[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0766120A - Surface position detector and fabrication of semiconductor employing it - Google Patents

Surface position detector and fabrication of semiconductor employing it

Info

Publication number
JPH0766120A
JPH0766120A JP5234099A JP23409993A JPH0766120A JP H0766120 A JPH0766120 A JP H0766120A JP 5234099 A JP5234099 A JP 5234099A JP 23409993 A JP23409993 A JP 23409993A JP H0766120 A JPH0766120 A JP H0766120A
Authority
JP
Japan
Prior art keywords
light beams
incident
wafer
lens system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5234099A
Other languages
Japanese (ja)
Inventor
Haruna Kawashima
春名 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5234099A priority Critical patent/JPH0766120A/en
Publication of JPH0766120A publication Critical patent/JPH0766120A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To locate the entire exposing region within the allowable depth of focus of a projection optical system even if the wafer surface is inclining by varying the information relating to the heights of a plurality of measuring points in the exposing region on the surface of a wafer according to the size of the exposing region while retaining the similarity in the relative position of the plurality of measuring points. CONSTITUTION:Correction optical systems 12-16 are provided for respective measuring point 19-23 and the projective magnifications on the detection planes 17 thereof are substantially equalized. The position of a pinhole image incident to the detection plane 17 is varied depending on the position of the measuring points 19-23 on the surface of a wafer 2. The measuring points 19-23 on the surface of wafer are conjugated with the detection plane of a photoelectric converting means SC through a projection means SB. Consequently, the position of pinhole image on the detection plane 17 is varied depending on the height of the measuring points 19-23. The photoelectric converting means SC detects information relating the incident position of pinhole image on the detection plane 17 and delivers the information to a focus control means 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子製造用の投影
露光装置において、レチクル面上に形成されている電子
回路パターンを投影光学系によりウエハ面上に縮小投影
する際に、該ウエハ面上の複数点の面位置情報(高さ情
報)を検出し、該ウエハの露光領域を投影光学系の最良
結像面に容易に位置させることができ、良好なる投影像
が得られる面位置検出装置及びそれを用いた半導体素子
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for manufacturing a semiconductor element on a wafer surface when an electronic circuit pattern formed on the reticle surface is reduced and projected onto the wafer surface by a projection optical system. The surface position detecting device capable of detecting the surface position information (height information) of a plurality of points and easily positioning the exposure area of the wafer on the best image forming surface of the projection optical system and obtaining a good projection image. And a method for manufacturing a semiconductor device using the same.

【0002】[0002]

【従来の技術】近年、半導体素子製造用の投影露光装置
には電子回路パターンの微細化、例えばサブミクロンか
らハーフミクロン程度の微細化及び高集積化が要求され
ている。そしれこれに伴ない投影光学系に対しては従来
以上に高い解像力を有したものが要求されている。この
為例えば投影光学系においては高N.A化そして露光波
長に対しては短波長化が図られている。
2. Description of the Related Art In recent years, projection exposure apparatuses for manufacturing semiconductor devices have been required to miniaturize electronic circuit patterns, for example, submicron to half-micron miniaturization and high integration. Accordingly, the projection optical system is required to have a higher resolution than ever before. Therefore, for example, in the projection optical system, the high N.V. A wavelength is shortened and the exposure wavelength is shortened.

【0003】一般に投影光学系の高解像力化を図ろうと
N.Aを高くするとパターン投影の許容焦点深度が浅く
なってくる。この為多くの投影露光装置では投影光学系
の焦点面位置を検出する面位置検出装置が用いられてい
る。この面位置検出装置に対しては単にパターン転写を
行なうウエハ面上の露光領域(ショット領域)の高さ位
置(面位置)情報を検出、調整するのみではなく、パタ
ーン転写を行なうウエハ面上の露光領域の傾き等も同時
に検出し、調整できることが要望されている。
Generally, in order to increase the resolution of a projection optical system, N. When A is increased, the allowable depth of focus for pattern projection becomes shallower. For this reason, many projection exposure apparatuses use a surface position detection device that detects the focal plane position of the projection optical system. With respect to this surface position detection device, not only is the height position (surface position) information of the exposure area (shot area) on the wafer surface on which pattern transfer is performed detected and adjusted, but also on the wafer surface on which pattern transfer is performed. There is a demand for being able to simultaneously detect and adjust the inclination of the exposure area.

【0004】例えば、特公平2−10361号公報では
露光領域の中心部の高さ情報を斜入射の高さ位置検出光
学系により検出、調整し、これとは別に設けた斜入射の
傾き検出光学系(コリメータ)により露光領域内の傾き
を検出、調整する斜入射方法が提案されている。
For example, in Japanese Examined Patent Publication No. 2-10361, the height information of the central portion of the exposure area is detected and adjusted by an oblique incident height position detection optical system, and an oblique incident inclination detection optical provided separately from this is detected. An oblique incidence method has been proposed in which a system (collimator) detects and adjusts the tilt in the exposure area.

【0005】又、本出願人は特開平4−354320号
公報において、ウエハ面上の露光領域(ショット領域)
の複数点を計測する高さ位置検出光学系を設け、該複数
点の高さ位置情報より露光領域内の傾き及び高さ位置を
算出し、調整した半導体素子製造用の装置を提案してい
る。
Further, the applicant of the present invention discloses in JP-A-4-354320, an exposure area (shot area) on the wafer surface.
A height position detection optical system for measuring a plurality of points is provided, and an inclination and a height position in an exposure area are calculated from height position information of the plurality of points, and an adjusted device for manufacturing a semiconductor element is proposed. .

【0006】[0006]

【発明が解決しようとする課題】一般にパターン転写を
行なうウエハ面上の露光領域に凹凸や滑らかな傾きがあ
ると、該露光領域を投影光学系の許容焦点深度内に位置
させることが大変難しい。
Generally, if the exposure area on the wafer surface for pattern transfer has unevenness or a smooth inclination, it is very difficult to position the exposure area within the allowable depth of focus of the projection optical system.

【0007】本出願人が先の特開平4−354320号
公報で提案している露光領域上に斜入射投影光学系を用
いて、複数点の高さ位置検出を行なうシステムでは、複
数の測定点の相互の位置は固定である。その為、複数の
測定点の存在する領域と露光領域が必ずしも一致すると
は限らず、許容焦点深度が狭まるにつれ露光領域の大き
さに合わせて、複数測定点の位置を可変とすることでパ
ターン転写を行なう露光領域全域を投影レンズの許容深
度内に位置させる機構が切望されている。
In the system proposed by the present applicant in Japanese Patent Laid-Open No. 4-354320, which uses an oblique projection optical system on an exposure area to detect height positions of a plurality of points, a plurality of measurement points are used. The mutual position of is fixed. Therefore, the area where multiple measurement points exist and the exposure area do not always match, and as the allowable depth of focus narrows, pattern transfer can be performed by changing the positions of multiple measurement points according to the size of the exposure area. A mechanism for positioning the entire exposure area within the allowable depth of the projection lens is desired.

【0008】しかしながら、斜入射投影光学系を用い
て、複数点の高さ位置検出を行なうシステムでは、本出
願人が特開平3−246411号公報で提案しているよ
うに、複数測定点に対して個別の補正光学系を設ける必
要があり、その空間配置の制約が大きく、特別な配慮が
必要になってくる。
However, in the system for detecting the height positions of a plurality of points by using the grazing incidence projection optical system, as proposed by the present applicant in Japanese Patent Laid-Open No. 3-246411, Therefore, it is necessary to provide a separate correction optical system, and the spatial arrangement of the correction optical system is largely restricted, and special consideration is required.

【0009】本発明はこの空間配置上の制約を考慮し
て、ウエハ面上の露光領域内の複数点の高さ情報(面位
置情報)を露光領域の大きさに合わせて複数の測定点の
相互位置を可変とした可変機構を有したした面位置検出
装置により検出し、これによりウエハ面が凹凸形状をし
ていても、又傾いていても該ウエハ面上の露光領域全体
を投影光学系の許容焦点深度内に容易に位置させること
ができる。これにより高密度の半導体素子を製造するこ
とができる面位置検出装置及びそれを用いた半導体素子
の製造方法の提供を目的とする。
According to the present invention, the height information (surface position information) of a plurality of points in the exposure area on the wafer surface is adjusted to the size of the exposure area in consideration of the restriction on the spatial arrangement. It is detected by a surface position detection device having a variable mechanism that makes the mutual positions variable, and as a result, even if the wafer surface has an uneven shape or is tilted, the entire exposure area on the wafer surface is projected by the projection optical system. It can be easily located within the allowable depth of focus of. Accordingly, it is an object of the present invention to provide a surface position detecting device capable of manufacturing a high density semiconductor device and a method of manufacturing a semiconductor device using the surface position detecting device.

【0010】[0010]

【課題を解決するための手段】本発明の面位置検出装置
は、 (1−1)被検面上の複数位置に複数の光束を斜方向か
ら照射する光照射手段と該被検面で反射した複数の光束
を受光素子面に入射させ、該受光素子面上への該複数の
光束の入射位置情報を検出して該被検面の面位置情報を
求める検出手段とを有した面位置検出装置において、該
光照射手段は該複数の光束の該被検面上への入射位置を
相似的に可変とする第1可変機構を有しており、該検出
手段は該複数の光束の該受光素子面上への入射位置を相
対的に可変とする第2可変機構を有していることを特徴
としている。
The surface position detecting apparatus of the present invention comprises: (1-1) Light irradiating means for irradiating a plurality of light beams on a plurality of positions on a surface to be inspected in a diagonal direction and reflection on the surface to be inspected. Surface position detection having a plurality of light beams incident on the light receiving element surface, detecting the incident position information of the plurality of light beams on the light receiving element surface, and obtaining surface position information of the surface to be detected. In the apparatus, the light irradiating means has a first variable mechanism for similarly changing the incident positions of the plurality of light beams on the surface to be inspected, and the detecting means receives the light beams of the plurality of light beams. It is characterized in that it has a second variable mechanism for making the incident position on the element surface relatively variable.

【0011】特に、前記第2可変機構は前記複数の光束
の前記被検面上への入射位置が相似的に変化しても前記
受光素子面上への複数の光束の入射位置が一定となるよ
うにしていることや、前記第1可変機構は両側テレセン
トリックの第1レンズ系と前記複数の光束毎に設けた複
数の第1補正系とを有し、該第1レンズ系と該複数の第
1補正系のうち少なくとも一部は光軸方向に移動可能に
なっており、前記第2可変機構は両側テレセントリック
の第2レンズ系と前記複数の光束毎に設けた複数の第2
補正系とを有し、該第2レンズ系と該複数の第2補正系
のうち少なくとも一部は光軸方向に移動可能になってお
りいること等を特徴としている。
In particular, in the second variable mechanism, even if the incident positions of the plurality of light beams on the surface to be measured change in a similar manner, the incident positions of the plurality of light beams on the light receiving element surface become constant. That is, the first variable mechanism includes a first lens system of both-side telecentricity and a plurality of first correction systems provided for each of the plurality of light beams, and the first lens system and the plurality of first lens systems. At least a part of one correction system is movable in the optical axis direction, and the second variable mechanism includes a second lens system that is telecentric on both sides, and a plurality of second lenses provided for each of the plurality of light beams.
It has a correction system, and at least a part of the second lens system and the plurality of second correction systems is movable in the optical axis direction.

【0012】又、本発明の半導体素子の製造方法として
は、 (1−2)レチクルの回路パターンを投影光学系により
ウエハ面上に投影露光する過程を介して半導体素子を製
造する際、該ウエハ面上のショット領域の複数位置に複
数の光束を斜方向から入射位置を相似的に可変とし入射
させる第1可変機構と、該ウエハ面のショット領域で反
射した複数の光束を受光素子に入射位置を相似的に可変
として入射させる第2可変機構とを用い、該受光素子面
上への該複数の光束の入射位置情報を検出して該ウエハ
面のショット領域の面位置情報を求め、該面位置情報に
基づいて該ショット領域を該投影光学系の像面に位置付
けた後に該レチクルの回路パターンを該投影光学系によ
り該ウエハ面上のショット領域に投影露光したことを特
徴としている。
Further, as a method of manufacturing a semiconductor element of the present invention, (1-2) when a semiconductor element is manufactured through a process of projecting and exposing a circuit pattern of a reticle onto a wafer surface by a projection optical system, A first variable mechanism that makes a plurality of light beams incident on a plurality of positions in a shot area on a surface from an oblique direction by similarly changing the incident positions, and a plurality of light beams reflected by the shot area on the wafer surface are incident on a light receiving element. Is incident on the light receiving element surface by detecting incident position information of the plurality of light beams to obtain surface position information of a shot area of the wafer surface. It is characterized in that the shot area is positioned on the image plane of the projection optical system based on position information, and then the circuit pattern of the reticle is projected and exposed onto the shot area on the wafer surface by the projection optical system. .

【0013】特に、前記第2可変機構は前記複数の光束
の前記ウエハ面上への入射位置が変化しても前記受光素
子面上への複数の光束の入射位置が一定となるようにし
ていることや、前記第1可変機構は両側テレセントリッ
クの第1レンズ系と前記複数の光束毎に設けた複数の第
1補正系とを有し、該第1レンズ系と該複数の第1補正
系のうち少なくとも一部は光軸方向に移動可能になって
おり、前記第2可変機構は両側テレセントリックの第2
レンズ系と前記複数の光束毎に設けた複数の第2補正系
とを有し、該第2レンズ系と該複数の第2補正系のうち
少なくとも一部は光軸方向に移動可能になっていること
等を特徴としている。
In particular, the second variable mechanism keeps the incident positions of the plurality of light beams on the light receiving element surface constant even if the incident positions of the plurality of light beams on the wafer surface change. That is, the first variable mechanism has a first lens system of both-side telecentricity and a plurality of first correction systems provided for each of the plurality of light beams, and the first lens system and the plurality of first correction systems are provided. At least a part of them is movable in the optical axis direction, and the second variable mechanism is a two-sided telecentric second
A lens system and a plurality of second correction systems provided for each of the plurality of light beams are provided, and at least a part of the second lens system and the plurality of second correction systems is movable in the optical axis direction. It is characterized by being present.

【0014】[0014]

【実施例】図1は本発明の実施例1の要部概略図、図2
は図1の一部分の拡大説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of the essential portions of a first embodiment of the present invention, and FIG.
FIG. 2 is an enlarged explanatory view of a part of FIG. 1.

【0015】図1において1は縮小型の投影光学系(投
影レンズ系)、Axは投影光学系1の光軸である。1a
はレチクルであり、その面上には回路パターンが形成さ
れており、レチクルステージ1b上に載置している。1
cは照明系であり、レチクル1a面上を均一照明してい
る。投影光学系1はレチクル1a面上の回路パターンを
ウエハ2面上に縮小投影している。ウエハ2はウエハス
テージ3面上に吸着固定している。ウエハステージ3は
投影光学系1の光軸Ax方向(z方向)と光軸Axを直
交する面内(x−y平面内)の2方向(x,y方向)に
移動可能で、かつ光軸Axと直交する平面(x−y平
面)に対して傾き調整できるようになっている。これに
よりウエハステージ3面上に載置したウエハ2の面位置
を任意に調整できるようにしている。4はステージ制御
装置であり、後述するフォーカス制御装置18からの信
号に基づいてウエハステージ3を駆動制御している。
In FIG. 1, 1 is a reduction type projection optical system (projection lens system), and Ax is the optical axis of the projection optical system 1. 1a
Is a reticle, a circuit pattern is formed on the surface thereof, and the reticle is placed on the reticle stage 1b. 1
Reference numeral c is an illumination system, which uniformly illuminates the surface of the reticle 1a. The projection optical system 1 reduces and projects the circuit pattern on the surface of the reticle 1a onto the surface of the wafer 2. The wafer 2 is adsorbed and fixed on the surface of the wafer stage 3. The wafer stage 3 is movable in two directions (x, y directions) in a plane (in an xy plane) orthogonal to the optical axis Ax direction (z direction) of the projection optical system 1 and the optical axis Ax, and The tilt can be adjusted with respect to a plane (xy plane) orthogonal to Ax. Thus, the surface position of the wafer 2 placed on the surface of the wafer stage 3 can be adjusted arbitrarily. A stage control device 4 drives and controls the wafer stage 3 based on a signal from a focus control device 18, which will be described later.

【0016】SAは光照射手段、SBは投影手段、SC
は光電変換手段であり、これらはウエハ2面の面位置情
報を検出する面位置検出装置の一部分を構成している。
尚、投影手段SBと光電変換手段SCとで検出手段SB
Cを構成している。
SA is a light irradiation means, SB is a projection means, SC
Is photoelectric conversion means, and these constitute a part of a surface position detecting device for detecting surface position information of the surface of the wafer 2.
The projection means SB and the photoelectric conversion means SC are combined with the detection means SB.
It constitutes C.

【0017】本実施例では面位置検出装置を用いてレチ
クル1a面上の回路パターンを投影光学系1でウエハ2
面上に投影する際に、投影光学系1の許容焦点深度内に
ウエハ2面上の露光領域(ショット領域)が位置するよ
うにウエハステージ3を駆動制御している。そしてウエ
ハステージ3をX−Y平面上で逐次移動させ、これによ
り矩形状のパターン領域(ショット)39(例えば20
mm×20mm程度)をウエハ2面上に順次形成してい
る。
In this embodiment, a circuit pattern on the surface of the reticle 1a is projected on the wafer 2 by the projection optical system 1 by using a surface position detecting device.
When projecting onto the surface, the wafer stage 3 is drive-controlled so that the exposure area (shot area) on the surface of the wafer 2 is located within the allowable depth of focus of the projection optical system 1. Then, the wafer stage 3 is sequentially moved on the XY plane, whereby a rectangular pattern area (shot) 39 (for example, 20
mm × 20 mm) are sequentially formed on the surface of the wafer 2.

【0018】次に本実施例の面位置検出装置の各要素に
ついて説明する。まずウエハ2面上に複数の光束を入射
させる光照射手段SAについて説明する。
Next, each element of the surface position detecting device of this embodiment will be described. First, the light irradiation means SA for making a plurality of light beams incident on the surface of the wafer 2 will be described.

【0019】5は光源であり、白色ランプ又は相異なる
複数の波長の光を照射するように構成した照明ユニット
より成っている。6はコリメーターレンズであり、光源
5からの光束を断面の強度分布が略均一の平行光束とし
て射出している。7はプリズム形状のスリット部材であ
り、複数の開口(5つのピンホール)71〜75を有し
ている。
Reference numeral 5 denotes a light source, which is composed of a white lamp or an illumination unit configured to emit light having a plurality of different wavelengths. Reference numeral 6 denotes a collimator lens, which emits the light flux from the light source 5 as a parallel light flux whose cross-sectional intensity distribution is substantially uniform. Reference numeral 7 denotes a prism-shaped slit member, which has a plurality of openings (five pinholes) 71 to 75.

【0020】120,130,140,150,160
は各々補正光学系(第1補正系)であり、ウエハ面上の
複数の測定点の高さ位置情報を検出する際の倍率、分解
能、検出精度等が互いに略等しくなるようにしている。
尚、この補正光学系に関しては本出願人が、特開平3−
246411号公報で提案しているので詳細は省略す
る。
120, 130, 140, 150, 160
Is a correction optical system (first correction system), and the magnification, the resolution, the detection accuracy, etc. when detecting the height position information of a plurality of measurement points on the wafer surface are substantially equal to each other.
Regarding the correction optical system, the applicant of the present invention has disclosed that
Since it is proposed in Japanese Patent No. 246411, details thereof will be omitted.

【0021】8はレンズ系(第1レンズ系)であり、両
テレセントリック系より成っている。スリット部材7の
複数のピンホール71〜75を通過した独立の5つの光
束71a〜75aを各々光路毎に設けた補正光学系12
0,130,140,150,160で同一平面上の位
置710,720,730,740,750に結像して
いる。そしてレンズ系8によりミラー9を介してウエハ
2面上の5つの測定点19〜23に各々等しい角度で導
光している。
Reference numeral 8 denotes a lens system (first lens system), which comprises both telecentric systems. Correction optical system 12 in which five independent light beams 71a to 75a that have passed through the plurality of pinholes 71 to 75 of the slit member 7 are provided for each optical path.
Images are formed at positions 710, 720, 730, 740, and 750 on the same plane at 0, 130, 140, 150, and 160. Then, the lens system 8 guides light through the mirror 9 to the five measurement points 19 to 23 on the surface of the wafer 2 at equal angles.

【0022】このとき投影像の大きさが略等しいピンホ
ール像となるようにしている。又、このレンズ系8は内
部に各光束71a〜75aのN.Aをそろえる為の開口
絞り40を有している。本実施例では以上の各要素5,
6,7,8,9,120,130,140,150,1
60より光照射手段SAを構成している。
At this time, the projected images are made to be pinhole images having substantially the same size. Further, this lens system 8 has an N.V. It has an aperture stop 40 for aligning A. In this embodiment, each of the above elements 5,
6,7,8,9,120,130,140,150,1
The light irradiation means SA is composed of 60.

【0023】本実施例において光照射手段SAからの各
光束のウエハ2面上への入射角φ(ウエハ面に立てた垂
線と成す角)はφ=70°以上である。ウエハ2面上に
は図2に示すように複数個のパターン領域(露光領域シ
ョット)39が配列している。レンズ系8を通過した5
つの光束71a〜75aはパターン領域39の互いに独
立した各測定点19〜23に入射している。
In this embodiment, the incident angle φ of each light beam from the light irradiation means SA on the wafer 2 surface (the angle formed by the perpendicular line standing on the wafer surface) is φ = 70 ° or more. As shown in FIG. 2, a plurality of pattern areas (exposure area shots) 39 are arranged on the wafer 2 surface. 5 that passed through the lens system 8
The two light beams 71a to 75a are incident on the measurement points 19 to 23 of the pattern region 39, which are independent of each other.

【0024】そしてウエハ2面上に入射する5つの光束
71a〜75aがウエハ2の垂直方向(光軸Ax方向)
から観察したとき図2に示すように互いに独立して観察
されるようにウエハ2面上にX方向(ショット配列方
向)からXY平面内でθ°回転させた方向より入射させ
ている。尚、スリット部材7の5個のピンホール71〜
75の補正光学系120,130,140,150,1
60で形成される位置710,720,730,74
0,750はウエハ2面とシャインプルーフの条件を満
足するようにウエハ2と共役な同一平面上に設けてい
る。又ピンホール部材7のピンホール71〜75の大き
さと形状、補正光学系120,130,140,15
0,160、そしてレンズ系8等はウエハ2面上で互い
に略同一の大きさのピンホール像を形成するように設定
している。
The five light beams 71a to 75a incident on the surface of the wafer 2 are perpendicular to the wafer 2 (direction of the optical axis Ax).
As shown in FIG. 2, when observed from above, they are incident on the surface of the wafer 2 from the direction rotated by θ ° in the XY plane from the X direction (shot arrangement direction). In addition, the five pinholes 71 to 71 of the slit member 7
75 correction optical systems 120, 130, 140, 150, 1
Positions 710, 720, 730, 74 formed at 60
0 and 750 are provided on the same plane conjugate with the wafer 2 so as to satisfy the Scheimpflug condition with the surface of the wafer 2. Further, the size and shape of the pinholes 71 to 75 of the pinhole member 7, the correction optical system 120, 130, 140, 15
0, 160, and the lens system 8 are set so as to form pinhole images of substantially the same size on the surface of the wafer 2.

【0025】本実施例では以上の各要素5,6,7,1
20,130,140,150,160,8,9から成
る光照射手段SAにより、ウエハ2面上に複数の光束
(ピンホール)を入射させている。尚、本実施例におい
てウエハ2面上の測定点は5点に限らずいくつあっても
良い。
In this embodiment, each of the above elements 5, 6, 7, 1
A plurality of light fluxes (pinholes) are made incident on the surface of the wafer 2 by the light irradiation means SA composed of 20, 130, 140, 150, 160, 8, and 9. In the present embodiment, the number of measurement points on the surface of the wafer 2 is not limited to five, and any number may be used.

【0026】次にウエハ2面からの複数の反射光束をC
CDより成る位置検出素子としての光電変換手段SCの
検出面(受光素子面)17に導光し、結像させる投影手
段SBについて説明する。
Next, a plurality of reflected light beams from the surface of the wafer 2 are converted into C
The projection means SB that guides light onto the detection surface (light receiving element surface) 17 of the photoelectric conversion means SC as a position detection element made of a CD to form an image will be described.

【0027】11は受光レンズ(第2レンズ系)であ
り、両テレセントリック系より成っている。ウエハ2面
からの5つの反射光束はミラー10を介して反射して受
光レンズ11に入射している。
Reference numeral 11 denotes a light receiving lens (second lens system), which is composed of both telecentric systems. The five reflected light beams from the surface of the wafer 2 are reflected by the mirror 10 and enter the light receiving lens 11.

【0028】41はレンズ系11に設けられたストッパ
ー絞りであり、各々の光束がパターンの形成されている
ウエハ2上の各測定点19,20,21,22,23で
反射した際に生じる高次の回折光をカットしている。
Reference numeral 41 denotes a stopper diaphragm provided in the lens system 11, which is a height generated when each light beam is reflected at each measurement point 19, 20, 21, 22, 23 on the wafer 2 on which a pattern is formed. The next diffracted light is cut.

【0029】そして受光レンズ11は各測定点19〜2
3に対して各位置24〜28にピンホール像を形成して
いる。各位置24〜28のピンホール像からの光束は独
立に設けた5つの補正光学系(第2補正系)12〜16
に入光している。
The light-receiving lens 11 has measurement points 19-2.
3, the pinhole image is formed at each position 24-28. The light fluxes from the pinhole images at the positions 24 to 28 are independently provided with five correction optical systems (second correction systems) 12 to 16
The light is entering.

【0030】補正光学系12〜16は受光レンズ11が
両テレセントリック系であるので、その光軸が互いに平
行となっており、各位置24〜28に形成したピンホー
ル像を光電変換手段SCの検出面17上に互いに同一の
大きさのスポット光となるよう再結像させている。光電
変換手段SCは単一の2次元CCDより成っている。本
実施例では以上の各要素10,11,12〜16より投
影手段SBを構成している。
Since the light receiving lenses 11 of the correction optical systems 12 to 16 are both telecentric systems, their optical axes are parallel to each other and the pinhole images formed at the respective positions 24 to 28 are detected by the photoelectric conversion means SC. The images are re-imaged on the surface 17 so that the spot lights have the same size. The photoelectric conversion means SC is composed of a single two-dimensional CCD. In this embodiment, the above-mentioned elements 10, 11, 12 to 16 constitute a projection means SB.

【0031】尚、補正光学系12〜16は各々所定の厚
さの平行平面板とレンズ系を有しており、受光レンズ1
1の光軸に対して共軸あるいは偏心している。このとき
平行平面板は各レンズ系の光路長を補正する為に用いて
いる。又レンズ系は各測定点19〜23の検出面17上
における結像倍率(投影倍率)が略等しくなるように補
正する為に設けている。
The correction optical systems 12 to 16 each have a plane-parallel plate having a predetermined thickness and a lens system.
It is coaxial or eccentric with respect to the optical axis of 1. At this time, the plane parallel plate is used to correct the optical path length of each lens system. The lens system is provided to correct the image forming magnifications (projection magnifications) on the detection surface 17 of the measurement points 19 to 23 so as to be substantially equal to each other.

【0032】即ち、本実施例の如く複数の光束をウエハ
面上に斜入射させる斜入射結像光学系では受光レンズ1
1に対して距離の異なる複数の測定点19〜23が光電
変換手段SCの検出面17上に結像する際、その結像倍
率が互いに異なってくる。
That is, in the oblique incidence imaging optical system in which a plurality of light beams are obliquely incident on the wafer surface as in this embodiment, the light receiving lens 1 is used.
When a plurality of measurement points 19 to 23 having different distances from 1 are imaged on the detection surface 17 of the photoelectric conversion means SC, the imaging magnifications thereof are different from each other.

【0033】そこで本実施例では各測定点に対して補正
光学系12〜16を設けて、これらの各測定点19〜2
3の検出面17上における投影倍率が略等しくなるよう
にしている(尚、この補正光学系については本出願人の
先の特開平3−246411号で詳細に説明してい
る。)。
Therefore, in this embodiment, correction optical systems 12 to 16 are provided for the respective measurement points, and the respective measurement points 19 to 2 are provided.
The projection magnifications of No. 3 and No. 3 on the detection surface 17 are made substantially equal (this correction optical system is described in detail in Japanese Patent Application Laid-Open No. 3-246411 of the present applicant).

【0034】そしてこのときウエハ2面の各測定点19
〜23の面位置(高さ方向、光軸Ax方向)によって検
出面(受光素子面)17上に入射するピンホール像(ス
ポット光)の位置が変化するようにしている。光電変換
手段SCはこのときのピンホール像の位置変化を検出し
ている。これにより本実施例ではウエハ2面上の各測定
点19〜23の面位置情報を同一精度で検出できるよう
にしている。
At this time, each measurement point 19 on the wafer 2 surface is measured.
The position of the pinhole image (spot light) incident on the detection surface (light receiving element surface) 17 is changed depending on the surface positions (height direction, optical axis Ax direction) of 23. The photoelectric conversion means SC detects the position change of the pinhole image at this time. As a result, in this embodiment, the surface position information of the measurement points 19 to 23 on the wafer 2 surface can be detected with the same accuracy.

【0035】又、投影手段SBを介してウエハ2面上の
各測定点19〜23と光電変換手段SCの検出面17と
が互いに共役となるようにして(各測定点19〜23に
対して倒れ補正を行なって)いる。これにより各測定点
19〜23の局所的な傾きによって検出面17上でのピ
ンホール像の位置が変化せず、ウエハ2の表面の光軸A
x方向の各測定点の局所的な高さ位置の変化、即ち測定
点19〜23の高さに応答して検出面17上でのピンホ
ール像の位置が変化するようにしている。光電変換手段
SCは検出面17面上に入射したピンホール像の入射位
置情報を検出している。光電変換手段SCで得られた各
測定点19〜23におけるピンホール像の入射位置情報
はフォーカス制御手段18に入力している。
Further, the measurement points 19 to 23 on the wafer 2 surface and the detection surface 17 of the photoelectric conversion means SC are conjugated with each other via the projection means SB (for each measurement point 19 to 23). I am performing fall correction). As a result, the position of the pinhole image on the detection surface 17 does not change due to the local inclination of each of the measurement points 19 to 23, and the optical axis A on the surface of the wafer 2 does not change.
The position of the pinhole image on the detection surface 17 is changed in response to the local change of the height position of each measurement point in the x direction, that is, the height of the measurement points 19 to 23. The photoelectric conversion means SC detects the incident position information of the pinhole image incident on the detection surface 17. The incident position information of the pinhole image at each measurement point 19 to 23 obtained by the photoelectric conversion unit SC is input to the focus control unit 18.

【0036】フォーカス制御手段18は光電変換手段S
Cからの各測定点19〜23の高さ情報(面位置情報)
を得て、これよりウエハ2の表面の位置情報、即ち光軸
Ax方向(z方向)に関する位置やX−Y平面に対する
傾き等を求めている。
The focus control means 18 is a photoelectric conversion means S.
Height information (surface position information) of each measurement point 19 to 23 from C
Then, the position information of the surface of the wafer 2, that is, the position in the optical axis Ax direction (z direction), the inclination with respect to the XY plane, and the like are obtained.

【0037】そしてウエハ2の表面が投影光学系1によ
るレチクル1aの投影面と略一致するようにウエハステ
ージ3の駆動量に関する信号をステージ制御装置4に入
力している。
Then, a signal relating to the drive amount of the wafer stage 3 is input to the stage controller 4 so that the surface of the wafer 2 substantially coincides with the projection surface of the reticle 1a by the projection optical system 1.

【0038】一方、ウエハステージ3のxy方向の変位
は、不図示のレーザー干渉計を用いて周知の方法により
測定し、ウエハステージ3の変位量を示す信号が、レー
ザー干渉計から信号線を介してステージ制御装置4に入
力している。
On the other hand, the displacement of the wafer stage 3 in the xy directions is measured by a known method using a laser interferometer (not shown), and a signal indicating the amount of displacement of the wafer stage 3 is transmitted from the laser interferometer via a signal line. Input to the stage control device 4.

【0039】ステージ制御装置4はウエハステージ3の
xy方向の位置制御を行なうと共に、フォーカス制御手
段18からの入力信号に応じてウエハステージ3をz方
向に駆動制御し、これによりウエハ2の位置と姿勢を調
整している。
The stage control device 4 controls the position of the wafer stage 3 in the xy directions, and at the same time, drives and controls the wafer stage 3 in the z direction in response to an input signal from the focus control means 18, whereby the position of the wafer 2 is determined. I am adjusting my posture.

【0040】次に本実施例においてウエハ2面上の複数
の測定点(19〜23)に光束を入射させピンホール像
を形成する際の各要素の配置上の特徴について説明す
る。
Next, the arrangement features of the respective elements when a light beam is made incident on a plurality of measurement points (19 to 23) on the surface of the wafer 2 to form a pinhole image in this embodiment will be described.

【0041】本実施例におけるウエハ2面上の複数の測
定点19〜23は図2に示すようにウエハ2の矩形状の
パターン領域(ショット)39の4隅及びその4隅の略
中心に設定している。そして光照射手段SAにより矩形
状のパターン領域39のX方向より角度θ(同図ではθ
=22.5°)回転させた方向より各ピンホール71〜
75と出た光束を各測定点71〜75に照射している。
A plurality of measurement points 19 to 23 on the surface of the wafer 2 in this embodiment are set at four corners of the rectangular pattern area (shot) 39 of the wafer 2 and substantially the centers of the four corners as shown in FIG. is doing. Then, the light irradiation means SA causes an angle θ (θ in the figure) from the X direction of the rectangular pattern area 39.
= 22.5 °) Each pinhole 71 to
The luminous flux of 75 is emitted to each of the measurement points 71 to 75.

【0042】このとき光照射手段SAの各ピンホール7
1〜75からの光束がウエハ2の垂直方向から観察した
とき、互いに独立して観察されるようにウエハ2面上に
入射させている。
At this time, each pinhole 7 of the light irradiation means SA
The light beams from 1 to 75 are made incident on the surface of the wafer 2 so as to be observed independently of each other when observed from the vertical direction of the wafer 2.

【0043】以下に本実施例における複数の測定点の相
互位置の可変機構について、光照射手段SA内の機構と
検出手段SBC内のと機構に分けて説明する。光照射手
段SAのレンズ系8は図4〜図6に示すように、4つの
レンズ81〜84で構成している。測定点の位置を変化
させるときは第1可変機構によりレンズ81〜84、及
び開口絞り40の位置を光軸方向に変化させ投影倍率を
変化させて行なっている。
The mechanism for changing the mutual positions of a plurality of measurement points in this embodiment will be described below separately for the mechanism in the light irradiation means SA and the mechanism in the detection means SBC. The lens system 8 of the light irradiation means SA is composed of four lenses 81 to 84 as shown in FIGS. When changing the position of the measurement point, the positions of the lenses 81 to 84 and the aperture stop 40 are changed in the optical axis direction by the first variable mechanism to change the projection magnification.

【0044】例えば、図3(A)に示す大きさの露光領
域39に納まるように、測定点19〜23を配置する
時、レンズ系8は図4の状態になっている。同図では簡
単のため、測定点19,21の結像状態だけを示してい
る。(他の測定点20,22,23は、測定点19と同
様である。)このとき補正光学系120〜160は図7
の状態にあり、測定点19,21に対応するもののみ図
示している。補正光学系140は固定されているが、補
正光学系120,130,150,160は同様の構造
(第1可変機構)で光軸方向に移動可能となっている。
For example, when the measurement points 19 to 23 are arranged so that they are contained in the exposure area 39 having the size shown in FIG. 3A, the lens system 8 is in the state shown in FIG. In the same figure, for simplicity, only the image formation state of the measurement points 19 and 21 is shown. (Other measurement points 20, 22, and 23 are the same as the measurement point 19.) At this time, the correction optical systems 120 to 160 are shown in FIG.
In this state, only those corresponding to the measurement points 19 and 21 are shown. Although the correction optical system 140 is fixed, the correction optical systems 120, 130, 150, 160 are movable in the optical axis direction with the same structure (first variable mechanism).

【0045】この時、スリット部材7のピンホール71
〜75は補正光学系120〜160により結像点710
〜750に各々結像倍率β120(71) 〜β160(75) で結像
している。結像点710〜750はレンズ系8により測
定点19〜23に結像し、このときの結像倍率を各々β
8(710)〜β8(750)とする。本実施例では、各々の合成倍
率は等しい値、β(SA)となるようにしている。
At this time, the pinhole 71 of the slit member 7
˜75 is an image forming point 710 by the correction optical system 120 to 160.
To 750 are image-forming magnifications β 120 (71) to β 160 (75), respectively. The image forming points 710 to 750 are imaged on the measuring points 19 to 23 by the lens system 8, and the image forming magnifications at this time are set to β.
8 (710) to β 8 (750). In this embodiment, the composite magnifications are set to the same value, β (SA).

【0046】すなわち、 β(SA)=β120(71) ×β8(710)=β130(72) ×β8(720) =β140(73) ×β8(730)=β150(74) ×β8(740) =β160(75) ×β8(750) の関係が成り立っている。That is, β (SA) = β 120 (71) × β 8 (710) = β 130 (72) × β 8 (720) = β 140 (73) × β 8 (730) = β 150 (74 ) × β 8 (740) = β 160 (75) × β 8 (750).

【0047】又、図4で両側テレセントリックとなって
いる測定点21に対する光束73aと他の測定点19,
20,22,23に対応する光束71a,72a,74
a,75aの入射側(光源6側)での距離を各々D8 (7
10) ,D8 (720) ,D8 (740) ,D8 (750) とし、出射
側(ウエハ2側)の距離を各々D8(19) ,D8(20) ,D
8(22) ,D8(23) とすると、(D8(710)とD8(19) のみ
図示) D8(19) /D8(710)=D8(20) /D8(720) =D8(22) /D8(740)=D8(23) /D8(750) =β8(730) の関係が成り立つ。
In addition, in FIG. 4, the luminous flux 73a and the other measuring points 19 for the measuring point 21 which is telecentric on both sides,
Luminous fluxes 71a, 72a, 74 corresponding to 20, 22, 23
a and 75a on the incident side (light source 6 side) are D 8 (7
10), D 8 (720), D 8 (740), D 8 (750), and the distances on the emitting side (wafer 2 side) are D 8 (19), D 8 (20), and D, respectively.
8 (22) and D 8 (23) (only D 8 (710) and D 8 (19) are shown) D 8 (19) / D 8 (710) = D 8 (20) / D 8 (720 ) = D 8 (22) / D 8 (740) = D 8 (23) / D 8 (750) = β 8 (730).

【0048】次に、図3(B)に示す大きさの露光領域
39に納まるように、測定点19〜23の位置を変化さ
せる場合について説明する。位置を変化させる前の図4
の状態では、光束71a,73aの光源6側の結像点7
10,730が存在する平面700と、被検面側の結像
点190,210の存在する平面200はレンズ系8内
の開口絞り40の存在する平面800に対して同一の交
線を共有する。(Sch-eimpflug's conditionを満たした
状態である。)この時、被検面の測定点19,21は結
像点190,210と一致しており、被検面であるウエ
ハ面2は結像点190,210の存在する平面200に
一致している。
Next, a case will be described in which the positions of the measurement points 19 to 23 are changed so as to be contained in the exposure area 39 having the size shown in FIG. 3B. Figure 4 before changing the position
In this state, the image forming point 7 of the light beams 71a and 73a on the light source 6 side is
The plane 700 on which 10, 730 exists and the plane 200 on which the imaging points 190 and 210 on the surface to be inspected exist share the same line of intersection with the plane 800 in which the aperture stop 40 in the lens system 8 exists. . (It is a state where the Sch-eimpflug's condition is satisfied.) At this time, the measurement points 19 and 21 of the surface to be inspected coincide with the image forming points 190 and 210, and the wafer surface 2 which is the surface to be inspected is the image forming point It coincides with the plane 200 on which 190 and 210 exist.

【0049】図5の状態は、レンズ系8が入射側、出射
側ともテレセントリックの状態を保ったまま投影倍率を
変化させるように、レンズ81〜84、及び開口絞り4
0の位置を光軸方向に変化させた場合の結像状態を示し
ている。同図では、結像点190,210の存在する平
面200は、結像点710,730が存在する平面70
0と、レンズ系8内の開口絞り40の存在する平面80
0に対して同一の交線を共有するように形成されるた
め、被検面であるウエハ面2とは一致しなくなる。この
状態では、ウエハ2上の測定点21を除いた残りの測定
点(測定点19のみ図示)は像がデフォーカスしてしま
う。
In the state of FIG. 5, the lenses 81 to 84 and the aperture stop 4 are arranged so that the lens system 8 changes the projection magnification while maintaining the telecentric state on both the incident side and the emitting side.
The image formation state when the position of 0 is changed in the optical axis direction is shown. In the figure, the plane 200 on which the image formation points 190 and 210 are present is the plane 70 on which the image formation points 710 and 730 are present.
0 and a plane 80 in which the aperture stop 40 in the lens system 8 exists
Since they are formed so as to share the same line of intersection with 0, they do not coincide with the wafer surface 2, which is the surface to be inspected. In this state, the image defocuses at the remaining measurement points (only the measurement point 19 is shown) except the measurement point 21 on the wafer 2.

【0050】そこで図6の状態に示す如く、入射側、出
射側ともテレセントリックの状態を保ったまま投影倍率
が図3(B)の状態になるように、レンズ81〜84、
及び開口絞り40の位置を光軸方向に変化させ、同時に
光束71aの光源側の結像点710を変化させること
で、ウエハ2上に全ての測定点19〜23を結像させて
いる。
Therefore, as shown in the state of FIG. 6, the lenses 81 to 84, so that the projection magnification becomes the state of FIG. 3B while maintaining the telecentric state on both the incident side and the outgoing side.
The positions of the aperture stop 40 and the aperture stop 40 are changed in the optical axis direction, and at the same time, the image forming point 710 of the light beam 71a on the light source side is changed so that all the measurement points 19 to 23 are imaged on the wafer 2.

【0051】このとき光源6側の結像点710,730
が存在する平面770、及びレンズ系8内の開口絞り4
0の存在する平面800に対して、同一の交線を共有す
る結像点190,210の存在する平面200が、被検
面であるウエハ面2と一致する(図6の平面700は図
4,図5での結像点710,730が存在する平面であ
る。)。
At this time, image forming points 710 and 730 on the light source 6 side
Plane 770 in which the aperture exists and the aperture stop 4 in the lens system 8.
The plane 200 on which the image forming points 190 and 210 that share the same line of intersection with the plane 800 on which 0 exists is the same as the wafer surface 2 which is the surface to be inspected (the plane 700 in FIG. , The plane where the image formation points 710 and 730 in FIG. 5 exist.)

【0052】光束71aの光源6側の結像点710を変
化させる場合、図6の状態で結像点710〜750に対
するレンズ系8による測定点19〜23への結像倍率を
各々β'8(71)〜β'8(75)とする。更に、図8の状態での
スリット71〜75に対する補正光学系120〜160
による結像点710〜750への結像倍率を各々β'120
(710) 〜β'160(750) とし、各々の合成倍率が等しい
値、β(SA)となるように行なっている。
[0052] When changing the light source 6 side of the imaging point 710 of the light beam 71a, each imaging magnification of the measuring points 19 to 23 by the lens system 8 for imaging point 710-750 in the state of FIG. 6 beta '8 (71) ~β 'and 8 (75). Further, the correction optical systems 120 to 160 for the slits 71 to 75 in the state of FIG.
Of the image forming points 710 to 750 by β ′ 120
(710) to β ′ 160 (750), and the composite magnifications of the respective values are the same, β (SA).

【0053】すなわち、 β’(SA)=β'120(71)×β'8(710) =β'130(72)×β'8(720) =β'140(73)×β'8(730) =β'150(74)×β'8(740) =β'160(75)×β'8(750) の関係が成り立つように、補正光学系120,130,
150,160を光軸方向に変化させている。
[0053] That is, β '(SA) = β ' 120 (71) × β '8 (710) = β' 130 (72) × β '8 (720) = β' 140 (73) × β '8 ( 730) = β '150 (74 ) × β' 8 (740) = β '160 (75) × β' 8 (750) of such relationship is established, the correction optical system 120, 130,
150 and 160 are changed in the optical axis direction.

【0054】測定点19〜23の配置が、図3(B)に
示す倍率でも、光照射手段SAにおいて、レンズ系8は
図6、補正光学系120〜160は図8の配置をとり、
スリット71〜75の像が平面770上の点710〜7
50、及び被検面であるウエハ2上の測定点19〜23
に結像している。
Even if the measurement points 19 to 23 are arranged at the magnification shown in FIG. 3B, the lens system 8 is arranged as shown in FIG. 6 and the correction optical systems 120 to 160 are arranged as shown in FIG.
The images of the slits 71 to 75 are the points 710 to 7 on the plane 770.
50 and measurement points 19 to 23 on the wafer 2 which is the surface to be inspected
Is imaged.

【0055】また図5,図6で両側テレセントリックと
なっている測定点21に対応する光束73aと他の測定
点19,20,22,23に対応する光束71a,72
a,74a,75aの出射側(ウエハ2側)の距離を各
々D'8(19),D'8(20),D'8(22),D'8(23)とすると、
(D8(710)とD'8(19)のみ図示) D'8(19)/D8(710)=D'8(20)/D8(720) =D'8(22)/D8(740)=D'8(23)/D8(750) =β'8(730) の関係が成り立っている。
Further, in FIGS. 5 and 6, the luminous flux 73a corresponding to the measurement point 21 which is telecentric on both sides and the luminous fluxes 71a and 72 corresponding to the other measurement points 19, 20, 22, and 23.
Letting the distances of a, 74a, and 75a on the emitting side (wafer 2 side) be D' 8 (19), D' 8 (20), D' 8 (22), and D' 8 (23), respectively.
( 'Illustrated only 8 (19) D D 8 and (710) D)' 8 ( 19) / D 8 (710) = D '8 (20) / D 8 (720) = D' 8 (22) / D 8 (740) = D relationship '8 (23) / D 8 (750) = β' 8 (730) is established.

【0056】ここで、レンズ系8を入射側(光源6側)
テレセントリックとしているのは、補正光学系120〜
160が光軸方向に平行になる為、メカニカルな移動機
構の作成が容易となると共に、補正光学系120〜16
0が移動してもお互いの干渉を生じさせない為である。
Here, the lens system 8 is placed on the incident side (the light source 6 side).
The telecentric correction optical system 120-
Since 160 is parallel to the optical axis direction, it is easy to create a mechanical moving mechanism, and the correction optical systems 120 to 16
This is because even if 0 moves, they do not interfere with each other.

【0057】またレンズ系8を出射側(ウエハ2側)テ
レセントリックとしているのは、前述の様に距離間隔
D'(19) ,D'(20) ,D'(22) ,D'(23) の変化率を
β'8(730) と全て等しくする為であり、これにより測定
点19〜23の相対間隔を相似形を保ったまま変化させ
ることを可能にしている。
Further, the lens system 8 is telecentric on the emitting side (wafer 2 side), as described above, because of the distance intervals D '(19), D' (20), D '(22), D' (23). This is to make the rate of change of all equal to β ′ 8 (730), and this makes it possible to change the relative intervals of the measurement points 19 to 23 while keeping the similar shape.

【0058】一方、検出手段SBCのレンズ系11は、
図9,図10に示す様に4つのレンズ111〜114で
構成している。測定点の位置を変化させるときは、レン
ズ111〜114、及びストッパー絞り41の位置を第
2可変機構により光軸方向に変化させ、投影倍率を変化
させている。
On the other hand, the lens system 11 of the detecting means SBC is
As shown in FIGS. 9 and 10, it is composed of four lenses 111 to 114. When changing the position of the measurement point, the positions of the lenses 111 to 114 and the stopper diaphragm 41 are changed in the optical axis direction by the second variable mechanism to change the projection magnification.

【0059】始めに、図3(A)に示す大きさの露光領
域39に納まるように、測定点19〜23を配置してい
る場合について説明する。このときレンズ系11は図9
の状態になっている。同図では簡単のため、測定点1
9,21の結像状態だけを示している(測定点20,2
2,23については、測定点19と同様である。)。
First, a case will be described in which the measurement points 19 to 23 are arranged so as to fit in the exposure area 39 having the size shown in FIG. 3 (A). At this time, the lens system 11 is shown in FIG.
It is in the state of. In the figure, measurement point 1 is shown for simplicity.
Only the imaging state of 9, 21 is shown (measurement points 20, 2
The measurement points 2 and 23 are the same as the measurement point 19. ).

【0060】このときの補正光学系12〜16は図11
の状態にあり、測定点19,21に対応するもののみを
図示している。補正光学系14は固定されているが、他
の補正光学系12,13,15,16は同様の構造(第
2可変機構)で、光軸方向に移動可能となっている。
The correction optical systems 12 to 16 at this time are shown in FIG.
In this state, only those corresponding to the measurement points 19 and 21 are shown. Although the correction optical system 14 is fixed, the other correction optical systems 12, 13, 15, 16 have the same structure (second variable mechanism) and are movable in the optical axis direction.

【0061】ここで、測定点19〜23がレンズ系11
により結像点24〜28に結像するときの結像倍率を、
各々β11(19)〜β11(23)とし、結像点24〜28が補正
光学系12〜16により、位置検出素子17上の入光位
置29〜33に結像するときの結像倍率を、各々β12(2
4)〜β16(28)とする。本実施例では各々の合成倍率が等
しい値、β(SBC)となるようにしている。
Here, the measuring points 19 to 23 are the lens system 11.
The image forming magnification when forming an image on the image forming points 24 to 28 by
Imaging magnification when each and β 11 (19) ~β 11 ( 23), imaging points 24 to 28 by the correction optical system 12 to 16, for imaging the light incident positions 29-33 on the position detecting element 17 , Β 12 (2
4) to β 16 (28). In the present embodiment, the composite magnifications are set to the same value, β (SBC).

【0062】即ち、 β(SBC)=β11(19)×β12(24)=β11(20)×β13(25) =β11(21)×β14(26)=β11(22)×β15(27) =β11(23)×β16(28) の関係が成り立つようにしている。That is, β (SBC) = β 11 (19) × β 12 (24) = β 11 (20) × β 13 (25) = β 11 (21) × β 14 (26) = β 11 (22 ) × β 15 (27) = β 11 (23) × β 16 (28).

【0063】又、図9で両側テレセントリックとなって
いる測定点21に対応する光束73aと他の測定点1
9,20,22,23に対応する光束71a,72a,
74a,75aの入射側(ウエハ2側)の距離を各々D
11(19),D11(20),D11(22),D11(23)、出射側(光源
6側)の距離を各々D11(24),D11(25),D11(27),D
11(28)とすると、(D11(24)とD11(19)のみ図示) D11(24)/D11(19)=D11(25)/D11(20) =D11(27)/D11(22)=D11(28)/D11(23) =β11(21) の関係が成り立つ。
Further, the luminous flux 73a corresponding to the measurement point 21 which is telecentric on both sides in FIG.
Light fluxes 71a, 72a corresponding to 9, 20, 22, 23,
The distance on the incident side (wafer 2 side) of 74a and 75a is D
The distances of 11 (19), D 11 (20), D 11 (22), D 11 (23) and the emission side (light source 6 side) are D 11 (24), D 11 (25), D 11 (27), respectively. ), D
11 (28) (only D 11 (24) and D 11 (19) are shown) D 11 (24) / D 11 (19) = D 11 (25) / D 11 (20) = D 11 (27 ) / D 11 (22) = D 11 (28) / D 11 (23) = β 11 (21).

【0064】次に、図3(B)に示す大きさの露光領域
39に納まるように、測定点19〜23の位置を変化さ
せる場合について説明する。
Next, a case will be described in which the positions of the measurement points 19 to 23 are changed so as to be contained in the exposure area 39 having the size shown in FIG. 3B.

【0065】位置を変化させる前の図9の状態では、光
束71a,73aの位置検出素子17側の結像点24,
26が存在する平面1200と、被検面側の結像点19
0,210の存在する平面200は、レンズ系11のス
トッパー絞り41の存在する平面1100に対して同一
の光線を共有する(Scheimpflug's condition を満たし
た状態である。)。
In the state of FIG. 9 before changing the position, the image forming points 24 of the light beams 71a and 73a on the position detecting element 17 side,
A plane 1200 in which 26 exists and an image forming point 19 on the surface to be inspected
The plane 200 in which 0 and 210 exist shares the same ray with the plane 1100 in which the stopper diaphragm 41 of the lens system 11 exists (a state in which the Scheimpflug's condition is satisfied).

【0066】このとき被検面の測定点19,21は結像
点190,210と一致しており、被検面であるウエハ
面2は結像点190,210の存在する平面200に一
致している。
At this time, the measurement points 19 and 21 on the surface to be inspected coincide with the image forming points 190 and 210, and the wafer surface 2 as the surface to be inspected coincides with the plane 200 on which the image forming points 190 and 210 exist. ing.

【0067】図10の状態は、図3(B)の状態に対応
するように、レンズ系11が投影倍率を変化させた結像
状態を示している。レンズ系11の投影倍率を変化させ
るのは以下の理由である。
The state of FIG. 10 shows an image-forming state in which the lens system 11 changes the projection magnification so as to correspond to the state of FIG. 3 (B). The reason for changing the projection magnification of the lens system 11 is as follows.

【0068】レンズ系11が図9の状態と同じ投影倍率
のままであると、光照射手段SAにより測定点の位置の
移動が行われたとき、出射側(位置検出素子17側)で
の光束73aと光束71a,72a,74a,75aの
距離が変化してしまい、光束71a,72a,74a,
75aがそれぞれ補正光学系12,13,15,16に
入光しなくなる(光束71a,73aのみ図示し
た。)。
When the lens system 11 remains at the same projection magnification as in the state of FIG. 9, when the position of the measurement point is moved by the light irradiation means SA, the luminous flux on the emitting side (position detecting element 17 side) The distance between the light beam 73a and the light beams 71a, 72a, 74a, 75a changes, and the light beams 71a, 72a, 74a,
75a does not enter the correction optical systems 12, 13, 15, and 16 (only the light beams 71a and 73a are shown).

【0069】各々の光束71a,72a,74a,75
aのレンズ系11の光軸に垂直な平面内での位置に合わ
せて、補正光学系12,13,15,16を光軸に垂直
な平面内で移動させることは空間的な余裕が少なく、お
互いに干渉を起こす場合も生じてくる。この為、レンズ
系11もレンズ系8と同様に、両側テレセントリックの
状態を保ったまま、投影倍率を変化させ補正光学系1
2,13,15,16に対する各々の物点位置の変化に
対して補正をしている。
Each luminous flux 71a, 72a, 74a, 75
Moving the correction optical systems 12, 13, 15, 16 in the plane perpendicular to the optical axis in accordance with the position of the lens system 11 in the plane perpendicular to the optical axis has a small spatial margin, There may be cases where they interfere with each other. Therefore, similarly to the lens system 8, the lens system 11 changes the projection magnification while keeping the both-side telecentric state, and the correction optical system 1
Correction is made for changes in the respective object point positions for 2, 13, 15, and 16.

【0070】レンズ系11はレンズ系8が出射側(ウエ
ハ2側)テレセントリックである為、自然に入射側(ウ
エハ2側)テレセントリックとなる。
Since the lens system 8 of the lens system 11 is telecentric on the exit side (wafer 2 side), it naturally becomes the telecentric on the entrance side (wafer 2 side).

【0071】又、レンズ系11は出射側(位置検出素子
17側)テレセントリックとすることで、投影倍率を変
化させた場合の、結像点24〜28の位置の変化が、お
互いに平行な補正光学系12〜16の光軸方向のみに生
じるようにし、メカニカルな移動機構の作成が容易と
し、補正光学系120〜160を移動させたとき互いに
干渉しないようにしている。
Further, by making the lens system 11 telecentric on the exit side (position detecting element 17 side), changes in the positions of the image forming points 24 to 28 when the projection magnification is changed are corrected in parallel with each other. It is made to occur only in the optical axis direction of the optical systems 12 to 16 to facilitate the creation of a mechanical moving mechanism and prevent the correction optical systems 120 to 160 from interfering with each other when they are moved.

【0072】図10で、両側テレセントリックとなって
いる測定点21に対応する光束73aと、他の測定点1
9,20,22,23に対応する光束71a,72a,
74a,75aの出射側(位置検出素子17側)の距離
を各々D11(24),D11(25),D11(27),D11(28)とする
(D11(24)とD11(19)のみ図示)。
In FIG. 10, the luminous flux 73a corresponding to the measuring point 21 which is telecentric on both sides and the other measuring point 1
Light fluxes 71a, 72a corresponding to 9, 20, 22, 23,
The distances of 74a and 75a on the emitting side (position detecting element 17 side) are D 11 (24), D 11 (25), D 11 (27), and D 11 (28) (D 11 (24) and D 11 (24)). 11 (19) only shown).

【0073】又、測定点19〜23がレンズ系11によ
り結像点24〜28に結像するときの結像倍率を各々
β'11(19) 〜β'11(23) とする。
Further, the image forming magnifications when the measuring points 19 to 23 are imaged on the image forming points 24 to 28 by the lens system 11 are β ′ 11 (19) to β ′ 11 (23), respectively.

【0074】各光束間の距離には、 D11(24)/D11(19)=D11(25)/D11(20) =D11(27)/D11(22)=D11(28)/D11(23) =β'11(21) の関係が成り立つ。For the distance between the light beams, D 11 (24) / D 11 (19) = D 11 (25) / D 11 (20) = D 11 (27) / D 11 (22) = D 11 ( 28) / D 11 (23) = β '11 relationship holds in (21).

【0075】レンズ系11は入射側、出射側ともテレセ
ントリックの状態を保ったまま、 β'11(21) =β11(21)×{β'8(730) /β8(730)}-1 の関係が成り立つように、レンズ111〜114、及び
ストッパー絞り41の位置を光軸方向に移動している。
The lens system 11 maintains a telecentric state on both the incident side and the emitting side, and β ′ 11 (21) = β 11 (21) × {β ′ 8 (730) / β 8 (730)} −1 The positions of the lenses 111 to 114 and the stopper diaphragm 41 are moved in the optical axis direction so that the above relationship holds.

【0076】すると、図4及び図9の状態で、 D11(24)=D11(19)×β11(21) =D8(19) ×β11(21) =D8(710)×β8(730)×β11(21) となる。Then, in the state of FIGS. 4 and 9, D 11 (24) = D 11 (19) × β 11 (21) = D 8 (19) × β 11 (21) = D 8 (710) × β 8 (730) × β 11 (21).

【0077】図6及び図10の状態でも、 D11(24)=D'11(19) ×β'11(21) =D'8(19)×β'11(21) ={D8(710)×β'8(730) }×β'11(21) ={D8(710)×β'8(730) } ×[β11(21)×{β'8(730) /β8(730)}-1] =D8(710)×β8(730) ×β11(21) となり、D11(24)は測定点19〜23の位置の変化に依
らず、一定に保っている(D11(25),D11(27),D11(2
8)も同様である。)。
Even in the states of FIGS. 6 and 10, D 11 (24) = D ′ 11 (19) × β ′ 11 (21) = D ′ 8 (19) × β ′ 11 (21) = {D 8 ( 710) × β '8 (730 )} × β' 11 (21) = {D 8 (710) × β '8 (730)} × [β 11 (21) × {β' 8 (730) / β 8 (730)} −1 ] = D 8 (710) × β 8 (730) × β 11 (21), and keep D 11 (24) constant regardless of the change in the positions of measurement points 19 to 23. (D 11 (25), D 11 (27), D 11 (2
The same applies to 8). ).

【0078】次に、図10の状態における補正光学系1
2,13,15,16の位置の調整について説明する。
Next, the correction optical system 1 in the state of FIG.
The adjustment of the positions of 2, 13, 15, 16 will be described.

【0079】結像点190,210の存在する平面20
0と、レンズ系11内のストッパー絞り41の存在する
平面1100に対して同一の交線を共有するように、結
像点24,26が存在する平面1250が形成されてい
る(図中の平面1200は図9での結像点24,26が
存在する平面である。)。このままの状態では、結像点
26を除いた残りの結像点24,25,27,28(結
像点24のみ図示)は、位置検出素子17上で像がデフ
ォーカスしてしまう。
The plane 20 on which the imaging points 190 and 210 exist
0 and a plane 1250 in which the image forming points 24 and 26 exist so as to share the same line of intersection with the plane 1100 in which the stopper diaphragm 41 in the lens system 11 exists (the plane in the figure). Reference numeral 1200 is a plane where the image formation points 24 and 26 in FIG. 9 exist.) In this state, the image is defocused on the position detecting element 17 at the remaining image forming points 24, 25, 27 and 28 excluding the image forming point 26 (only the image forming point 24 is shown).

【0080】本実施例では、位置検出素子17上に、全
ての結像点24〜28の像を結ばせている。この為、図
12の状態で、結像点24〜28に対して補正光学系1
2〜16による位置検出素子17上への結像点29〜3
3の結像倍率を各々β'12(24) 〜β'16(28) とする。各
々の合成倍率が等しい値、β’(SBC)となるよう
に、第2可変機構により補正光学系12,13,15,
16を光軸方向に変化させている。
In this embodiment, the images of all the image forming points 24 to 28 are formed on the position detecting element 17. Therefore, in the state of FIG. 12, the correction optical system 1 is applied to the image formation points 24 to 28.
2 to 16 image points 29 to 3 on the position detecting element 17
Each three of imaging magnification and β '12 (24) ~β' 16 (28). The correction optical systems 12, 13, 15, and the correction optical systems 12 and 13 are controlled by the second variable mechanism so that the combined magnifications become equal to each other, β ′ (SBC).
16 is changed in the optical axis direction.

【0081】すなわち、 β’(SBC)=β'11(19) ×β'12(24) =β'11(20) ×β'13(25) =β'11(21) ×β'14(26) =β'11(22) ×β'15(27) =β'11(23) ×β'16(28) の関係を成り立つようにしている。[0081] That is, β '(SBC) = β ' 11 (19) × β '12 (24) = β' 11 (20) × β '13 (25) = β' 11 (21) × β '14 ( and the 26) = β '11 (22 ) × β' 15 (27) = β as established the relationship '11 (23) × β' 16 (28).

【0082】測定点19〜23の配置が、図3(B)に
示す倍率のとき、光照射手段SBCにおいて、レンズ系
11は図10、補正光学系12〜16は図12の配置を
とり、スリット部材7のピンホール71〜75の像が、
被検面であるウエハ2上の測定点19〜23、及び図1
0の平面1250上の点24〜28、及び位置検出素子
17上の入射点29〜33に結像している。
When the measurement points 19 to 23 are arranged at the magnification shown in FIG. 3B, the lens system 11 and the correction optical systems 12 to 16 are arranged as shown in FIG. 12 in the light irradiation means SBC. The images of the pinholes 71 to 75 of the slit member 7 are
Measurement points 19 to 23 on the wafer 2, which is the surface to be inspected, and FIG.
Images are formed at points 24 to 28 on the plane 1250 of 0 and incident points 29 to 33 on the position detection element 17.

【0083】以上の実施例では、複数の測定点の相互位
置の可変機構について説明を行ったが、測定点19〜2
3の配置が図3(A)に示す倍率の場合、光照射手段S
A内の合成倍率β(SA)、検出手段SBC内の合成倍
率β(SBC)、及び測定点19〜23の配置が図3
(B)に示す倍率の場合の光照射手段SA内の合成倍率
β’(SA)、検出手段SBC内の合成倍率β’(SB
C)の間には、 β(SA)≠β’(SA)、かつ β(SBC)≠β’
(SBC) の関係が成り立っている。
In the above embodiment, the mechanism for changing the mutual positions of a plurality of measuring points has been described.
When the arrangement of 3 is the magnification shown in FIG.
The composite magnification β (SA) in A, the composite magnification β (SBC) in the detection means SBC, and the arrangement of the measurement points 19 to 23 are shown in FIG.
In the case of the magnification shown in (B), the combined magnification β '(SA) in the light irradiation means SA and the combined magnification β' (SB in the detection means SBC.
Between C), β (SA) ≠ β ′ (SA) and β (SBC) ≠ β ′
The relationship of (SBC) is established.

【0084】尚、以上の本実施例において、測定点19
〜23の配置が図3(A)に示す倍率の場合の光照射手
段SA内の合成倍率β(SA)、検出手段SBC内の合
成倍率β(SBC)、及び測定点19〜23の配置が図
3(B)に示す倍率の場合の光照射手段SA内の合成倍
率β’(SA)、検出手段SBC内の合成倍率β’(S
BC)との間の関係を次のようにしても良い。
In the above-mentioned embodiment, the measurement point 19
3 to 23 have the magnification shown in FIG. 3 (A), the combined magnification β (SA) in the light irradiation means SA, the combined magnification β (SBC) in the detection means SBC, and the arrangement of the measurement points 19 to 23. In the case of the magnification shown in FIG. 3B, the combined magnification β ′ (SA) in the light irradiation means SA and the combined magnification β ′ (S in the detection means SBC.
The relationship with BC) may be as follows.

【0085】測定点19〜23の配置が図3(B)に示
す倍率の場合、光照射手段SA内の測定点21に対応す
る補正光学系140を、他の補正光学系120,13
0,150,160と同様に光軸方向に移動可能な構造
とし、 β’(SA)=β'120(71)×β'8(710) =β'130(72)×β'8(720) =β'140(73)×β'8(730) =β'150(74)×β'8(740) =β'160(75)×β'8(750) =β(SA) の関係が成り立つように、補正光学系120〜160を
光軸方向に変化させても良い。これによれば、測定点1
9〜23の配置を変更しても、各々の測定点の大きさを
常に一定に保つことが可能となる。
When the arrangement of the measurement points 19 to 23 is the magnification shown in FIG. 3B, the correction optical system 140 corresponding to the measurement point 21 in the light irradiation means SA is replaced with the other correction optical systems 120 and 13.
Like 0, 150, 160, it has a structure movable in the optical axis direction, β ′ (SA) = β ′ 120 (71) × β ′ 8 (710) = β ′ 130 (72) × β ′ 8 (720 ) = β '140 (73) × β' 8 (730) = β '150 (74) × β' 8 (740) = β '160 (75) × β' 8 (750) = β relationship (SA) The correction optical systems 120 to 160 may be changed in the optical axis direction so that According to this, measurement point 1
Even if the arrangements of 9 to 23 are changed, the size of each measurement point can always be kept constant.

【0086】又、測定点19〜23の配置が図3(B)
に示す倍率の場合、検出手段SBC内の測定点21に対
応する補正光学系14を、他の補正光学系12,13,
15,16と同様に光軸方向に移動可能な構造とし、 β’(SBC)=β'11(19) ×β'12(24) =β'11(20) ×β'13(25) =β'11(21) ×β'14(26) =β'11(22) ×β'15(27) =β'11(23) ×β'16(28) =β(SBC) の関係が成り立つように、補正光学系12〜16を光軸
方向に変化させても良い。これによれば、測定点19〜
23の配置を変更しても、各々の測定点の検出倍率、及
び検出精度を常に一定に保つことが可能となる。
The arrangement of the measuring points 19 to 23 is shown in FIG.
In the case of the magnification shown in, the correction optical system 14 corresponding to the measurement point 21 in the detection means SBC is replaced with the other correction optical systems 12, 13,
15 and 16 and the movable structure in the optical axis direction as well, β '(SBC) = β ' 11 (19) × β '12 (24) = β' 11 (20) × β '13 (25) = β '11 (21) × β ' 14 (26) = β '11 (22) × β' 15 (27) = β '11 (23) × β' 16 (28) = β relationship holds for (SBC) As described above, the correction optical systems 12 to 16 may be changed in the optical axis direction. According to this, the measurement points 19-
Even if the arrangement of 23 is changed, the detection magnification and the detection accuracy of each measurement point can always be kept constant.

【0087】又、測定点19〜23の配置が図3(B)
に示す倍率の場合に、光照射手段SA内の測定点21に
対応する補正光学系140を、他の補正光学系120,
130,150,160と同様に光軸方向に移動可能な
構造とし、それと同時に検出手段SBC内の測定点21
に対応する補正光学系14も、他の補正光学系12,1
3,15,16と同様に光軸方向に移動可能な構造とし
て、 β’(SA)=β'120(71)×β'8(710) =β'130(72)×β'8(720) =β'140(73)×β'8(730) =β'150(74)×β'8(740) =β'160(75)×β'8(750) =β(SA) かつ、 β’(SBC)=β'11(19) ×β'12(24) =β'11(20) ×β'13(25) =β'11(21) ×β'14(26) =β'11(22) ×β'15(27) =β'11(23) ×β'16(28) =β(SBC) の関係が成り立つように、補正光学系120〜160、
及び補正光学系12〜16を光軸方向に変化させても良
い。
The arrangement of the measurement points 19 to 23 is shown in FIG.
In the case of the magnification shown in, the correction optical system 140 corresponding to the measurement point 21 in the light irradiation means SA is replaced with another correction optical system 120,
Similar to 130, 150 and 160, the structure is such that it can move in the optical axis direction, and at the same time, the measuring point 21 in the detecting means SBC.
The correction optical system 14 corresponding to
As movable structure in the optical axis direction in the same manner as 3,15,16, β '(SA) = β' 120 (71) × β '8 (710) = β' 130 (72) × β '8 (720 ) = β '140 (73) × β' 8 (730) = β '150 (74) × β' 8 (740) = β '160 (75) × β' 8 (750) = β (SA) and, β '(SBC) = β' 11 (19) × β '12 (24) = β' 11 (20) × β '13 (25) = β' 11 (21) × β '14 (26) = β' 11 (22) × β '15 (27) = β' 11 (23) × β '16 (28) = β so that the relationship is satisfied in (SBC), the correction optical system 120 to 160,
Also, the correction optical systems 12 to 16 may be changed in the optical axis direction.

【0088】これによれば、測定点19〜23の配置を
変更しても、各々の測定点の大きさを常に一定に保つこ
とが可能となり、各々の測定点の検出倍率、及び検出精
度をも一定に保つことが可能となる。
According to this, even if the arrangement of the measuring points 19 to 23 is changed, the size of each measuring point can be always kept constant, and the detection magnification and the detection accuracy of each measuring point can be improved. Can also be kept constant.

【0089】[0089]

【発明の効果】本発明によれば以上のように、補正光学
系を設ける空間上の制約を考慮しつつ、ウエハ面上の露
光領域内の複数点の高さ情報(面位置情報)を露光領域
の大きさに合わせて、複数の測定点の相対位置を相似形
を維持しつつ変化させることにより、これによりウエハ
面が凹凸形状をしていても、又、傾いていても該ウエハ
面上の露光領域全体を投影光学系の許容焦点深度内に容
易に位置させることができ、これにより高密度の半導体
素子を製造することができる面位置検出装置及びそれを
用いた半導体素子の製造方法を達成することができる。
As described above, according to the present invention, the height information (surface position information) of a plurality of points in the exposure area on the wafer surface is exposed while taking into consideration the space restrictions for providing the correction optical system. By changing the relative positions of a plurality of measurement points while maintaining a similar shape in accordance with the size of the area, even if the wafer surface has an uneven shape or is tilted, A surface position detecting apparatus and a semiconductor element manufacturing method using the same, which can easily position the entire exposure area of the device within the allowable depth of focus of the projection optical system and thereby manufacture high density semiconductor elements. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の一部分の拡大説明図FIG. 2 is an enlarged explanatory view of a part of FIG.

【図3】 図1の一部分の拡大説明図FIG. 3 is an enlarged explanatory view of a part of FIG.

【図4】 図1の第1レンズ系近傍の説明図FIG. 4 is an explanatory view of the vicinity of the first lens system in FIG.

【図5】 図1の第1レンズ系近傍の説明図5 is an explanatory view of the vicinity of the first lens system in FIG.

【図6】 図1の第1レンズ系近傍の説明図6 is an explanatory diagram of the vicinity of the first lens system in FIG.

【図7】 図1の第1補正系近傍の説明図FIG. 7 is an explanatory diagram of the vicinity of the first correction system in FIG.

【図8】 図1の第1補正系近傍の説明図FIG. 8 is an explanatory diagram of the vicinity of the first correction system in FIG.

【図9】 図1の第2レンズ系近傍の説明図9 is an explanatory view of the vicinity of the second lens system in FIG.

【図10】 図1の第2レンズ系近傍の説明図10 is an explanatory view of the vicinity of the second lens system in FIG.

【図11】 図1の第2補正系近傍の説明図11 is an explanatory diagram of the vicinity of the second correction system in FIG.

【図12】 図1の第2補正系近傍の説明図12 is an explanatory diagram of the vicinity of the second correction system in FIG.

【符号の説明】[Explanation of symbols]

SA 光照射手段 SB 投影手段 SC 光電変換手段 1 投影レンズ 1a レチクル 2 ウエハ 3 ウエハステージ 4 ステージ制御装置 5 光源 6 コリメーターレンズ 7 スリット部材 8 レンズ系 9,10 ミラー 11 受光レンズ 12〜16 第2補正系 17 検出面 18 フォーカス制御装置 71〜75 ピンホール 120,130,140,150,160 第1補正系 SA light irradiation means SB projection means SC photoelectric conversion means 1 projection lens 1a reticle 2 wafer 3 wafer stage 4 stage control device 5 light source 6 collimator lens 7 slit member 8 lens system 9,10 mirror 11 light receiving lens 12-16 second correction System 17 Detection surface 18 Focus control device 71 to 75 Pinhole 120, 130, 140, 150, 160 First correction system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検面上の複数位置に複数の光束を斜方
向から照射する光照射手段と該被検面で反射した複数の
光束を受光素子面に入射させ、該受光素子面上への該複
数の光束の入射位置情報を検出して該被検面の面位置情
報を求める検出手段とを有した面位置検出装置におい
て、該光照射手段は該複数の光束の該被検面上への入射
位置を相似的に可変とする第1可変機構を有しており、
該検出手段は該複数の光束の該受光素子面上への入射位
置を相対的に可変とする第2可変機構を有していること
を特徴とする面位置検出装置。
1. A light irradiation means for irradiating a plurality of light beams to a plurality of positions on a surface to be inspected from an oblique direction, and a plurality of light beams reflected by the surface to be inspected are incident on a light receiving element surface, and onto the light receiving element surface. A surface position detecting device for detecting incident position information of the plurality of light beams to obtain surface position information of the surface to be detected, wherein the light irradiating means is provided on the surface to be detected of the plurality of light beams. It has a first variable mechanism that changes the incident position on
The surface position detection device, wherein the detection means has a second variable mechanism that relatively changes the incident positions of the plurality of light beams on the light receiving element surface.
【請求項2】 前記第2可変機構は前記複数の光束の前
記被検面上への入射位置が相似的に変化しても前記受光
素子面上への複数の光束の入射位置が一定となるように
していることを特徴とする請求項1の面位置検出装置。
2. The second variable mechanism keeps the incident positions of the plurality of light beams on the light receiving element surface constant even if the incident positions of the plurality of light beams on the surface to be inspected change in a similar manner. The surface position detecting device according to claim 1, wherein
【請求項3】 前記第1可変機構は両側テレセントリッ
クの第1レンズ系と前記複数の光束毎に設けた複数の第
1補正系とを有し、該第1レンズ系と該複数の第1補正
系のうち少なくとも一部は光軸方向に移動可能になって
おり、前記第2可変機構は両側テレセントリックの第2
レンズ系と前記複数の光束毎に設けた複数の第2補正系
とを有し、該第2レンズ系と該複数の第2補正系のうち
少なくとも一部は光軸方向に移動可能になっていること
を特徴とする請求項1の面位置検出装置。
3. The first variable mechanism has a bilateral telecentric first lens system and a plurality of first correction systems provided for each of the plurality of light beams, and the first lens system and the plurality of first correction systems. At least a part of the system is movable in the optical axis direction, and the second variable mechanism is a two-sided telecentric second system.
A lens system and a plurality of second correction systems provided for each of the plurality of light beams are provided, and at least a part of the second lens system and the plurality of second correction systems is movable in the optical axis direction. The surface position detecting device according to claim 1, wherein
【請求項4】 レチクルの回路パターンを投影光学系に
よりウエハ面上に投影露光する過程を介して半導体素子
を製造する際、該ウエハ面上のショット領域の複数位置
に複数の光束を斜方向から入射位置を相似的に可変とし
入射させる第1可変機構と、該ウエハ面のショット領域
で反射した複数の光束を受光素子に入射位置を相似的に
可変として入射させる第2可変機構とを用い、該受光素
子面上への該複数の光束の入射位置情報を検出して該ウ
エハ面のショット領域の面位置情報を求め、該面位置情
報に基づいて該ショット領域を該投影光学系の像面に位
置付けた後に該レチクルの回路パターンを該投影光学系
により該ウエハ面上のショット領域に投影露光したこと
を特徴とする半導体素子の製造方法。
4. When manufacturing a semiconductor device through a process of projecting and exposing a circuit pattern of a reticle onto a wafer surface by a projection optical system, a plurality of light beams are obliquely applied to a plurality of positions in a shot area on the wafer surface. A first variable mechanism for making incident positions similar to each other and making them incident, and a second variable mechanism for making a plurality of light beams reflected by the shot area of the wafer surface incident on the light receiving element while making incident positions similarly variable, The incident position information of the plurality of light beams on the light receiving element surface is detected to obtain the surface position information of the shot area of the wafer surface, and the shot area is moved to the image surface of the projection optical system based on the surface position information. A method of manufacturing a semiconductor device, comprising: projecting and exposing a circuit pattern of the reticle onto a shot area on the wafer surface by the projection optical system after positioning the reticle.
【請求項5】 前記第2可変機構は前記複数の光束の前
記ウエハ面上への入射位置が変化しても前記受光素子面
上への複数の光束の入射位置が一定となるようにしてい
ることを特徴とする請求項4の半導体素子の製造方法。
5. The second variable mechanism is configured to make the incident positions of the plurality of light beams on the light receiving element surface constant even if the incident positions of the plurality of light beams on the wafer surface are changed. The method for manufacturing a semiconductor device according to claim 4, wherein
【請求項6】 前記第1可変機構は両側テレセントリッ
クの第1レンズ系と前記複数の光束毎に設けた複数の第
1補正系とを有し、該第1レンズ系と該複数の第1補正
系のうち少なくとも一部は光軸方向に移動可能になって
おり、前記第2可変機構は両側テレセントリックの第2
レンズ系と前記複数の光束毎に設けた複数の第2補正系
とを有し、該第2レンズ系と該複数の第2補正系のうち
少なくとも一部は光軸方向に移動可能になっていること
を特徴とする請求項4の半導体素子の製造方法。
6. The first variable mechanism has a bilateral telecentric first lens system and a plurality of first correction systems provided for each of the plurality of light beams, and the first lens system and the plurality of first correction systems. At least a part of the system is movable in the optical axis direction, and the second variable mechanism is a two-sided telecentric second system.
A lens system and a plurality of second correction systems provided for each of the plurality of light beams are provided, and at least a part of the second lens system and the plurality of second correction systems is movable in the optical axis direction. 5. The method for manufacturing a semiconductor device according to claim 4, wherein
JP5234099A 1993-08-26 1993-08-26 Surface position detector and fabrication of semiconductor employing it Pending JPH0766120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5234099A JPH0766120A (en) 1993-08-26 1993-08-26 Surface position detector and fabrication of semiconductor employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5234099A JPH0766120A (en) 1993-08-26 1993-08-26 Surface position detector and fabrication of semiconductor employing it

Publications (1)

Publication Number Publication Date
JPH0766120A true JPH0766120A (en) 1995-03-10

Family

ID=16965613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5234099A Pending JPH0766120A (en) 1993-08-26 1993-08-26 Surface position detector and fabrication of semiconductor employing it

Country Status (1)

Country Link
JP (1) JPH0766120A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077113A (en) * 1996-05-09 1997-12-12 고노 시게오 Surface position detection method, surface position adjusting device and projection exposure device
WO2016107573A1 (en) * 2014-12-31 2016-07-07 上海微电子装备有限公司 Pre-alignment measuring device and method
CN105988295A (en) * 2015-01-28 2016-10-05 上海微电子装备有限公司 Focusing and leveling apparatus and measurement method
JP2019133065A (en) * 2018-02-01 2019-08-08 株式会社デンソー Exposure apparatus and method for manufacturing semiconductor device
JP2019190903A (en) * 2018-04-20 2019-10-31 株式会社日立ハイテクノロジーズ Height detection device and charged particle beam device
CN111710629A (en) * 2020-06-23 2020-09-25 芯米(厦门)半导体设备有限公司 Wafer centering mechanism

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077113A (en) * 1996-05-09 1997-12-12 고노 시게오 Surface position detection method, surface position adjusting device and projection exposure device
WO2016107573A1 (en) * 2014-12-31 2016-07-07 上海微电子装备有限公司 Pre-alignment measuring device and method
US10197390B2 (en) 2014-12-31 2019-02-05 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Pre-alignment measurement device and method
CN105988295A (en) * 2015-01-28 2016-10-05 上海微电子装备有限公司 Focusing and leveling apparatus and measurement method
JP2019133065A (en) * 2018-02-01 2019-08-08 株式会社デンソー Exposure apparatus and method for manufacturing semiconductor device
JP2019190903A (en) * 2018-04-20 2019-10-31 株式会社日立ハイテクノロジーズ Height detection device and charged particle beam device
CN111710629A (en) * 2020-06-23 2020-09-25 芯米(厦门)半导体设备有限公司 Wafer centering mechanism

Similar Documents

Publication Publication Date Title
JP3376179B2 (en) Surface position detection method
JP2924344B2 (en) Projection exposure equipment
US8593615B2 (en) Height measurement apparatus, exposure apparatus, and device fabrication method
JPH043008A (en) Method and device for detecting image plane
JP2862311B2 (en) Surface position detection device
JP3372728B2 (en) Surface position detection device
JP3880155B2 (en) Positioning method and positioning device
JP2910327B2 (en) Surface position detecting device and method of manufacturing semiconductor device using the same
JPH0766120A (en) Surface position detector and fabrication of semiconductor employing it
US5717492A (en) Position detecting apparatus and a method for manufacturing semiconductor devices using the apparatus
JPH0927445A (en) Shot map preparing method
JP3428825B2 (en) Surface position detection method and surface position detection device
JPH104055A (en) Automatic focusing device and manufacture of device using it
JP3376219B2 (en) Surface position detecting device and method
JP3143514B2 (en) Surface position detecting apparatus and exposure apparatus having the same
JPH11135411A (en) Scanning aligner
JPH07201713A (en) Aligner and aligning method
JP3180229B2 (en) Automatic focusing device
JP3351051B2 (en) Horizontal detector and exposure apparatus using the same
JP2910151B2 (en) Position detection device
JP3667009B2 (en) Exposure apparatus and device manufacturing method using the same
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method
JP2775988B2 (en) Position detection device
JPH06236837A (en) Surface position detecting method and projection-exposure device using thereof
JP2698388B2 (en) Position detection device