作磁界強度の範囲を拡大することができる。
In the above description, only two kinds of magnetic thin films having different coercive forces are used as the magnetic thin film, but if three or more kinds of magnetic thin films having different coercive forces are used,
The external magnetic field in which the magnetization direction is reversed can be set at two or more places, and the range of operating magnetic field strength can be expanded.

【0048】また、基板材料と人工格子を構成する材料
との表面エネルギーの違いを緩和し、両者のぬれ性を向
上し、広い範囲で平坦な界面をもった積層構造を実現さ
せるため、磁性多層膜の下地層として、10〜100A
程度のCr、Fe、Co、Ni、W、Ti、V、Mnあ
るいはこれらの合金の薄膜を設けてもよい。さらに、最
上層の磁性薄膜の表面には、窒化ケイ素や酸化ケイ素等
の酸化防止膜が設けられてもよく、電極引出のための金
属導電層が設けられてもよい。磁性多層膜の成膜は、蒸
着法、スパッタリング法、分子線エピタキシー法(MB
E)等の方法で行う。この際、動作圧力10-8Torr以下
の圧力で蒸着法、とりわけMBE法を行うことが好まし
い。また、基板としては、ガラス、ケイ素、MgO、G
aAs、フェライト、CaTiO等を用いることができ
る。
In order to alleviate the difference in surface energy between the substrate material and the material constituting the artificial lattice, improve the wettability of both materials, and realize a laminated structure having a flat interface in a wide range, a magnetic multilayer As a base layer of the film, 10-100A
A thin film of Cr, Fe, Co, Ni, W, Ti, V, Mn or their alloys may be provided. Furthermore, an anti-oxidation film such as silicon nitride or silicon oxide may be provided on the surface of the uppermost magnetic thin film, or a metal conductive layer for leading out electrodes may be provided. The magnetic multilayer film is formed by vapor deposition, sputtering, molecular beam epitaxy (MB
Use the method such as E). At this time, it is preferable to perform the vapor deposition method, especially the MBE method, at an operating pressure of 10 -8 Torr or less. Further, as the substrate, glass, silicon, MgO, G
It is possible to use aAs, ferrite, CaTiO, or the like.

【0049】図3、図4には、本発明の磁性多層膜を用
いて磁気抵抗変化素子、例えばMRヘッドを構成すると
きの例が示される。両図に示される磁気抵抗変化素子1
0は、上記の磁性多層膜1を絶縁層5内に形成して、磁
性多層膜1に測定電流を流すための例えばCu、Ag、
Au等の電極3,3と、例えばTi等のシャント層2と
を接続している。また、磁性多層膜1は、例えばセンダ
スト、パーマロイ等のシールド6,6で被われている。
さらに図4の例では、シャント層2下方に、例えばCo
ZrMo、NiFeRh等の比抵抗の大きな軟磁性材料
のバイアス磁界印加層7が設けられている。ただし、本
発明の磁性多層膜では、0磁場での立ち上がり特性が良
好であるので、このシャント層やバイアス磁界印加手段
は設けなくてよい。
FIGS. 3 and 4 show an example in which a magnetoresistive variable element, for example, an MR head is constructed using the magnetic multilayer film of the present invention. Magnetoresistive change element 1 shown in both figures
0 is, for example, Cu, Ag, or the like for forming the above-mentioned magnetic multilayer film 1 in the insulating layer 5 and supplying a measurement current to the magnetic multilayer film 1.
The electrodes 3 and 3 made of Au or the like are connected to the shunt layer 2 made of Ti or the like. The magnetic multilayer film 1 is covered with shields 6 and 6 such as Sendust and Permalloy.
Further, in the example of FIG. 4, under the shunt layer 2, for example, Co
A bias magnetic field applying layer 7 made of a soft magnetic material having a large specific resistance such as ZrMo and NiFeRh is provided. However, since the magnetic multilayer film of the present invention has a good rising characteristic in a zero magnetic field, this shunt layer and bias magnetic field applying means may not be provided.

【0050】このような磁気抵抗変化素子の製造にあた
っては、工程中パターニング、平坦化等の工程でベーキ
ング、アニーリング、レジストのキュア等の熱処理を必
要とする。しかし、本発明の多層膜は耐熱性が良好であ
るので、400℃以下、一般に50〜300℃、特に5
0〜250℃間程度の熱処理に十分対応できる。熱処理
は通常真空中、不活性ガス雰囲気中、大気中等で行えば
よい。
In manufacturing such a magnetoresistive variable element, heat treatment such as baking, annealing, and curing of resist is required in the steps such as patterning and planarization during the process. However, since the multilayer film of the present invention has good heat resistance, it is 400 ° C. or lower, generally 50 to 300 ° C., especially 5 ° C.
It can fully support heat treatment between 0 and 250 ° C. The heat treatment may be performed usually in vacuum, in an inert gas atmosphere, in the air, or the like.

【0051】[0051]

【実施例】以下、本発明を具体的実施例によりさらに詳
細に説明する。
EXAMPLES The present invention will now be described in more detail with reference to specific examples.

【0052】実施例1 基板としてガラス基板4を用い、超高真空蒸着装置の中
に入れ、10-9〜10-10 Torrまで真空引きを行った。
基板温度は室温に保ったまま基板を回転させながら、以
下の組成をもつ人工格子磁性多層膜1を作成した。この
際、約0.3A/秒の成膜速度で、分子線エピタキシー
法(MBE)による蒸着を行った。
Example 1 Using the glass substrate 4 as a substrate, the glass substrate 4 was placed in an ultrahigh vacuum vapor deposition apparatus and vacuumed to 10 -9 to 10 -10 Torr.
An artificial lattice magnetic multilayer film 1 having the following composition was prepared while rotating the substrate while keeping the substrate temperature at room temperature. At this time, vapor deposition was performed by a molecular beam epitaxy method (MBE) at a film forming rate of about 0.3 A / sec.

【0053】磁性薄膜と非磁性薄膜との多層膜の構成と
磁気抵抗変化率を下記表1に示す。なお、表1におい
て、例えばサンプルNo. 1は、[Ni0.8 Fe0.2 (1
3)/Cu(45)/Co(10)/Cu(45)]×
10であって、t1 =13A 厚のNi80%−Fe20
%のパーマロイ磁性(NiFe)合金の第1の磁性薄
膜、t3 =45A 厚のCuの非磁性薄膜、t2 =10A
厚のCoの第2の磁性薄膜およびt3 =45A 厚のCu
の非磁性薄膜を順次蒸着する工程を10回くり返したこ
とを意味する。各サンプルの繰り直し数はともに10回
としたので、これを(Cu/t3 ,Co/t2 ,NiF
e/t1 )の順で(45,10,13)と表1に記載し
た。なお、各サンプルとも、下地層として50A のCr
層を介在させた。
Table 1 below shows the structure of the multilayer film of the magnetic thin film and the non-magnetic thin film and the magnetoresistance change rate. In Table 1, for example, Sample No. 1 is [Ni 0.8 Fe 0.2 (1
3) / Cu (45) / Co (10) / Cu (45)] ×
A 10, t 1 = a 13A thick Ni80% -Fe20
% Permalloy magnetic (NiFe) alloy first magnetic thin film, t 3 = 45 A thick Cu non-magnetic thin film, t 2 = 10 A
Thick second magnetic thin film of Co and t 3 = 45 A thick Cu
This means that the step of sequentially depositing the non-magnetic thin film of 10 was repeated 10 times. The number of repeats for each sample was set to 10 times, so this was set to (Cu / t 3 , Co / t 2 , NiF
(45, 10, 13) in the order of e / t 1 ) are shown in Table 1. In each sample, 50 A of Cr was used as the underlayer.
Intervening layers.

【0054】磁化およびB−Hループの測定は、振動型
磁力計により行った。抵抗測定は、表1に示される構成
の試料から0.5×10mmの形状のサンプルを作成し、
外部磁界を面内に電流と垂直方向になるようにかけなが
ら、−300〜300Oeまで変化させたときの抵抗を4
端子法により測定し、その抵抗から比抵抗の最小値およ
びMR変化率を求めた。MR変化率(MR,%)は、比
抵抗の最大値をρmax、比抵抗の最小値をρsat とし、
次式により計算した:MR=(ρm −ρsat )×100
/ρsat (%)。また、印加磁場−50Oe〜50Oeまで
のMR傾き(%/Oe)を求めた。この値は前記のとおり
0.15%/Oe以上あることが必要である。さらに、B
Hループの最大ヒステリシス幅を求めた。また1MHz の
高周波磁界(磁界強度3Oe)でのMR傾き(%/Oe)を
求めた。
The magnetization and BH loop were measured by a vibrating magnetometer. For resistance measurement, a sample with a shape of 0.5 × 10 mm was prepared from the sample having the constitution shown in Table 1,
The resistance when changing from -300 to 300 Oe while applying an external magnetic field in the plane perpendicular to the current is 4
The minimum value of the specific resistance and the MR change rate were obtained from the resistance measured by the terminal method. MR change rate (MR,%), the maximum value of resistivity is ρmax, the minimum value of resistivity is ρsat,
Calculated by the following formula: MR = (ρ m −ρ sat) × 100
/ Ρsat (%). Further, the MR gradient (% / Oe) from the applied magnetic field of −50 Oe to 50 Oe was obtained. This value must be 0.15% / Oe or more as described above. Furthermore, B
The maximum hysteresis width of the H loop was obtained. Also, the MR slope (% / Oe) in a high frequency magnetic field of 1 MHz (magnetic field strength of 3 Oe) was obtained.

【0055】これとは別に、第1の磁性薄膜(Co)ま
たは第2の磁性薄膜(NiFe)と、非磁性薄膜(C
u)とを用い、上記の条件で2元系の人工格子を作成
し、それぞれの角型比SQ1 ,SQ2 およびその相対比
SQ2 /SQ1 を求めた。これらの結果(初期特性)を
表1に併記する。
Separately from this, the first magnetic thin film (Co) or the second magnetic thin film (NiFe) and the non-magnetic thin film (C
u) and were used to prepare a binary system artificial lattice under the above conditions, and the respective squareness ratios SQ 1 and SQ 2 and their relative ratios SQ 2 / SQ 1 were determined. The results (initial characteristics) are also shown in Table 1.

【0056】[0056]

【表1】 [Table 1]

【0057】表1に示される結果から、本発明によれば
大きなMR変化率と、大きなMR傾きと、大きな高周波
MR傾きと、小さなヒステリシスが得られることがわか
る。なお、サンプルNo. 2につき、図5の温度で真空中
(10-7Torr)で1時間アニールを行った。この図から
耐熱性も良好であることがわかる。
From the results shown in Table 1, it can be seen that according to the present invention, a large MR change rate, a large MR slope, a large high frequency MR slope, and a small hysteresis can be obtained. The sample No. 2 was annealed in vacuum (10 −7 Torr) at the temperature shown in FIG. 5 for 1 hour. From this figure, it can be seen that the heat resistance is also good.

【0058】[0058]

【発明の効果】本発明によれば、大きな磁気抵抗変化率
を示し、−50Oe〜+50Oeの磁場範囲で大きな磁気抵
抗変化の傾きをもち、磁場感度が高く、ヒステリシスが
少なく、磁性多層膜が得られる。しかも、高周波磁界で
の検出感度が高く、また良好な耐熱性を示す。従って高
感度のMRセンサおよび高密度磁気記録が可能で、バイ
アス印加材構を必要としないMRヘッド等のすぐれた磁
気抵抗変化素子を提供することができる。
According to the present invention, a large magnetic resistance change rate is exhibited, a large magnetic resistance change gradient is obtained in the magnetic field range of -50 Oe to +50 Oe, magnetic field sensitivity is high, hysteresis is small, and a magnetic multilayer film is obtained. To be Moreover, it has high detection sensitivity in a high frequency magnetic field and exhibits good heat resistance. Therefore, a highly sensitive MR sensor and high-density magnetic recording are possible, and an excellent magnetoresistive variable element such as an MR head that does not require a bias applying material structure can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁性多層膜の一部省略断面図である。FIG. 1 is a partially omitted cross-sectional view of a magnetic multilayer film of the present invention.

【図2】本発明の作用を説明するB−H曲線の模式図で
ある。
FIG. 2 is a schematic diagram of a BH curve explaining the operation of the present invention.

【図3】本発明の磁気抵抗変化素子の1例を示す一部省
略正面図である。
FIG. 3 is a partially omitted front view showing an example of a magnetoresistive variable element of the present invention.

【図4】本発明の磁気抵抗変化素子の他の例を示す一部
省略正面図である。
FIG. 4 is a partially omitted front view showing another example of the magnetoresistive variable element of the present invention.

【図5】本発明の磁性多層膜を熱処理したときのMR変
化率とMR傾きの変化を示すグラフである。
FIG. 5 is a graph showing changes in MR change rate and MR slope when a magnetic multilayer film of the present invention is heat-treated.

【符号の説明】[Explanation of symbols]

1 人工格子膜 10 磁気抵抗変化素子 4 基板 1 Artificial lattice film 10 Magnetoresistive change element 4 Substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 43/08 Z 9274−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 43/08 Z 9274-4M

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 非磁性薄膜を介して積層された少なくと
も2層の磁性薄膜を有し、この非磁性薄膜を介して隣合
う磁性薄膜の保磁力が異なっており、 保磁力の小さい第1の磁性薄膜の厚さをt1 、保磁力の
大きい第2の磁性薄膜の厚さをt2 、非磁性薄膜の厚さ
をt3 としたとき、4 A<t2 <20 A、5A<t1
20 A、t1 >t2 、32 A<t3 <50A である磁性
多層膜。
1. A first magnetic film having a small coercive force, which has at least two layers of magnetic thin films laminated with a nonmagnetic thin film interposed therebetween, and adjacent magnetic thin films have different coercive forces via the nonmagnetic thin film. When the thickness of the magnetic thin film is t 1 , the thickness of the second magnetic thin film having a large coercive force is t 2 , and the thickness of the nonmagnetic thin film is t 3 , 4 A <t 2 <20 A, 5 A <t 1
A magnetic multilayer film in which 20 A, t 1 > t 2 , and 32 A <t 3 <50 A.
【請求項2】 保磁力の小さい第1の磁性薄膜の角型比
SQ1 が0.7〜1.0であり、保磁力の大きい第2の
磁性薄膜の角型比SQ2 が0.1〜0.8である請求項
1の磁性多層膜。
2. The squareness ratio SQ 1 of the first magnetic thin film having a small coercive force is 0.7 to 1.0, and the squareness ratio SQ 2 of the second magnetic thin film having a large coercive force is 0.1. The magnetic multi-layer film according to claim 1, which is about 0.8.
【請求項3】 SQ2 /SQ1 が0.3〜1.0である
請求項1または2の磁性多層膜。
3. The magnetic multilayer film according to claim 1 , wherein SQ 2 / SQ 1 is 0.3 to 1.0.
【請求項4】 6A ≦t2 、t1 ≦18 A、t1 ≧1.
05t2 、36A ≦t3 ≦48 Aである請求項1〜3の
いずれかの磁性多層膜。
4. 6 A ≤t 2 , t 1 ≤18 A, t 1 ≥1.
The magnetic multilayer film according to any one of claims 1 to 3 , wherein 05t 2 and 36 A ≤t 3 ≤48 A.
【請求項5】 磁気抵抗変化曲線の最大ヒステリシス幅
が10Oe以下である請求項1〜4のいずれかの磁性多層
膜。
5. The magnetic multilayer film according to claim 1, wherein the maximum hysteresis width of the magnetic resistance change curve is 10 Oe or less.
【請求項6】 −50〜−50Oeの磁場範囲での磁気抵
抗変化の傾きが0.15%/Oe以上である請求項1〜5
のいずれかの磁性多層膜。
6. The gradient of magnetoresistance change in a magnetic field range of −50 to −50 Oe is 0.15% / Oe or more.
Any of the magnetic multilayer film.
【請求項7】 [(比抵抗の最大値−比抵抗の最小値)
/比抵抗の最小値]×100で表される磁気抵抗変化率
が5%以上である請求項1〜6のいずれかの磁性多層
膜。
7. [(maximum specific resistance-minimum specific resistance)]
/ Minimum value of specific resistance] × 100, the rate of change in magnetoresistance is 5% or more, and the magnetic multilayer film according to claim 1.
【請求項8】 1MHz での高周波磁界での磁気抵抗変化
の傾きが0.03%/Oe以上である請求項1〜7のいず
れかの非磁性多層膜。
8. The non-magnetic multilayer film according to claim 1, wherein the gradient of magnetoresistance change in a high frequency magnetic field at 1 MHz is 0.03% / Oe or more.
【請求項9】 前記第1の磁性薄膜の組成が(Nix
1-xy Co1-y(ただし、0.7≦x≦0.9、
0.5≦y≦1.0である。)で表される請求項1〜8
のいずれかの磁性多層膜。
9. The composition of the first magnetic thin film is (Ni x F
e 1-x ) y Co 1-y (where 0.7 ≦ x ≦ 0.9,
0.5 ≦ y ≦ 1.0. ) Claims 1-8 represented by
Any of the magnetic multilayer film.
【請求項10】 前記第2の磁性薄膜の組成が(Coz
Ni1-zw Fe1- w (ただし、0.4≦z≦1.0、
0.5≦w≦1.0である。)で表される請求項1〜9
のいずれかの磁性多層膜。
10. The composition of the second magnetic thin film is (Coz 
Ni1-z )w Fe1- w (However, 0.4 ≦ z ≦ 1.0,
0.5 ≦ w ≦ 1.0. ) Represented by 1) to 9
Any of the magnetic multilayer film.
【請求項11】 前記非磁性薄膜はAu、Agもしくは
Cuまたはそれらの1〜3種を70%以上含む合金から
選ばれたものである請求項 1〜10のいずれかの磁性多
層膜。
11. The magnetic multilayer film according to claim 1, wherein the non-magnetic thin film is selected from Au, Ag or Cu or an alloy containing 70% or more of 1 to 3 of them.
【請求項12】 成膜後、400℃以下の温度で熱処理
を行う請求項1〜11のいずれかの磁性多層膜の製造方
法。
12. The method for producing a magnetic multilayer film according to claim 1, wherein after the film formation, heat treatment is performed at a temperature of 400 ° C. or lower.
【請求項13】 10-8Torr以下の圧力で成膜を行う請
求項1〜11のいずれかの磁性多層膜の製造方法。
13. The method for producing a magnetic multilayer film according to claim 1, wherein the film formation is performed at a pressure of 10 −8 Torr or less.
【請求項14】 基板上に請求項1〜11のいずれかの
磁性多層膜を有する磁気抵抗効果素子。
14. A magnetoresistive element having a magnetic multilayer film according to claim 1 on a substrate.
【請求項15】 バイアス磁界印加機構を有しない請求
項14の磁気抵抗効果素子。
15. The magnetoresistive effect element according to claim 14, which does not have a bias magnetic field applying mechanism.
【請求項16】 請求項12または13の製造方法によ
り、基板上に非磁性薄膜を介して少なくとも2層の磁性
薄膜を形成し、請求項1〜11のいずれかの磁性多層膜
を設けた磁気抵抗効果素子の製造方法。
16. A magnetic film having at least two magnetic thin films formed on a substrate via a non-magnetic thin film by the manufacturing method according to claim 12 or 13, and the magnetic multilayer film according to claim 1. Method of manufacturing resistance effect element.
JP5172709A 1993-06-18 1993-06-18 Magnetic multilayered film, magnetoresistive element, and manufacture thereof Pending JPH076915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5172709A JPH076915A (en) 1993-06-18 1993-06-18 Magnetic multilayered film, magnetoresistive element, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5172709A JPH076915A (en) 1993-06-18 1993-06-18 Magnetic multilayered film, magnetoresistive element, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH076915A true JPH076915A (en) 1995-01-10

Family

ID=15946891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5172709A Pending JPH076915A (en) 1993-06-18 1993-06-18 Magnetic multilayered film, magnetoresistive element, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH076915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507555B1 (en) 1996-07-19 2003-01-14 Matsushita Electric Industrial Co., Ltd. Balanced disk drive apparatus
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6507555B1 (en) 1996-07-19 2003-01-14 Matsushita Electric Industrial Co., Ltd. Balanced disk drive apparatus
US6704271B2 (en) 1996-07-19 2004-03-09 Matsushita Electric Industrial Co., Ltd. Disk drive apparatus
US6711116B2 (en) 1996-07-19 2004-03-23 Matsushita Electric Industrial Co., Ltd. Balanced disk drive apparatus
US7830143B2 (en) 2006-03-10 2010-11-09 Nec Corporation Magnetic sensor, method of manufacturing the same, and electronic device

Similar Documents

Publication Publication Date Title
JP3411626B2 (en) Magnetic multilayer film, magnetoresistive effect element, and method of manufacturing the same
JP3285937B2 (en) Magnetic multilayer film, magnetoresistive variable element, and manufacturing method thereof
KR100192192B1 (en) Magnetoresistance effect film, a method of manufacturing the same, and magnetoresistance effect device
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
US6074743A (en) Magnetoresistance effect element and magnetoresistance device
EP0701142B1 (en) Magnetoresistance effect film and production process thereof
JP3207477B2 (en) Magnetoresistance effect element
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JP3514863B2 (en) Magnetoresistance effect multilayer film, magnetoresistance effect element, and method of manufacturing magnetoresistance effect element
WO1991018424A1 (en) Magnetoresistance effect element
JPH08204253A (en) Magnetoresistive effect film
JPH09199325A (en) Multilayered structure, sensor and its manufacture
US6004654A (en) Magnetic multilayer film, magnetoresistance element, and method for preparing magnetoresistance element
JP3088519B2 (en) Magnetoresistive element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
EP0624868B1 (en) Magnetoresistance effect elements and method of fabricating the same
JP3247535B2 (en) Magnetoresistance effect element
JP3153739B2 (en) Magnetoresistive element and magnetic transducer
JPH076915A (en) Magnetic multilayered film, magnetoresistive element, and manufacture thereof
JP2738295B2 (en) Magnetoresistive film and method of manufacturing the same
JP3337732B2 (en) Magnetoresistance effect element
US6001430A (en) Magnetoresistance effect film and production process thereof
JP2002217472A (en) Magnetic multilayer film and magnetoresistance change element
JPH08316033A (en) Magnetic laminate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030311