[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0766300B2 - Inverter control method for photovoltaic power generation - Google Patents

Inverter control method for photovoltaic power generation

Info

Publication number
JPH0766300B2
JPH0766300B2 JP61310933A JP31093386A JPH0766300B2 JP H0766300 B2 JPH0766300 B2 JP H0766300B2 JP 61310933 A JP61310933 A JP 61310933A JP 31093386 A JP31093386 A JP 31093386A JP H0766300 B2 JPH0766300 B2 JP H0766300B2
Authority
JP
Japan
Prior art keywords
inverter
solar cell
temperature
voltage
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61310933A
Other languages
Japanese (ja)
Other versions
JPS63167916A (en
Inventor
知男 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP61310933A priority Critical patent/JPH0766300B2/en
Publication of JPS63167916A publication Critical patent/JPS63167916A/en
Publication of JPH0766300B2 publication Critical patent/JPH0766300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、太陽光発電用インバータ制御方法に係わる。TECHNICAL FIELD The present invention relates to an inverter control method for photovoltaic power generation.

[従来技術と問題点] 太陽電池によって発生する直流をインバータを用いて交
流に変換し、系統電源と接続するような方法が用いられ
る。
[Prior Art and Problems] A method is used in which direct current generated by a solar cell is converted into alternating current using an inverter and connected to a system power supply.

第2図は太陽光発電用インバータ制御方法を実施する装
置の一例を示す。図において、1は太陽電池、2はイン
バータ回路を示す。インバータ回路2は、通常電力用ト
ランジスをスイッチング素子として、ブリッジ状に組
み、スイッチング素子にパルス幅変調信号を与えて交流
変換を行うような構成のものである。3は前記インバー
タ回路2に前記パルス幅変調信号を与える制御回路であ
り、これに直流電圧が入力する。インバータ回路2の出
力側は図示していないが、変圧器を介して系統側と接続
される。
FIG. 2 shows an example of an apparatus that implements the inverter control method for photovoltaic power generation. In the figure, 1 is a solar cell and 2 is an inverter circuit. The inverter circuit 2 has a configuration in which a normal power transistor is used as a switching element and is assembled in a bridge shape to apply a pulse width modulation signal to the switching element to perform AC conversion. Reference numeral 3 is a control circuit for giving the pulse width modulation signal to the inverter circuit 2, to which a DC voltage is input. Although not shown, the output side of the inverter circuit 2 is connected to the system side via a transformer.

4は温度検出器であって、太陽電池1に近接して配置さ
れ、温度検出器4よりの電気信号を制御回路3に入力
し、インバータの基準電圧を温度補償し、その電圧をイ
ンバータの運転電圧としている。
Reference numeral 4 denotes a temperature detector, which is arranged close to the solar cell 1, inputs an electric signal from the temperature detector 4 into the control circuit 3, temperature-compensates the reference voltage of the inverter, and operates the inverter with the voltage. The voltage is used.

ところが、上記のような温度補償のみによるときは、入
射光強度量一定時にはインバータの運転電圧を補償する
ことができるが、入射光強度変化による最大出力点の電
圧は異なるので、入射光強度に応じた最大出力点への補
償はできない。
However, when only the temperature compensation as described above is performed, the operating voltage of the inverter can be compensated when the incident light intensity amount is constant, but the voltage at the maximum output point due to the change of the incident light intensity is different. The maximum output point cannot be compensated.

又、温度検出器は太陽電池又はその近傍に取付けなけれ
ばならないので、太陽電池の同一モジュール内に組込ん
だものを製作するとか、又は別に温度検出器を取付けね
ばならず、コストアップとなる。そして太陽電池とイン
バータとの間に温度検出器用の回線を配線する必要があ
る。
Further, since the temperature detector has to be mounted on the solar cell or in the vicinity thereof, it is necessary to manufacture the solar cell by incorporating it into the same module, or to mount the temperature detector separately, which increases the cost. Then, it is necessary to wire a temperature detector line between the solar cell and the inverter.

[問題を解決するための手段] 本発明は、端的には温度検出器出力による、基準電圧値
に対する温度補償を100%行なわず、その何割かにとど
めて制御する方法をとるものである。
[Means for Solving the Problem] The present invention directly adopts a method in which the temperature compensation by the output of the temperature detector is not performed for 100% of the reference voltage value, and the temperature is limited to some percentage of the temperature compensation.

第3図に太陽電池の温度特性を示す。入射光強度を一定
とした場合、温度が高い程出力電圧は下っている。又、
第4図に示すように、周囲温度一定として、入射光強度
が大となると最大出力の動作点は入射光強度が大となる
とやや高くやや上昇している。
FIG. 3 shows the temperature characteristics of the solar cell. When the incident light intensity is constant, the higher the temperature, the lower the output voltage. or,
As shown in FIG. 4, when the incident light intensity is high, the operating point of maximum output is slightly higher and slightly higher when the incident light intensity is higher at a constant ambient temperature.

例えば、電気学会太陽電池調査専門委員会編、電気学会
発行、コロナ社発売、「太陽電池ハンドブック」初版第
1刷第244頁の各地における月平均傾斜面全天日射量に
ついての月別表及び日射時平均気温月別表よりすると、
日射量は夏は冬の1.5倍であることがわかる。
For example, published by the Institute of Electrical Engineers of Japan, Solar Cell Survey Special Committee, published by The Institute of Electrical Engineers of Japan, released by Corona Inc., "Solar Cell Handbook", 1st edition, 1st edition, page 244. From the average temperature monthly chart,
It can be seen that the amount of solar radiation in summer is 1.5 times that in winter.

この場合、冬を基準に考えると夏は温度が高いので、最
大出力の動作点の電圧は低下する。しかし、夏は日射量
が大きいので最大出力の動作点の電圧は冬場よりやや上
昇する。従って両者を合せた実際の動作点は温度特性を
かなり打消したところにある。
In this case, considering winter as a reference, the temperature is high in summer, so the voltage at the operating point of maximum output decreases. However, because the amount of solar radiation is large in summer, the voltage at the operating point of maximum output rises slightly compared to winter. Therefore, the actual operating point of the combination of both is that the temperature characteristics are canceled out considerably.

今、電池の温度補償を100%行わず、夏場に最適動作点
電圧が上昇する分のみ少なくしておけば、最適動作点の
補償まで可能となる。
Now, if the temperature of the battery is not compensated 100% and the amount of increase in the optimum operating point voltage in summer is reduced, it is possible to compensate the optimum operating point.

以下第1図に示す実施例により本発明を説明する。第2
図と同一部分は同一符号で示す。太陽電池1に対してイ
ンバータ回路2が接続される。インバータ回路2はすで
に説明したような、スイッチング素子をブリッジ状に接
続したものである。制御回路3は太陽電池1による直流
電圧が入力し、太陽電池1に近接して温度検出器4を配
し、温度検出器4は温度補償効果設定器5を介して制御
回路3に接続する。
The present invention will be described below with reference to the embodiment shown in FIG. Second
The same parts as those in the figure are denoted by the same reference numerals. The inverter circuit 2 is connected to the solar cell 1. The inverter circuit 2 is formed by connecting switching elements in a bridge shape as described above. The DC voltage from the solar cell 1 is input to the control circuit 3, and the temperature detector 4 is arranged in the vicinity of the solar cell 1. The temperature detector 4 is connected to the control circuit 3 via the temperature compensation effect setting device 5.

月別の日射量において最大と最小の比はすでに述べたよ
うに約1.5である。又第4図より相対入射光強度15と25
の点(25/15=1.67)で比較する。最大出力点電圧は夫
々0.58Vと0.62Vである。この差は0.04V=40mV、平均気
温の夏冬の差は、前記刊行物の表より20℃、又太陽電池
自身の温度上昇は最適で30℃、日射量の少ない時はその
約1/1.5、すなわち20℃位となる。
The maximum and minimum ratio of monthly insolation is about 1.5, as already mentioned. Also, from Fig. 4, relative incident light intensities of 15 and 25
The point (25/15 = 1.67) is compared. The maximum output voltage is 0.58V and 0.62V, respectively. This difference is 0.04 V = 40 mV, the difference between the average temperature in summer and winter is 20 ° C from the table of the above publication, and the temperature rise of the solar cell itself is optimally 30 ° C, about 1 / 1.5 when the amount of solar radiation is small. That is, it will be about 20 ° C.

従って、日照量が最低月に比べて最高の月の太陽電池素
子の温度差△TEは、 気温差20℃、電池温度上昇の差30−20=10(℃) 従って△TE=30℃となる。
Therefore, the temperature difference ΔT E of the solar cell element in the month with the highest amount of sunshine compared to the lowest month is the temperature difference 20 ° C, the difference in battery temperature rise 30−20 = 10 (° C) Therefore ΔT E = 30 ° C Becomes

これによる発生電圧の差△VTは、温度特性が一般的にみ
て多くの素子で−2mV/℃であるので、 △VT=−2(mV/℃)×30=−60mV 入射光強度による差を加えて補正すべき電圧△VCは、 △VC=−60mV+40mV=−20mV ……(1) すなわち、温度特性の1/3の補正を加えるのみでよい。
The difference in the generated voltage ΔV T due to this is −2 mV / ° C for most devices in terms of temperature characteristics, so ΔV T = −2 (mV / ° C) × 30 = −60 mV The voltage ΔV C to be corrected by adding the difference is ΔV C = −60 mV + 40 mV = −20 mV (1) That is, only 1/3 of the temperature characteristic needs to be corrected.

現在広く使用されているシリコン半導体による太陽電池
はすでに説明した第3図、第4図に示すような温度特
性、入射光強度特性を具えている。
The solar cells made of silicon semiconductors, which are widely used at present, have the temperature characteristics and incident light intensity characteristics as shown in FIGS.

上記(1)式は一例にしかすぎないが、従来なら第2図
の温度検出器4の出力によって、直接、太陽電池の現温
度における補正値を検出し、これを基準電圧値(一般的
に、基準温度における太陽電池の最適[最大出力]動作
点電圧によって決められる)を補償して現温度に見合う
最大出力動作点にて直流出力を得られるように構成して
いるものの、これは日射量についての補償を含まないも
のであって、これでは、実際に最適動作点にて動作させ
ることはできない。本発明は入射光強度の差(夏、冬、
日中、朝夕)を考慮して、できるだけ誤補償とならぬよ
うにしたものであり、太陽電池を最適動作点の近くで動
作させることができる。
The above formula (1) is only an example, but in the conventional case, the correction value at the current temperature of the solar cell is directly detected by the output of the temperature detector 4 of FIG. , Which is determined by the optimum [maximum output] operating point voltage of the solar cell at the reference temperature) to obtain the DC output at the maximum output operating point commensurate with the current temperature. However, it cannot actually operate at the optimum operating point. The present invention is directed to the difference in incident light intensity (summer, winter,
In consideration of (daytime, morning and evening), miscompensation is prevented as much as possible, and the solar cell can be operated near the optimum operating point.

前記温度補償効果設定器5は、温度検出器4よりの温度
出力信号をそれ以下の適当な割合(例えば30〜90%)に
調節するものであり、これによって前記基準電圧値を補
償するようにする。
The temperature compensation effect setting device 5 adjusts the temperature output signal from the temperature detector 4 to an appropriate ratio (for example, 30 to 90%) lower than that, so as to compensate the reference voltage value. To do.

上記実施例は、温度検出器を太陽電池に近接して配置し
た例であるが、温度特性の補償分は小さくてよいので温
度検出器を太陽電池側に取付けずインバータ、又はこれ
に近接して取付けてもよい。第1図に点線で示す4′は
インバータ側に配置した温度検出器を示す。
The above-mentioned embodiment is an example in which the temperature detector is arranged close to the solar cell, but since the compensation amount of the temperature characteristics may be small, the temperature detector is not attached to the solar cell side and the inverter, or in the vicinity thereof. May be attached. Reference numeral 4'indicated by a dotted line in FIG. 1 indicates a temperature detector arranged on the inverter side.

動作については、温度検出器4′に対する入力が太陽電
池に近接して置いた場合と異なるが、温度上昇、下降に
ついては、上記いずれの位置においても同一傾向を示す
ことになるから、インバータ側において温度検出器4′
を配置して実施例1と同様効果が得られる。
The operation is different from the case where the input to the temperature detector 4'is placed close to the solar cell, but the temperature rise and fall show the same tendency at any of the above positions. Temperature detector 4 '
Are arranged to obtain the same effect as in the first embodiment.

この場合、太陽電池に近接して配置された温度検出器4
に要する回路は大幅に短絡できる。
In this case, the temperature detector 4 placed close to the solar cell
The circuit required for can be significantly shorted.

本発明に用いられる温度検出器としてはシリコンダイオ
ードが好適である。何故なら、シリコン太陽電池の温度
特性は一般的に、−2mV/℃の特性を有し、シリコンダイ
オードの順方向電流も、又一般的に−2mV/℃の温度特性
を有するから、このような特性を有するダイオードを順
方向で使用すれば、両者は同じ特性で温度に対応するの
で、温度検出器にダイオードを使用すれば、補償は簡単
に行い得るようになる。
A silicon diode is suitable as the temperature detector used in the present invention. This is because the temperature characteristics of silicon solar cells generally have a characteristic of −2 mV / ° C, and the forward current of silicon diodes also generally have a temperature characteristic of −2 mV / ° C. If diodes having characteristics are used in the forward direction, both have the same characteristics and correspond to temperature. Therefore, if diodes are used for the temperature detector, compensation can be easily performed.

[発明の効果] 本発明によれば、温度特性の補償を、日射量の変化を加
味して、インバータ回路を太陽電池の最適動作点の近傍
で運転することができる。
[Advantages of the Invention] According to the present invention, it is possible to operate the inverter circuit in the vicinity of the optimum operating point of the solar cell by compensating for the temperature characteristic and taking into account the change in the amount of solar radiation.

又、温度検出器をインバータ回路につけても前述の補償
効果が得られ、温度検出器に対する回路を短縮すること
ができる。
Further, even if the temperature detector is attached to the inverter circuit, the above-mentioned compensation effect can be obtained, and the circuit for the temperature detector can be shortened.

更に、温度検出器にシリコン太陽電池と同一の温度特性
を具えるシリコンダイオードを用いることにより、補償
が簡単になる効果があり、本発明は比較的小さな太陽光
発電用インバータの制御のための制御回路にコスト安く
設置することができる。
Furthermore, the use of a silicon diode having the same temperature characteristics as a silicon solar cell for the temperature detector has the effect of simplifying the compensation, and the present invention provides a control for controlling a relatively small photovoltaic inverter. It can be installed in the circuit at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す。 第2図は太陽光発電用インバータ制御方法を実施する装
置の一例を示す。 第3図は入射光強度一定の場合の太陽電池の温度特性の
例示である。 第4図は周囲温度一定の場合の太陽電池の特性の例示で
ある。 1……太陽電池、2……インバータ回路、3……制御回
路、4,4′……温度検出器、5……温度補償効果設定
器、6……インバータ。
FIG. 1 shows an embodiment of the present invention. FIG. 2 shows an example of an apparatus that implements the inverter control method for photovoltaic power generation. FIG. 3 is an illustration of the temperature characteristics of the solar cell when the incident light intensity is constant. FIG. 4 is an illustration of the characteristics of the solar cell when the ambient temperature is constant. 1 ... Solar cell, 2 ... Inverter circuit, 3 ... Control circuit, 4,4 '... Temperature detector, 5 ... Temperature compensation effect setting device, 6 ... Inverter.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】太陽電池を電源とする太陽光発電用インバ
ータの最大電力制御に前記太陽電池の発電電圧を基準電
圧とし、前記電池の温度により前記基準電圧の温度補償
をしてインバータの制御を行う際、前記電池の近傍に設
置した温度検出器により現に検出されている補償値を、
太陽光の相対入射強度の差より生ずる前記太陽電池の最
大出力点電圧の差電圧と夏季平均日射量の冬季平均日射
量に対する比と平均気温の差から算定される前記太陽電
池の発電電圧変動分とが互いに打ち消されて小さくなる
ことに鑑み、前記補償値より小さな値に調節して前記基
準電圧を補正し、前記インバータを制御することを特徴
とする太陽光発電用インバータ制御方法。
1. For controlling the maximum power of a photovoltaic power generation inverter using a solar cell as a power source, the generated voltage of the solar cell is used as a reference voltage, and the inverter voltage is controlled by temperature compensation of the reference voltage according to the temperature of the battery. When performing, the compensation value currently detected by the temperature detector installed near the battery,
The generated voltage fluctuation of the solar cell calculated from the difference between the maximum output point voltage of the solar cell caused by the difference in the relative incident intensity of sunlight and the ratio of the summer average insolation to the winter average insolation and the average temperature. In view of the fact that and are canceled out and become small, the value is adjusted to a value smaller than the compensation value to correct the reference voltage, and the inverter is controlled to control the inverter.
【請求項2】太陽電池を電源とする太陽光発電用インバ
ータの最大電力制御に前記太陽電池の発電電圧を基準電
圧とし、前記電池の温度により前記基準電圧の温度補償
をしてインバータの制御を行う際、前記インバータの近
傍に設置した温度検出器により現に検出されている補償
値を、太陽光の相対入射強度の差より生ずる前記太陽電
池の最大出力点電圧の差電圧と夏季平均日射量の冬季平
均日射量に対する比と平均気温の差から算定される前記
太陽電池の発電電圧変動分とが互いに打ち消されて小さ
くなることに鑑み、前記補償値より小さな値に調節して
前記基準電圧を補正し、前記インバータを制御すること
を特徴とする太陽光発電用インバータ制御方法。
2. The maximum power control of an inverter for photovoltaic power generation using a solar cell as a power source, the generated voltage of the solar cell as a reference voltage, and the temperature of the battery compensates the reference voltage to control the inverter. When performing, the compensation value currently detected by the temperature detector installed in the vicinity of the inverter, the difference voltage of the maximum output point voltage of the solar cell caused by the difference in the relative incident intensity of sunlight and the summer average insolation In view of the fact that the generated voltage fluctuation of the solar cell calculated from the difference between the ratio to the average amount of solar radiation in winter and the average temperature cancels each other out and becomes smaller, the reference voltage is corrected by adjusting the value smaller than the compensation value. Then, the inverter control method for photovoltaic power generation is characterized by controlling the inverter.
【請求項3】温度検出器としてダイオードの順方向特性
を用いることを特徴とする特許請求の範囲第1項、又は
第2項記載の太陽光発電用インバータ制御方法。
3. The inverter control method for photovoltaic power generation according to claim 1 or 2, wherein a forward characteristic of a diode is used as the temperature detector.
JP61310933A 1986-12-29 1986-12-29 Inverter control method for photovoltaic power generation Expired - Lifetime JPH0766300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61310933A JPH0766300B2 (en) 1986-12-29 1986-12-29 Inverter control method for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61310933A JPH0766300B2 (en) 1986-12-29 1986-12-29 Inverter control method for photovoltaic power generation

Publications (2)

Publication Number Publication Date
JPS63167916A JPS63167916A (en) 1988-07-12
JPH0766300B2 true JPH0766300B2 (en) 1995-07-19

Family

ID=18011131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61310933A Expired - Lifetime JPH0766300B2 (en) 1986-12-29 1986-12-29 Inverter control method for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JPH0766300B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953997B1 (en) * 2009-12-11 2012-01-20 Centre Nat Rech Scient SYSTEM FOR ELECTRONIC MANAGEMENT OF PHOTOVOLTAIC CELLS WITH ADJUSTABLE THRESHOLDS

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246423A (en) * 1984-05-11 1985-12-06 Mitsubishi Electric Corp Control device of variable speed motor

Also Published As

Publication number Publication date
JPS63167916A (en) 1988-07-12

Similar Documents

Publication Publication Date Title
US12062919B2 (en) Multi-modal maximum power point tracking optimization solar photovoltaic system
US20240275285A1 (en) Method for Distributed Power Harvesting Using DC Power Sources
US12107417B2 (en) Distributed power harvesting systems using DC power sources
US9948233B2 (en) Distributed power harvesting systems using DC power sources
US10141745B2 (en) Photovoltaic power conditioning units
JP5966027B2 (en) Power control method of photovoltaic module for solar panel tolerant to non-uniform illumination
EP2135348B1 (en) Distributed power harvesting systems using dc power sources
JPH11103538A (en) Optical power generating system
US20220263461A1 (en) Distributed Power Harvesting Systems Using DC Power Sources
US20110127841A1 (en) Smart virtual low voltage photovoltaic module and photovoltaic power system employing the same
EP2546947B1 (en) Distributed power harvesting systems using DC power sources
US20210159715A1 (en) Control system and method for an energy storage system
JPH0766300B2 (en) Inverter control method for photovoltaic power generation
JPS63174114A (en) Start up circuit for linking photovoltaic power generating inverter
US11874681B2 (en) Matcher for multi module solar string power generation systems and a method thereof
JPH11186581A (en) Solar power generating equipment and electric power converter for solar power generation
KR101360539B1 (en) Photovoltaic power generation system and control method thereof
US20240004413A1 (en) An extender and stabilizer for solar string power generation systems and a method thereof
KR102524154B1 (en) Dc-dc converter for converting i-v characteristic and energy conversion system including the dc-dc converter
KR20140093355A (en) Photovoltaic system that contains the string voltage booster
JP6819154B2 (en) Power conditioner
KR20230001276A (en) photovoltaic power inverting system for improving efficiency
JPH02158500A (en) Artificial satellite
JPH0576046B2 (en)