[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0768103A - Membrane deaerating method - Google Patents

Membrane deaerating method

Info

Publication number
JPH0768103A
JPH0768103A JP22133093A JP22133093A JPH0768103A JP H0768103 A JPH0768103 A JP H0768103A JP 22133093 A JP22133093 A JP 22133093A JP 22133093 A JP22133093 A JP 22133093A JP H0768103 A JPH0768103 A JP H0768103A
Authority
JP
Japan
Prior art keywords
membrane
degassing
hollow fiber
liquid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22133093A
Other languages
Japanese (ja)
Inventor
Masahide Taniguchi
雅英 谷口
Takashi Seki
隆志 関
Hiroyuki Yamamura
弘之 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP22133093A priority Critical patent/JPH0768103A/en
Publication of JPH0768103A publication Critical patent/JPH0768103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To remove a dissolved gas in a solution to be treated, to decrease pressure drop and reduce a required driving power by dipping a hallow yarn deaerating membrane unit into the solution to be treated and evacuating the inside of the hollow yarn membrane by a vacuum line connected to an opening part of the hollow yarn membrane. CONSTITUTION:The deaerating membrane unit is made by joining to fix and opening one or both side of the hollow yarn deaerating membrane 2, is housed into a vessel 8 for solution to be treated, and the inside and outside of the hollow yarn membrane are divided by a partition 9. The dissolved gas in the solution to be treated which is in contact with the deaerating hollow yarn membrane is removed by evacuating an evacuating chamber 10 connected to the inside of hollow yarn membrane by an evacuating means 3. In this case, the whole solution to be treated is deaerated by circulating the solution to be treated in the vessel 8 with a circulating pump 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、疎水性気体透過膜を使
用して、膜の一方に原水を流しつつ、他方を減圧するこ
とによって、原水中の溶存気体を除去する膜脱気装置に
関するものであり、詳しくは中空糸型である膜脱気装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane degassing apparatus which uses a hydrophobic gas permeable membrane to remove dissolved gas in raw water by flowing raw water through one side and depressurizing the other side. More specifically, it relates to a hollow fiber type membrane degassing device.

【0002】[0002]

【従来の技術】最近、疎水性気体分離膜を使用して、水
中に溶存している酸素,窒素,二酸化炭素などの気体を
除去する、いわゆる脱気処理が最近実用化され始めてい
る(実開昭57- 35795 ,特開昭62-273095 )。この方法
は、シリコーン等を素材とする、気体を透過機能を有
し、水を透過させない性質を持った膜の表面または裏面
に原水を流し、反対面を減圧状態にすることにより、原
水中の溶存気体のみを膜透過除去し、脱気するというも
のである。水中の溶存気体を除去することによって、例
えば、水の循環ラインにおける溶存酸素による配管接液
内面の腐食、二酸化炭素による超純水の水質低下を防ぐ
ことができる。本方式では、従来の薬品添加法にみられ
た薬品残存成分のような問題もなく、真空脱気法等と比
較しても装置が簡単となり、運転コストも軽減されると
いう長所が認められている。
2. Description of the Related Art Recently, a so-called degassing process for removing gases such as oxygen, nitrogen, and carbon dioxide dissolved in water by using a hydrophobic gas separation membrane has recently been put into practical use. 57-35795, JP-A-62-273095). This method uses raw materials such as silicone, which has a gas permeation function and has a property of not allowing water to permeate. Only dissolved gas is removed through the membrane and degassed. By removing the dissolved gas in the water, it is possible to prevent, for example, corrosion of the inner surface of the liquid contacting the pipe due to dissolved oxygen in the water circulation line and deterioration of the water quality of the ultrapure water due to carbon dioxide. With this method, there are no problems such as chemical residual components found in the conventional chemical addition method, the apparatus is simpler than the vacuum degassing method, etc., and the operating cost is reduced. There is.

【0003】現在、一般的に用いられている脱気膜には
平膜と中空糸膜があり、平膜はスパイラル型にして用い
られる場合が多い。中空糸型は、中空糸膜の内側に原水
を流し、外側を減圧することで中空糸内部を流れる原水
中の溶存気体を除去する方式のものである。中空糸型の
場合、ユニット体積あたりの膜面積を大きくとることが
可能であるため、小型ユニットで溶存気体濃度を十分に
下げることができ、高効率の脱気処理が可能となるとい
う特長を有している。
Degassing membranes generally used at present include flat membranes and hollow fiber membranes, and flat membranes are often used in a spiral type. The hollow fiber type is a system in which raw water is caused to flow inside the hollow fiber membrane and pressure is reduced outside to remove dissolved gas in the raw water flowing inside the hollow fiber. In the case of the hollow fiber type, the membrane area per unit volume can be made large, so the dissolved gas concentration can be sufficiently reduced in a small unit, and highly efficient degassing treatment is possible. is doing.

【0004】[0004]

【発明が解決しようとする問題】しかしながら、これま
での中空糸内側に原水を流し外側を減圧する方式では、
原水流において生じる濃度境膜発達を抑制しやすく、高
効率の脱気が可能であった反面、中空糸が細いことによ
り、原水にゴミなどが含まれていた場合、中空糸入口に
おいて目詰まりを生じる場合がある。また、処理水量を
増加させようとすると原水の流動抵抗による圧力損失の
増大が、所要動力の著しい増大を招くため大量処理を困
難にしていた。また、ユニット外気温が低い場合、中空
糸膜外表面で水蒸気が凝縮しやすく、膜表面を塞いでし
まうため、脱気に有効な膜面積が減少し、処理効率が低
下しやすいという問題点も有していた。
However, in the conventional methods of flowing raw water inside the hollow fiber and depressurizing the outside,
While it was easy to suppress the concentration film development that occurred in the raw water flow and was capable of highly efficient degassing, if the raw water contained dust, etc., clogging at the hollow fiber inlet could occur if the raw water contained dust. May occur. Further, when an attempt is made to increase the amount of treated water, an increase in pressure loss due to the flow resistance of raw water causes a significant increase in required power, making it difficult to process a large amount of water. In addition, when the outside air temperature of the unit is low, water vapor is likely to condense on the outer surface of the hollow fiber membrane and block the membrane surface, so that the membrane area effective for deaeration is reduced and the treatment efficiency is likely to be lowered. Had.

【0005】さらに、酸素や二酸化炭素など特定の気体
を除去することを目的とする場合、その脱気効率を向上
させることを目的とし、減圧側に脱気対象以外の搬送気
体を流すことは公知(特開平3-249907)であるが、この
方法は、平膜積層型やスパイラル型で確立された技術で
あり、減圧側において搬送気体が偏り無く流れることが
必要とされる。中空糸型の場合、中空糸膜の配置にわず
かな偏りがあったり、前記したように低温である場合に
生じる凝縮水蒸気が障害となり、搬送気体を流す効果が
十分に発揮できなかった。
Further, when it is intended to remove a specific gas such as oxygen or carbon dioxide, it is known to flow a carrier gas other than the degassing target to the depressurization side for the purpose of improving the degassing efficiency. As described in (Japanese Patent Laid-Open No. 3-249907), this method is a technique established by a flat film stacking type or a spiral type, and it is necessary that the carrier gas flows evenly on the depressurized side. In the case of the hollow fiber type, the arrangement of the hollow fiber membrane has a slight deviation, or the condensed steam generated when the temperature is low as described above becomes an obstacle, and the effect of flowing the carrier gas cannot be sufficiently exerted.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、多数本
の中空糸脱気膜の片方または両方を集束して、接着固定
し、該中空糸膜束端部の片方または両方を開口した中空
糸脱気膜ユニットを、被処理液に浸漬し、中空糸膜開口
部に接続した真空ラインにより中空糸膜の内側を減圧す
ることによって、該中空糸膜外表面に接触する液中に溶
存する気体を除去することを特徴とする膜脱気方法によ
り基本的に達成される。
SUMMARY OF THE INVENTION An object of the present invention is to bundle one or both of a large number of hollow fiber degassing membranes, fix them by adhesive bonding, and open one or both of the ends of the hollow fiber membrane bundles. The hollow fiber degassing membrane unit is immersed in the liquid to be treated, and the inside of the hollow fiber membrane is decompressed by a vacuum line connected to the opening of the hollow fiber membrane, so that the hollow fiber membrane is dissolved in the liquid that contacts the outer surface of the hollow fiber membrane. It is basically achieved by a membrane degassing method characterized by removing the gas that

【0007】すなわち、中空糸外部を被処理液に接触さ
せることで、中空糸膜内部に被処理液を流すことによる
圧力損失の増大を防ぐことができ、中空糸膜にそれほど
の耐圧性を要求せずに大量処理を可能とすることができ
る。また、減圧側が中空糸膜内部となり、被処理液に囲
まれているため、原水と同温度に保たれ、中空糸膜表面
で水蒸気が凝縮することを防止でき、処理効率を十分に
維持できる。
That is, by contacting the outside of the hollow fiber with the liquid to be treated, it is possible to prevent an increase in pressure loss due to the flow of the liquid to be treated inside the hollow fiber membrane, and the hollow fiber membrane is required to have such a high pressure resistance. It is possible to enable large-scale processing without doing so. Further, since the depressurized side is inside the hollow fiber membrane and is surrounded by the liquid to be treated, it is kept at the same temperature as the raw water, and it is possible to prevent the condensation of water vapor on the surface of the hollow fiber membrane and sufficiently maintain the treatment efficiency.

【0008】図1は、本発明の膜脱気方法に用いる脱気
膜ユニットの一例の構造を示す断面図である。また、図
2は、図1の脱気膜ユニットを装備した膜脱気装置の一
例である。図1に示す脱気膜ユニットは、中空糸脱気膜
2の片端を接着,開放し、反対端を封止したものであ
り、図2はこのユニット7を被処理液容器8に納め、中
空糸膜内側と外側を仕切9によって分割した構造となっ
ており、減圧手段3によって中空糸膜内側に連接した減
圧室10を減圧することによって、中空糸脱気膜に接触
する被処理液中の溶存気体を除去するものである。ここ
でいう減圧手段は、真空ポンプ、とくに、水蒸気の存在
下でも問題のない水封式真空ポンプを用いるのが最も一
般的であるが、エゼクター,アスピレーターなど減圧が
実現できるものであれば特に限定されない。また、この
とき、被処理液は循環ポンプ5によって容器8内を循環
するため、被処理液全体が脱気されることになる。脱気
液は、循環ラインに設けたユースポイント6より必要量
だけ取り出すことができ、取り出した分の液量だけリザ
ーバータンク4より被処理液室11へ供給される。
FIG. 1 is a sectional view showing the structure of an example of a degassing membrane unit used in the membrane degassing method of the present invention. Further, FIG. 2 is an example of a membrane degassing apparatus equipped with the degassing membrane unit of FIG. The degassing membrane unit shown in FIG. 1 is one in which one end of a hollow fiber degassing membrane 2 is bonded and opened, and the other end is sealed. In FIG. The inner and outer sides of the fiber membrane are divided by a partition 9, and the decompression means 3 decompresses the decompression chamber 10 that is connected to the inner side of the hollow fiber membrane, whereby It removes dissolved gas. As the depressurizing means here, it is most common to use a vacuum pump, particularly a water-sealed vacuum pump that has no problem even in the presence of water vapor, but is not particularly limited as long as it can realize depressurization such as an ejector and an aspirator. Not done. At this time, the liquid to be treated is circulated in the container 8 by the circulation pump 5, so that the entire liquid to be treated is degassed. The degassed liquid can be taken out from the use point 6 provided in the circulation line in a required amount, and is supplied from the reservoir tank 4 to the liquid chamber 11 to be treated by the amount of the taken out liquid.

【0009】本発明の膜脱気方法に用いられる脱気膜ユ
ニットは、基本的には接着部と中空糸膜から構成される
ものであり、中空糸膜外側が被処理液に接触し、かつ、
中空糸膜内側が減圧されてさえいればよく、図3,図4
に示されるように封止部23が1つもしくは複数に接着
されていても何等問題はない。さらに、図5に示すよう
に中空糸脱気膜2をU型に配し、その両端を同一方向に
接着,開口した構造をしていてもよい。また、図6に示
すように中空糸膜2の両端をそれぞれ接着,開口した構
造とすることも可能である。この場合、図7に示すよう
に減圧室10,11は中空糸膜2の両端部に存在し、こ
れによって、膜面をより十分に減圧することができる。
また、図8に示すように中空糸脱気膜2の片端にスペー
ス13と真空ラインへの連接パイプ14を設ける方法も
ある。この場合、中空糸膜の本数は減少するが、パイプ
が補強材的な役割も持つので中空糸膜の強伸度が十分で
ない場合は有効である。また、中空糸膜を保護,補強す
る有効な手段としては、図9に示すように、補強材21
を外周部に備えることも可能である。補強材21として
は、図10に示したような孔あき円筒構造16、網上円
筒構造17などがあげられる。
The degassing membrane unit used in the membrane degassing method of the present invention basically comprises an adhesive part and a hollow fiber membrane, and the outside of the hollow fiber membrane is in contact with the liquid to be treated, and ,
It is sufficient that the inside of the hollow fiber membrane is depressurized.
There is no problem even if one or more sealing portions 23 are bonded as shown in FIG. Further, as shown in FIG. 5, the hollow fiber degassing membrane 2 may be arranged in a U shape, and both ends thereof may be bonded and opened in the same direction. Further, as shown in FIG. 6, both ends of the hollow fiber membrane 2 may be bonded and opened. In this case, as shown in FIG. 7, the decompression chambers 10 and 11 are present at both ends of the hollow fiber membrane 2, whereby the membrane surface can be decompressed more sufficiently.
There is also a method of providing a space 13 and a connecting pipe 14 to the vacuum line at one end of the hollow fiber degassing membrane 2 as shown in FIG. In this case, although the number of hollow fiber membranes decreases, the pipe also plays a role of a reinforcing material, so that it is effective when the strength and elongation of the hollow fiber membrane is not sufficient. Further, as an effective means for protecting and reinforcing the hollow fiber membrane, as shown in FIG.
It is also possible to equip the outer peripheral portion with. Examples of the reinforcing member 21 include a perforated cylindrical structure 16 and a mesh cylindrical structure 17 as shown in FIG.

【0010】ところで、本脱気膜ユニットの脱気効率を
左右する大きな要因として、被処理液の循環が挙げられ
る。これは、中空糸膜に接触している液が滞留してしま
うと容器内全体の脱気を行うことができないからであ
る。前述した例においては装置の循環ポンプ5によって
液の循環を行っているが、液の循環をより効果的に行う
には、容器内もしくは脱気膜ユニット内に液の循環機構
を設けることが重要である。脱気膜ユニットに液循環手
段を設けた例としては、図11,図12を示す。必ずし
もこれらの図に示すとおりである必要はないが、十分に
液が循環できる形式が望ましい。
By the way, a major factor that influences the degassing efficiency of the present degassing membrane unit is the circulation of the liquid to be treated. This is because if the liquid in contact with the hollow fiber membranes stays, the entire container cannot be degassed. In the example described above, the liquid is circulated by the circulation pump 5 of the apparatus, but in order to more effectively circulate the liquid, it is important to provide a liquid circulation mechanism in the container or the degassing membrane unit. Is. 11 and 12 show an example in which the liquid circulating means is provided in the degassing membrane unit. Although not necessarily as shown in these figures, it is preferable to use a system that allows sufficient liquid circulation.

【0011】以上の例は、中空糸膜内部を減圧すること
のみによって脱気を行うものであるが、酸素,二酸化酸
素などの特定気体を除去する場合は、図6に示すように
中空糸膜2の両端部を開,放してある形式のユニットを
用い、片側から除去対象以外の気体を搬送気体として流
すことにより大きな脱気性能を得ることができる。この
場合、中空糸膜内部の搬送気体供給側の反対端から減圧
する方が効果的であるが、必ずしも減圧する必要はな
い。また、搬送気体としては、コスト,安全性などの面
から考えて、空気もしくは窒素が好ましい。搬送気体を
使用する場合の装置の一例を図13に示す。
In the above example, deaeration is performed only by depressurizing the inside of the hollow fiber membrane. However, when a specific gas such as oxygen or oxygen dioxide is removed, as shown in FIG. A large degassing performance can be obtained by using a unit of a type in which both ends of 2 are opened and released and a gas other than the removal target is made to flow from one side as a carrier gas. In this case, it is more effective to reduce the pressure from the end opposite to the carrier gas supply side inside the hollow fiber membrane, but it is not always necessary to reduce the pressure. Further, as the carrier gas, air or nitrogen is preferable in view of cost and safety. FIG. 13 shows an example of an apparatus when a carrier gas is used.

【0012】これまで例示した脱気膜ユニットは単独で
使用する場合の例であるが、より大量の液を短時間で脱
気する必要がある場合、図14のように並列に設置する
ことも可能である。被処理液容器が限定されている場合
など、直列にて使用することを考えて、図15,図16
のように中空糸内側へ通じる真空ラインをユニット下端
へ配した形式の脱気膜ユニットにすれば、図17に示す
ように複数連結することができる。もちろん、ここでい
う連結部分は、Oリング,シール材,アタッチメントな
ど液体はもちろん気体を通さず、中空糸内側への漏れ込
みを防止するようにしなければならない。
The deaeration membrane units exemplified so far are examples of the case where they are used alone, but when it is necessary to deaerate a larger amount of liquid in a short time, they may be installed in parallel as shown in FIG. It is possible. Considering use in series, such as when the liquid container to be treated is limited,
If a degassing membrane unit of the type in which the vacuum line leading to the inside of the hollow fiber is arranged at the lower end of the unit as described above, a plurality of units can be connected as shown in FIG. Needless to say, the connecting portion referred to here must prevent gas such as O-ring, sealant, and attachment from passing through gas as well as liquid, and must prevent leakage into the inside of the hollow fiber.

【0013】また、このように複数の脱気膜ユニットを
被処理液容器内で使用する場合は、各ユニット内の液を
十分に循環させるためにとくに図18に示すような送液
手段18を有することが望ましい。
Further, when a plurality of degassing membrane units are used in the liquid container to be treated in this way, a liquid feeding means 18 as shown in FIG. It is desirable to have.

【0014】本発明における脱気膜ユニットに用いられ
る中空糸膜は、特に、中空糸の形状を限定するものでは
なく、一般にいうチューブラー型(中空糸径数mm以
上),キャピラリー型(中空糸径約1mm前後),ホロフ
ァイバー型(中空糸径1mm未満)といった径のサイズや
中空糸横断面の形には限定されないが、膜面積を大きく
とることが可能なのはホロファイバー型である。また、
細孔の状態も特に限定される物ではないが、脱気性能を
発揮するためには、原水を細孔内に侵入させないよう
に、とくに原水の流れる側の膜表面に十分な緻密さを有
するものがよい。また、十分な気体透過性を有するため
には中空糸膜内部および減圧側膜表面は、疎であるもの
が望ましい。これにより、気体の透過抵抗を減少させ、
また、減圧側の空孔面積が大きくなるため、膜表面で十
分な減圧を行うことも容易になる。ところで、膜素材
は、疎水性で中空糸の形状にすることができればよく、
ポリエチレン,ポリプロピレン,ポリテトラフルオロエ
チレン,ポリフッ化ビニリデン,ポリ4メチルペンテン
等が好ましいが、特に好ましいのは、ポリフッ化ビニリ
デン,もしくは4メチルペンテンからなる重合体であ
る。また、膜の疎水性を向上させるために中空糸の内外
表面の一方もしくは両方に架橋型シリコーン系,フッ素
樹脂系等といった疎水性薄膜を形成させ、複合膜化する
ことも可能である。とくに、架橋型シリコーン系複合膜
は、基材膜の表面に架橋型シリコーン系の薄膜を形成さ
せたことを特徴とする膜で、表面の状態が一般に非多孔
膜と呼ばれるほど緻密な状態を形成しているものが多
い。このため、シリコーン自体が持つ疎水性に加えて、
汚れ成分の吸着を抑えることができるという、すばらし
い特性を有している。
The hollow fiber membrane used in the degassing membrane unit in the present invention is not particularly limited to the shape of the hollow fiber, and is generally called tubular type (hollow fiber diameter of several mm or more), capillary type (hollow fiber). The size of the diameter and the shape of the cross section of the hollow fiber are not limited to those of the diameter such as the diameter of about 1 mm) and the hollow fiber type (hollow fiber diameter less than 1 mm), but the hollow fiber type can take a large membrane area. Also,
The state of the pores is also not particularly limited, but in order to exert degassing performance, the membrane surface on the side where the raw water flows is sufficiently dense so that the raw water does not enter the pores. Things are good. Further, in order to have sufficient gas permeability, it is desirable that the inside of the hollow fiber membrane and the surface of the pressure reducing side are sparse. This reduces the gas permeation resistance,
Further, since the pore area on the depressurization side becomes large, it becomes easy to sufficiently depressurize the film surface. By the way, the membrane material should be hydrophobic and can be formed into the shape of a hollow fiber,
Polyethylene, polypropylene, polytetrafluoroethylene, polyvinylidene fluoride, poly (4-methylpentene) and the like are preferable, but a polymer made of polyvinylidene fluoride or 4-methylpentene is particularly preferable. Further, in order to improve the hydrophobicity of the membrane, it is possible to form a hydrophobic membrane such as a cross-linking silicone-based or fluororesin-based one or both of the inner and outer surfaces of the hollow fiber to form a composite membrane. In particular, the crosslinkable silicone-based composite film is a film characterized by forming a crosslinkable silicone-based thin film on the surface of the base material film, and the surface state is so dense that it is generally called a non-porous film. There are many things we are doing. Therefore, in addition to the hydrophobic property of silicone itself,
It has an excellent property that it can suppress the adsorption of dirt components.

【0015】もちろん、以上に述べた疎水性薄膜は、前
述したように被処理液に接触する面を緻密な構造にする
方がよいことから、中空糸膜外表面に形成させる方が内
側に形成させるよりも脱気効率が高くなることはいうま
でもない。
Of course, in the above-mentioned hydrophobic thin film, it is preferable that the surface which comes into contact with the liquid to be treated has a dense structure as described above, and therefore it is formed on the inner side when formed on the outer surface of the hollow fiber membrane. It goes without saying that the degassing efficiency is higher than that of the case.

【0016】[0016]

【実施例】以下実施例をもってもって本発明をさらに具
体的に説明する。ただし、本発明はこれにより限定され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to this.

【0017】実施例1 本発明の例である図1に示した形式の脱気膜ユニットを
作製した。このユニットは、ポリフッ化ビニリデン(米
国アウジモント社製HYLAR460)を湿式紡糸して作製した
内径180 μm ,外径225 μm の中空糸膜24000 本(全長
450mm ,有効長430mm )の片端を熱融着,封止し、もう
片端を接着開口したものである。この脱気膜ユニットを
図2に示すような膜脱気装置に装填した。このとき、被
処理液容器の容積は10リットルで、真空ラインを50Torr
とし、循環ポンプによる循環流量を2 リットル/分とし
た。また、被処理液は、水温25℃,溶存酸素濃度8.0ppm
の純水を用いた。以上の条件で脱気試験を行ったとこ
ろ、溶存酸素濃度を1.0ppmまで低下させるのに12分要
し、このときのポンプ所要動力は260W( 動力量260W×12
分=187kJ)であった。
Example 1 A degassing membrane unit of the type shown in FIG. 1, which is an example of the present invention, was produced. This unit consists of 24,000 hollow fiber membranes with an inner diameter of 180 μm and an outer diameter of 225 μm, made by wet-spinning polyvinylidene fluoride (HYLAR460 manufactured by Ausimont, USA).
One side of 450 mm, effective length of 430 mm) is heat-sealed and sealed, and the other end is adhesively opened. This degassing membrane unit was loaded into a membrane degassing apparatus as shown in FIG. At this time, the volume of the liquid container to be treated is 10 liters, and the vacuum line is set to 50 Torr.
The circulation flow rate by the circulation pump was set to 2 liters / minute. The liquid to be treated has a water temperature of 25 ° C and a dissolved oxygen concentration of 8.0 ppm.
Pure water of was used. When the degassing test was performed under the above conditions, it took 12 minutes to reduce the dissolved oxygen concentration to 1.0 ppm, and the required power of the pump at this time was 260 W
Min = 187 kJ).

【0018】比較例1 実施例1と同じ中空糸膜を同じ本数,同じ長さ用いて、
図19に示したような中空糸膜内部に被処理液を流し、
外側を減圧する方式である従来の脱気膜ユニットを作製
し、図20のような装置で脱気試験を行った。被処理液
容器の容積,真空ライン,被処理液水質は実施例1と同
じ条件で、脱気膜ユニットへの循環量を2 リットル/分
とした。このとき、溶存酸素濃度を1.0ppmまで低下させ
るのに5分要し、ポンプ所要動力は980W( 動力量980W×5
分=294kJ)であった。
Comparative Example 1 Using the same number of hollow fiber membranes and the same length as in Example 1,
The liquid to be treated is flown into the hollow fiber membrane as shown in FIG.
A conventional degassing membrane unit, which is a system of depressurizing the outside, was manufactured, and a degassing test was conducted with an apparatus as shown in FIG. The volume of the liquid container to be treated, the vacuum line, and the water quality of the liquid to be treated were the same as in Example 1, and the circulation rate to the degassing membrane unit was 2 liters / minute. At this time, it takes 5 minutes to reduce the dissolved oxygen concentration to 1.0 ppm, and the required power of the pump is 980 W (power amount 980 W × 5
Min = 294 kJ).

【0019】[0019]

【発明の効果】本発明に膜脱気方法により、低動力で大
量脱気処理が可能となった。
The membrane degassing method of the present invention enables large-scale degassing with low power.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る、脱気膜ユニットの一例の断面図
である。
FIG. 1 is a cross-sectional view of an example of a degassing membrane unit according to the present invention.

【図2】本発明に係る、膜脱気装置の一例の回路図であ
る。
FIG. 2 is a circuit diagram of an example of a membrane degassing apparatus according to the present invention.

【図3】本発明に係る、封止部を集合した脱気膜ユニッ
トの一例の断面図である。
FIG. 3 is a cross-sectional view of an example of a degassing membrane unit in which a sealing portion is assembled according to the present invention.

【図4】本発明に係る、封止部を複数にした脱気膜ユニ
ットの一例の断面図である。
FIG. 4 is a sectional view of an example of a degassing membrane unit having a plurality of sealing portions according to the present invention.

【図5】本発明に係る、中空糸膜端部を一方に集めた脱
気膜ユニットの一例の断面図である。
FIG. 5 is a cross-sectional view of an example of a degassing membrane unit in which the end portions of the hollow fiber membrane according to the present invention are collected on one side.

【図6】本発明に係る、中空糸膜の両端を開放した脱気
膜ユニットの一例の断面図である。
FIG. 6 is a cross-sectional view of an example of a degassing membrane unit in which both ends of a hollow fiber membrane are opened according to the present invention.

【図7】本発明に係る、脱気膜ユニットの両端に真空ラ
インを連接した膜脱気装置の一例の回路図である。
FIG. 7 is a circuit diagram of an example of a membrane degassing apparatus in which vacuum lines are connected to both ends of a degassing membrane unit according to the present invention.

【図8】本発明に係る、中心パイプを有する脱気膜ユニ
ットの一例の断面図である。
FIG. 8 is a sectional view of an example of a degassing membrane unit having a central pipe according to the present invention.

【図9】本発明に係る、多孔性補強材を備えた脱気膜ユ
ニットの一例の断面図である。
FIG. 9 is a cross-sectional view of an example of a degassing membrane unit including a porous reinforcing material according to the present invention.

【図10】本発明に係る、脱気膜ユニット用多孔性補強
材の例である。
FIG. 10 is an example of a porous reinforcing material for a degassing membrane unit according to the present invention.

【図11】本発明に係る、送液手段を備えた脱気膜ユニ
ットの断面図の一例である。
FIG. 11 is an example of a cross-sectional view of a degassing membrane unit including a liquid feeding means according to the present invention.

【図12】本発明に係る、送液手段を備えた脱気膜ユニ
ットの断面図の孔あきパイプが片方に設けられた例であ
る。
FIG. 12 is an example in which the perforated pipe of the cross-sectional view of the degassing membrane unit provided with the liquid feeding means according to the present invention is provided on one side.

【図13】本発明に係る、搬送気体供給口を有する膜脱
気装置の一例の回路図である。
FIG. 13 is a circuit diagram of an example of a membrane degassing apparatus having a carrier gas supply port according to the present invention.

【図14】本発明に係る、複数の脱気膜ユニットを並列
に配した膜脱気装置の一例の回路図である。
FIG. 14 is a circuit diagram of an example of a membrane degassing apparatus in which a plurality of degassing membrane units are arranged in parallel according to the present invention.

【図15】本発明に係る、直列接続用脱気膜ユニットの
中心パイプを有する例の断面図である。
FIG. 15 is a cross-sectional view of an example having a central pipe of a degassing membrane unit for series connection according to the present invention.

【図16】本発明に係る、直列接続用脱気膜ユニットの
中心パイプを有しない例の断面図である。
FIG. 16 is a cross-sectional view of an example of the degassing membrane unit for series connection without a central pipe according to the present invention.

【図17】本発明に係る、脱気膜ユニットを直列に接続
した状態の一例の断面図である。
FIG. 17 is a sectional view of an example of a state in which degassing membrane units according to the present invention are connected in series.

【図18】本発明に係る、脱気膜ユニットを複数本配
し、液循環手段を備えた膜脱気装置の一例の回路図であ
る。
FIG. 18 is a circuit diagram of an example of a membrane degassing apparatus provided with a liquid circulating means, in which a plurality of degassing membrane units are arranged according to the present invention.

【図19】従来の脱気膜ユニットの一例の断面図であ
る。
FIG. 19 is a cross-sectional view of an example of a conventional degassing membrane unit.

【図20】従来の膜脱気装置の一例の回路図である。FIG. 20 is a circuit diagram of an example of a conventional membrane degassing apparatus.

【符号の説明】[Explanation of symbols]

1:接着部 2:中空糸脱気膜 3:減圧手段 4:リザーバータンク 5:循環ポンプ 6:ユースポイント 7:脱気膜ユニット 8:被処理液容器 9:仕切 10:減圧室 11:被処理液室 12:バルブ 13:スペース 14:中心パイプ 15:搬送気体供給口 16:孔あき円筒構造の補強材 17:網上円筒構造の補強材 18:送液手段 19:孔あきパイプ 20:端板 21:補強材 22:被処理液流れ 23:封止部 24:真空ライン 25:被処理液供給口 1: Adhesive part 2: Hollow fiber degassing membrane 3: Decompression means 4: Reservoir tank 5: Circulation pump 6: Use point 7: Degassing membrane unit 8: Liquid container for treatment 9: Partition 10: Decompression chamber 11: Treatment Liquid chamber 12: Valve 13: Space 14: Central pipe 15: Carrier gas supply port 16: Reinforcement member with perforated cylindrical structure 17: Reinforcement member with meshed cylindrical structure 18: Liquid feeding means 19: Perforated pipe 20: End plate 21: Reinforcing material 22: Flow of liquid to be treated 23: Sealing part 24: Vacuum line 25: Supply port of liquid to be treated

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/20 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C02F 1/20 A

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】多数本の中空糸脱気膜の片方または両方を
集束して、接着固定し、該中空糸膜束端部の片方または
両方を開口した中空糸脱気膜ユニットを、被処理液に浸
漬し、中空糸膜開口部に接続した真空ラインにより中空
糸膜の内側を減圧することによって、該中空糸膜外表面
に接触する液中に溶存する気体を除去することを特徴と
する膜脱気方法。
1. A hollow fiber degassing membrane unit in which one or both of a large number of hollow fiber degassing membranes are bundled and adhered and fixed, and one or both of the ends of the bundles of hollow fiber membranes are opened. It is characterized in that the gas dissolved in the liquid contacting the outer surface of the hollow fiber membrane is removed by immersing in the liquid and depressurizing the inside of the hollow fiber membrane with a vacuum line connected to the opening of the hollow fiber membrane. Membrane degassing method.
【請求項2】多数本の中空糸脱気膜の片方または両方を
集束して、接着固定し、該中空糸膜束端部の片方または
両方を開口した中空糸脱気膜ユニットが、被処理液室内
に被処理液に浸漬される状態で設置され、また、該中空
糸膜外表面に接触する液中に溶存する気体を除去するた
めの真空ラインが中空糸膜内側に連接されていることを
特徴とする請求項1記載の膜脱気方法に用いる膜脱気装
置。
2. A hollow fiber degassing membrane unit in which one or both of a large number of hollow fiber degassing membranes are bundled, adhered and fixed, and one or both ends of the bundles of hollow fiber membranes are opened. It is installed in the liquid chamber so as to be immersed in the liquid to be treated, and a vacuum line for removing gas dissolved in the liquid contacting the outer surface of the hollow fiber membrane is connected to the inside of the hollow fiber membrane. A membrane degassing apparatus used in the membrane degassing method according to claim 1.
【請求項3】中空糸膜の外表面が緻密で、内表面が疎で
ある構造を有する中空糸脱気膜ユニットを用いることを
特徴とする請求項1記載の膜脱気方法
3. The method for degassing a membrane according to claim 1, wherein a hollow fiber degassing membrane unit having a structure in which the outer surface of the hollow fiber membrane is dense and the inner surface is sparse is used.
【請求項4】中空糸膜素材がポリフッ化ビニリデン,も
しくは4−メチルペンテンからなる重合体である中空糸
脱気膜ユニットを用いることを特徴とする請求項1記載
の膜脱気方法。
4. The method for degassing a membrane according to claim 1, wherein the hollow fiber membrane material is a hollow fiber degassing membrane unit which is a polymer made of polyvinylidene fluoride or 4-methylpentene.
【請求項5】中空糸脱気膜束と共に固定されたパイプを
有し、該パイプの一端もしくは両端が該中空糸脱気膜内
側に連通した構造を有する中空糸脱気膜ユニットであっ
て、該ユニット同士を接続することによって該パイプを
通して中空糸膜内部が連通し、真空ラインに接続するこ
とが可能な構造になっていることを特徴とする請求項1
記載の膜脱気方法に用いる脱気膜ユニット。
5. A hollow fiber degassing membrane unit having a pipe fixed together with a bundle of hollow fiber degassing membranes, wherein one end or both ends of the pipe communicate with the inside of the hollow fiber degassing membrane, 2. The structure in which the inside of the hollow fiber membrane is communicated through the pipe by connecting the units to each other and can be connected to a vacuum line.
A degassing membrane unit used in the described membrane degassing method.
【請求項6】連結用パイプを直列もしくは並列に接続
し、真空ラインを共用しながら複数の脱気膜ユニットを
運転する請求項5に記載の脱気膜ユニットの運転方法。
6. The method for operating a degassing membrane unit according to claim 5, wherein connecting pipes are connected in series or in parallel and a plurality of degassing membrane units are operated while sharing a vacuum line.
【請求項7】該中空糸脱気膜への液循環手段を備えてい
ることを特徴とする請求項1記載の膜脱気方法に用いる
脱気膜ユニット。
7. A degassing membrane unit for use in the membrane degassing method according to claim 1, further comprising a liquid circulating means to the hollow fiber degassing membrane.
【請求項8】被処理液を該脱気膜ユニットへ循環させる
手段を該膜脱気ユニット外部の被処理液容器内に備えて
いることを特徴とする請求項2記載の膜脱気装置。
8. The membrane degassing apparatus according to claim 2, further comprising means for circulating the liquid to be treated to the degassing membrane unit inside the liquid to be treated container outside the membrane degassing unit.
【請求項9】該中空糸膜の内側への気体供給手段を備え
たことを特徴とする請求項2記載の膜脱気装置。
9. The membrane degassing apparatus according to claim 2, further comprising a gas supply means to the inside of the hollow fiber membrane.
【請求項10】中空糸膜の内側に除去対象以外の搬送気
体を流すことを特徴とする請求項9記載の脱気膜装置の
運転方法。
10. The method for operating a degassing membrane apparatus according to claim 9, wherein a carrier gas other than a removal target is flown inside the hollow fiber membrane.
【請求項11】搬送気体が窒素,または空気であること
を特徴とする請求項10記載の脱気膜装置の運転方法。
11. The method for operating a degassing membrane apparatus according to claim 10, wherein the carrier gas is nitrogen or air.
JP22133093A 1993-09-06 1993-09-06 Membrane deaerating method Pending JPH0768103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22133093A JPH0768103A (en) 1993-09-06 1993-09-06 Membrane deaerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22133093A JPH0768103A (en) 1993-09-06 1993-09-06 Membrane deaerating method

Publications (1)

Publication Number Publication Date
JPH0768103A true JPH0768103A (en) 1995-03-14

Family

ID=16765118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22133093A Pending JPH0768103A (en) 1993-09-06 1993-09-06 Membrane deaerating method

Country Status (1)

Country Link
JP (1) JPH0768103A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233791A (en) * 1994-12-23 1996-09-13 Hewlett Packard Co <Hp> Deaerator for liquid chromatography,basic structure thereof and basic module
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
WO2004096410A1 (en) * 2003-05-01 2004-11-11 Mykrolis Corporation Filter unit with deaerating mechanism
CN102765772A (en) * 2012-07-30 2012-11-07 上海市张江高科技园区新能源技术有限公司 Boiler water-feeding deoxidizing device and boiler water-feeding deoxidizing method
KR101334695B1 (en) * 2011-12-29 2013-12-02 한국원자력연구원 Method for simultaneous removal of scum and nitrogen in wastewater and its apparatus
WO2018034183A1 (en) 2016-08-17 2018-02-22 三菱ケミカル・クリンスイ株式会社 Hollow fiber membrane module, degassing and gas supplying device, inkjet printer, and device for manufacturing carbonated spring
US10583664B2 (en) 2016-05-11 2020-03-10 Mitsubishi Chemical Cleansui Corporation Hollow fiber membrane module
WO2020262398A1 (en) * 2019-06-28 2020-12-30 Dic株式会社 Hollow fiber degassing module, inkjet printer, and method for degassing liquid

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233791A (en) * 1994-12-23 1996-09-13 Hewlett Packard Co <Hp> Deaerator for liquid chromatography,basic structure thereof and basic module
JP2000262870A (en) * 1999-03-08 2000-09-26 Celgard Inc Shellless hollow fiber membrane fluid contact device
JP4593719B2 (en) * 1999-03-08 2010-12-08 セルガード,インコーポレイテッド Shellless hollow fiber membrane fluid contactor
JP2002177743A (en) * 2000-10-03 2002-06-25 Murata Mfg Co Ltd Method and apparatus for removing coarse metallic particle
JP4660918B2 (en) * 2000-10-03 2011-03-30 株式会社村田製作所 Removal method of coarse metal particles
JP4530245B2 (en) * 2002-06-10 2010-08-25 旭化成ケミカルズ株式会社 Membrane separator
JP2004008981A (en) * 2002-06-10 2004-01-15 Asahi Kasei Corp Membrane separation apparatus
WO2004096410A1 (en) * 2003-05-01 2004-11-11 Mykrolis Corporation Filter unit with deaerating mechanism
CN100402123C (en) * 2003-05-01 2008-07-16 安格斯公司 Filter unit with deaerating mechanism
EP1629875A4 (en) * 2003-05-01 2007-12-05 Entegris Inc Filter unit with deaerating mechanism
EP1629875A1 (en) * 2003-05-01 2006-03-01 Entegris, Inc. Filter unit with deaerating mechanism
KR101334695B1 (en) * 2011-12-29 2013-12-02 한국원자력연구원 Method for simultaneous removal of scum and nitrogen in wastewater and its apparatus
CN102765772A (en) * 2012-07-30 2012-11-07 上海市张江高科技园区新能源技术有限公司 Boiler water-feeding deoxidizing device and boiler water-feeding deoxidizing method
US10583664B2 (en) 2016-05-11 2020-03-10 Mitsubishi Chemical Cleansui Corporation Hollow fiber membrane module
WO2018034183A1 (en) 2016-08-17 2018-02-22 三菱ケミカル・クリンスイ株式会社 Hollow fiber membrane module, degassing and gas supplying device, inkjet printer, and device for manufacturing carbonated spring
EP3501628A4 (en) * 2016-08-17 2020-01-08 Mitsubishi Chemical Cleansui Corporation Hollow fiber membrane module, degassing and gas supplying device, inkjet printer, and device for manufacturing carbonated spring
US11045747B2 (en) 2016-08-17 2021-06-29 Mitsubishi Chemical Cleansui Corporation Hollow fiber membrane module, degassing and gas supplying device, inkjet printer, and device for manufacturing carbonated spring
WO2020262398A1 (en) * 2019-06-28 2020-12-30 Dic株式会社 Hollow fiber degassing module, inkjet printer, and method for degassing liquid
CN114025868A (en) * 2019-06-28 2022-02-08 Dic株式会社 Hollow fiber degassing assembly, ink jet printer and method for degassing liquid

Similar Documents

Publication Publication Date Title
US4547289A (en) Filtration apparatus using hollow fiber membrane
JP4593719B2 (en) Shellless hollow fiber membrane fluid contactor
KR0161292B1 (en) Spiral wound gas permeable membrane module and apparatus and method for using the same
KR20010087356A (en) Fluid treatment elements, methods for cleaning fluid treatment elements and methods for treating fluids
EP1022051A2 (en) Treatment system and treatment method employing spiral wound type membrane module
JPH06327905A (en) Degassing membrane module and its operation
US20070131604A1 (en) Filter unit with deaerating mechanism
JPH0768103A (en) Membrane deaerating method
JP2006205127A (en) Production method of selective permeable membrane module, and selective permeable membrane module
JP3685289B2 (en) Liquid degassing module
JPH04176303A (en) Method for removing gas dissolved in liquid
JPH05317605A (en) Membrane vacuum deaerating method and device therefor
JP3370407B2 (en) Hollow fiber membrane module for gas exchange
JPH05208120A (en) Spiral separation membrane element
JPH06134210A (en) Deaeration film module
JPH07710A (en) Operation of deaeration membrane module
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
JP3677858B2 (en) Membrane deaerator
JP2949732B2 (en) Degassing method using pervaporation membrane module
JPH0217922A (en) Apparatus and method separating water from hydrocarbon
KR200284400Y1 (en) Oxygen generator
JPH03118802A (en) Deoxidizing device
JPH04156903A (en) Degasification membrane device
JP3409863B2 (en) Removal device for dissolved organic matter in water
JPH0386218A (en) Hollow-fiber membrane module