[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0766406A - Self-aligned silicide mosfet and its manufacture - Google Patents

Self-aligned silicide mosfet and its manufacture

Info

Publication number
JPH0766406A
JPH0766406A JP21058493A JP21058493A JPH0766406A JP H0766406 A JPH0766406 A JP H0766406A JP 21058493 A JP21058493 A JP 21058493A JP 21058493 A JP21058493 A JP 21058493A JP H0766406 A JPH0766406 A JP H0766406A
Authority
JP
Japan
Prior art keywords
gate electrode
refractory metal
film
gate
entire surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21058493A
Other languages
Japanese (ja)
Inventor
Jiro Ida
次郎 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP21058493A priority Critical patent/JPH0766406A/en
Publication of JPH0766406A publication Critical patent/JPH0766406A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To restrain the increase of gate resistance in accordance with the reduction of gate size, and realize the high speed operation of a circuit. CONSTITUTION:In a self-aligned silicide MOSFET, high melting point metal silicide 31 is formed in at least a part of both side surfaces of a gate electrode 24 and at least a part of the lower portion of a side wall 28 of the gate electrode 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サリサイド型MOSF
ETの構造及びその製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a salicide type MOSF.
The present invention relates to a structure of ET and a manufacturing method thereof.

【0002】[0002]

【従来の技術】MOSFET(Metal Oxide
Semiconductor Field Effe
ct Transistor)が縮小化されるにしたが
い、そのゲート長が短くなり、また、短チャネル効果を
抑制するため、ソース・ドレイン領域の接合深さXf
は、浅くせざるを得ない。ゲート長が短くなり、MOS
FETのオン抵抗は下がり、一方でXjが浅くなるた
め、ソース・ドレインのシート抵抗は増大する。
2. Description of the Related Art MOSFET (Metal Oxide)
Semiconductor Field Effe
As the ct Transistor) becomes smaller, its gate length becomes shorter, and in order to suppress the short channel effect, the junction depth Xf of the source / drain region is reduced.
I cannot help making it shallow. Gate length is shortened, MOS
The on-resistance of the FET decreases, while Xj becomes shallow, so that the sheet resistance of the source / drain increases.

【0003】したがって、ゲート長がサブミクロン領域
のMOSFETでは、ソース・ドレインのシート抵抗
が、MOSFETのオン抵抗に対して無視し得なくな
り、MOSFETの駆動力がソース・ドレイン領域の寄
生抵抗により低下する問題が顕著となる。このような問
題に対して、ソース・ドレイン及びゲートをセルフ・ア
ライメントにシリサイド化し、シート抵抗を下げるサリ
サイド・プロセスがある。
Therefore, in a MOSFET with a gate length in the submicron region, the sheet resistance of the source / drain cannot be ignored with respect to the on-resistance of the MOSFET, and the driving force of the MOSFET is reduced by the parasitic resistance of the source / drain region. The problem becomes noticeable. For such a problem, there is a salicide process in which the source / drain and the gate are silicided by self-alignment to reduce the sheet resistance.

【0004】図2に、従来より使われてきたサリサイド
型MOSFET・プロセスをチタン・サリサイドを例に
示す。 (1)まず、図2(a)に示すように、通常製造工程に
したがって、半導体基板1上にフィールド酸化膜2を形
成後、ゲート電極3、サイドウォール4、ソース・ドレ
イン層5を形成する。
FIG. 2 shows a salicide type MOSFET process which has been conventionally used, taking titanium salicide as an example. (1) First, as shown in FIG. 2A, a field oxide film 2 is formed on a semiconductor substrate 1 and then a gate electrode 3, sidewalls 4, and source / drain layers 5 are formed according to a normal manufacturing process. .

【0005】(2)次に、図2(b)に示すように、全
面にTi膜6を堆積する。 (3)次に、図2(c)に示すように、700℃で10
秒程度のアニールにより、ソース・ドレイン及びゲート
のシリコン層とTi膜6が接しているところで、シリサ
イド7化を起こさせる。その後、フィールド酸化膜2
上、サイドウォール4上の未反応Tiを選択エッチング
により除去する。その後、900℃で10秒程度のシリ
サイド低抵抗化アニールを行なう。
(2) Next, as shown in FIG. 2B, a Ti film 6 is deposited on the entire surface. (3) Next, as shown in FIG.
By annealing for about a second, silicide 7 is formed where the silicon layers of the source / drain and the gate are in contact with the Ti film 6. After that, the field oxide film 2
Unreacted Ti on the upper and sidewalls 4 is removed by selective etching. Then, silicide low resistance annealing is performed at 900 ° C. for about 10 seconds.

【0006】(4)その後、通常プロセスにしたがっ
て、図2(d)に示すように、中間膜8を堆積し、コン
タクトホール9を開口し、配線層10を形成し、最後に
保護膜11を形成する。
(4) Then, according to a normal process, as shown in FIG. 2D, an intermediate film 8 is deposited, contact holes 9 are opened, a wiring layer 10 is formed, and finally a protective film 11 is formed. Form.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、以上述
べた従来のサリサイド型MOSFETにおいても、今後
ゲート長がさらに短くなるにしたがい、以下の問題があ
る。まず、ゲート長が0.3μm,0.2μm,0.1
μmと短くなるにしたがい、シリサイド化されたゲート
においても、そのゲートの抵抗が回路の高速動作を阻害
するようになる。すなわち、ゲート長0.2μm,ゲー
ト幅20μm,通常シリサイドのシート抵抗を5Ω/□
とすると、20μm幅のゲートのみで500Ωの抵抗と
なり、0.2μm時代のMOSFETのオン抵抗(20
μm幅,0.6mA/μmとすると170Ω)より十分
大きくなり、回路の高速動作の劣化要因となる。
However, the conventional salicide type MOSFET described above also has the following problems as the gate length is further shortened in the future. First, the gate length is 0.3 μm, 0.2 μm, 0.1
As the gate length becomes as short as μm, the resistance of the gate also hinders the high-speed operation of the circuit even in the silicided gate. That is, the gate length is 0.2 μm, the gate width is 20 μm, and the sheet resistance of normal silicide is 5 Ω / □.
Then, the resistance of 500Ω becomes only with the 20 μm wide gate, and the on-resistance (20
If the width is μm and 0.6 mA / μm, it becomes sufficiently larger than 170Ω), which becomes a cause of deterioration of high-speed operation of the circuit.

【0008】また、サイドウォール下のサリサイド化さ
れていないソース・ドレイン領域のシート抵抗が無視し
得なくなり、これがサリサイド型MOSFETであって
も、電流駆動力を下げる原因となる。本発明は、以上述
べたゲート寸法が縮小化されるに伴うゲート抵抗の増大
をなくし、回路の高速動作を図り得るサリサイド型MO
SFET及びその製造方法を提供することを目的とす
る。
Further, the sheet resistance of the non-salicided source / drain regions under the side wall cannot be ignored, and this causes a reduction in current driving force even in a salicide type MOSFET. The present invention eliminates the increase in the gate resistance accompanying the reduction in the gate size described above, and enables a high-speed operation of the circuit.
It is an object to provide an SFET and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (A)サリサイド型MOSFETにおいて、ゲート電極
の両側面の少なくとも一部に形成される高融点金属シリ
サイドを設けるようにしたものである。また、更に、前
記ゲート電極のサイドウォール絶縁膜の下方の少なくと
も一部に形成される高融点金属シリサイドを設けるよう
にしたものである。
In order to achieve the above object, the present invention provides (A) a salicide type MOSFET with a refractory metal silicide formed on at least a part of both side surfaces of a gate electrode. It was done. Further, a refractory metal silicide formed on at least a part of the side wall insulating film of the gate electrode is provided.

【0010】(B)また、サリサイド型MOSFETの
製造方法において、ゲート電極形成後、全面に酸化膜を
堆積する工程と、全面に窒化膜を堆積し、異方性エッチ
ングにより窒化膜サイドウォールを形成する工程と、前
記酸化膜を前記ゲート電極の両側面が一部露出し、窒化
膜サイドウォール下のシリコン基板が一部露出するよう
にエッチングする工程と、全面に高融点金属を堆積する
工程と、シリサイド化反応を行い、未反応高融点金属を
除去する工程とを施すようにしたものである。
(B) In the method of manufacturing a salicide type MOSFET, a step of depositing an oxide film on the entire surface after forming the gate electrode and a step of depositing a nitride film on the entire surface and forming a nitride film sidewall by anisotropic etching. And a step of etching the oxide film so that both side surfaces of the gate electrode are partially exposed and a silicon substrate under the nitride film side wall is partially exposed, and a step of depositing a refractory metal on the entire surface. , A step of performing a silicidation reaction and removing unreacted refractory metal.

【0011】(C)更に、サリサイド型MOSFETの
製造方法において、ゲート電極形成後、全面に絶縁膜を
堆積する工程と、異方性エッチングによりゲート電極両
側面の一部分が露出するまでエッチングを行う工程と、
全面に高融点金属を堆積する工程と、シリサイド化反応
を行い、未反応高融点金属を除去する工程とを施すよう
にしたものである。
(C) Further, in the method of manufacturing a salicide type MOSFET, after the gate electrode is formed, a step of depositing an insulating film on the entire surface and a step of performing anisotropic etching until a part of both side surfaces of the gate electrode are exposed. When,
A process of depositing a refractory metal on the entire surface and a process of performing a silicidation reaction to remove unreacted refractory metal are performed.

【0012】[0012]

【作用】本発明によれば、上記したように、高集積化に
伴いゲート寸法が縮小化される場合でも、ゲート電極の
少なくとも両側面の一部がシリサイド化されるため、ゲ
ート電極の低抵抗化を図ることができる。また、サイド
ウォールを一部除去して、ソース・ドレイン上のシリサ
イド化をゲート近傍まで近づけるようにしたので、サイ
ドウォール下の寄生抵抗を低減することができる。
According to the present invention, as described above, even when the gate size is reduced due to high integration, since at least a part of both side surfaces of the gate electrode is silicidized, the low resistance of the gate electrode is obtained. Can be realized. Further, since the sidewalls are partially removed so that the silicidation on the source / drain is brought close to the vicinity of the gate, the parasitic resistance under the sidewall can be reduced.

【0013】しかも、上記(B)において、窒化膜下
は、スパッタリング時の回り込みにより、高融点金属を
堆積するようにしているため、奥に行くほど、つまりゲ
ート電極側に行くほど、高融点金属は薄くなり、ソース
・ドレインの接合深さ、及び不純物濃度もゲート電極側
に近づくほど浅くなるため、接合リーク電流を低減でき
る。
In addition, in (B) above, since the refractory metal is deposited under the nitride film due to the wraparound during sputtering, the refractory metal becomes deeper toward the back, that is, toward the gate electrode side. Becomes thinner, and the junction depth of the source / drain and the impurity concentration become shallower toward the gate electrode side, so that the junction leak current can be reduced.

【0014】また、上記(B)において、窒化膜サイド
ウォールとゲート電極の間、及び窒化膜サイドウォール
とシリコン基板の間を1000Å程度エッチングする間
に、ゲート電極表面、ソース・ドレインとなるシリコン
基板表面の酸化膜を確実にエッチング除去できるため、
安定したシリサイド形成が可能となる。
Further, in the above (B), the silicon substrate to be the surface of the gate electrode and the source / drain is etched while etching between the nitride film side wall and the gate electrode and between the nitride film side wall and the silicon substrate by about 1000Å. Since the oxide film on the surface can be reliably removed by etching,
Stable silicide formation is possible.

【0015】[0015]

【実施例】以下、本発明の実施例について図を参照しな
がら詳細に説明する。図1は本発明の第1の実施例を示
すサリサイド型MOSFETの製造工程断面図である。
ここでは、NチャネルMOSFETの例で示す。 (1)まず、図1(a)に示すように、P型シリコン基
板21上にフィールド酸化膜22(約4000Å)を通
常のLOCOS法で形成する。その後、ゲート酸化膜2
3(約100Å)を形成し、更に、LPCVDにより、
ゲート電極となる多結晶シリコン膜24を約3000Å
堆積する。通常のホトリソエッチングにより、ゲート電
極のパターン形成を行なう。25はLDD層である。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view of a salicide type MOSFET manufacturing process showing a first embodiment of the present invention.
Here, an example of an N-channel MOSFET is shown. (1) First, as shown in FIG. 1A, a field oxide film 22 (about 4000 Å) is formed on a P-type silicon substrate 21 by a normal LOCOS method. After that, the gate oxide film 2
3 (about 100 Å) is formed, and further by LPCVD,
Approximately 3000 Å of the polycrystalline silicon film 24 to be the gate electrode
accumulate. The gate electrode pattern is formed by ordinary photolithographic etching. Reference numeral 25 is an LDD layer.

【0016】(2)次に、図1(b)に示すように、全
面にLPCVDにより、酸化膜26を300Å〜700
Å程度堆積する。この場合、成膜条件として、温度を下
げる等により粗な膜として、後の工程(4)〔図1
(d)参照〕における酸化膜ウェットエッチング時にフ
ィールド酸化膜22より十分速くエッチングが進む膜質
とする。その後、プラズマCVDにより、1500Å程
度の窒化膜27を堆積する。この場合、膜質としては、
RFパワーを下げる等により、低ストレスな膜質とし、
シリコン中に欠陥が入るのを防止する必要がある。
(2) Next, as shown in FIG. 1 (b), an oxide film 26 is formed on the entire surface by LPCVD to a thickness of 300Å to 700.
Å Deposit about. In this case, as a film forming condition, a rough film is formed by lowering the temperature, and the subsequent step (4) [FIG.
(See (d)) When the oxide film is wet-etched, the film quality is such that the etching progresses sufficiently faster than the field oxide film 22. After that, a nitride film 27 of about 1500 Å is deposited by plasma CVD. In this case, as film quality,
By reducing the RF power, etc., a low-stress film quality is obtained,
It is necessary to prevent defects from being introduced into silicon.

【0017】(3)次に、図1(c)に示すように、異
方性エッチングにより、窒化膜27をエッチングし、1
500Å程度の幅を持つサイドウォール28を形成す
る。その後、サイドウォール28をマスクにしてシリコ
ン中へソース・ドレイン形成用不純物注入を行い、ソー
ス・ドレイン層29を形成する。 (4)次に、図1(d)に示すように、フッ酸系のエッ
チャントにより、前記工程(2)〔図1(b)参照〕で
堆積した酸化膜26をエッチング除去し、さらに窒化膜
サイドウォール28の下、及びゲート電極を構成する多
結晶シリコン膜24と挟まれた部分の酸化膜をも100
0Å程度エッチング除去する。引き続き、Ti等の高融
点金属膜30を全面にスパッタリングにより、300〜
400Å程度堆積する。この場合、例えば、ECR共鳴
周波数の高い875MHz×2倍等のスパッタリングに
より、ゲート両側面及び窒化膜サイドウォール28下に
も十分高融点金属膜30が堆積されるようにする。
(3) Next, as shown in FIG. 1C, the nitride film 27 is etched by anisotropic etching to
A sidewall 28 having a width of about 500Å is formed. After that, source / drain forming impurities are implanted into silicon using the sidewalls 28 as a mask to form source / drain layers 29. (4) Next, as shown in FIG. 1D, the oxide film 26 deposited in the step (2) [see FIG. 1B] is removed by etching with a hydrofluoric acid-based etchant, and a nitride film is further formed. The oxide film under the side wall 28 and also in the portion sandwiched by the polycrystalline silicon film 24 forming the gate electrode is 100
Etch away about 0Å. Subsequently, a refractory metal film 30 made of Ti or the like is sputtered on the entire surface by
Deposit about 400Å. In this case, the refractory metal film 30 is sufficiently deposited also on both side surfaces of the gate and under the nitride film sidewalls 28 by, for example, sputtering of 875 MHz × 2 times having a high ECR resonance frequency.

【0018】(5)次に、図1(e)に示すように、ア
ニールにより、高融点金属膜30、P型シリコン基板2
1及び多結晶シリコン膜24の接触した部分でシリサイ
ド化を起こさせ、高融点金属シリサイド31とする。更
に、酸化膜26上及び窒化膜27上の未反応高融点金属
をエッチングにより選択的に除去する。その後、高融点
金属シリサイド31の低抵抗化アニールを行なう。
(5) Next, as shown in FIG. 1E, the refractory metal film 30 and the P-type silicon substrate 2 are annealed.
The silicidation is caused in the contact portion between the 1 and the polycrystalline silicon film 24 to form the refractory metal silicide 31. Further, the unreacted refractory metal on the oxide film 26 and the nitride film 27 is selectively removed by etching. After that, the high melting point metal silicide 31 is annealed to reduce its resistance.

【0019】(6)次に、図1(f)に示すように、通
常の方法に従い、中間膜32を堆積し、配線とのコンタ
クトホール33を開け、そこに配線層34をパターニン
グする。図3は本発明の第2の実施例を示すサリサイド
型MOSFETの製造工程断面図である。
(6) Next, as shown in FIG. 1 (f), an intermediate film 32 is deposited, a contact hole 33 for a wiring is opened, and a wiring layer 34 is patterned therein in accordance with a usual method. FIG. 3 is a cross-sectional view of a salicide type MOSFET manufacturing process showing a second embodiment of the present invention.

【0020】(1)まず、図3(a)に示すように、図
1(a)と同様、ゲートパターニングまで完了する。つ
まり、P型シリコン基板41上にフィールド酸化膜42
(約4000Å)を通常のLOCOS法で形成する。そ
の後、ゲート酸化膜43(約100Å)を形成し、更
に、LPCVDにより、ゲート電極となる多結晶シリコ
ン膜44を約3000Å堆積する。通常のホトリソエッ
チングにより、ゲート電極のパターン形成を行なう。4
5はLDD層である。
(1) First, as shown in FIG. 3A, gate patterning is completed as in FIG. 1A. That is, the field oxide film 42 is formed on the P-type silicon substrate 41.
(About 4000 Å) is formed by a normal LOCOS method. After that, a gate oxide film 43 (about 100 Å) is formed, and further, a polycrystalline silicon film 44 to be a gate electrode is deposited by about 3000 Å by LPCVD. The gate electrode pattern is formed by ordinary photolithographic etching. Four
Reference numeral 5 is an LDD layer.

【0021】(2)次に、図3(b)に示すように、全
面にLPCVDにより、酸化膜46を1000Å程度堆
積する。この場合、成膜条件として、温度を下げる等に
より粗な膜として、後の工程(3)〔図1(c)参照〕
における酸化膜異方性エッチング時にフィールド酸化膜
42より十分速くエッチングが進む膜質とする。 (3)次いで、図3(c)に示すように、異方性エッチ
ングによりその酸化膜46をエッチングし、さらにゲー
トの両側面に酸化膜47が1000Å程度出るまでエッ
チングを進める。
(2) Next, as shown in FIG. 3B, an oxide film 46 is deposited on the entire surface by LPCVD to a thickness of about 1000Å. In this case, as a film forming condition, a rough film is formed by lowering the temperature, and the subsequent step (3) [see FIG. 1 (c)].
The film quality is such that the etching progresses sufficiently faster than the field oxide film 42 during the anisotropic etching of the oxide film. (3) Next, as shown in FIG. 3C, the oxide film 46 is etched by anisotropic etching, and the etching is further advanced until the oxide film 47 is exposed to about 1000 Å on both side surfaces of the gate.

【0022】(4)次いで、図3(d)に示すように、
全面に高融点金属48を堆積する。この場合、第1の実
施例と同様、ゲートの両側面に十分高融点金属48が堆
積するスパッタリング技術を使用する。 (5)次に、図3(e)に示すように、図1(e)と同
様に、シリサイド化反応、未反応高融点金属除去、低抵
抗化アニールを行なう。すなわち、このアニールによ
り、高融点金属膜48、P型シリコン基板41及びゲー
ト電極である多結晶シリコン膜44と接触した部分でシ
リサイド化を起こさせ、高融点金属シリサイド49とす
る。
(4) Next, as shown in FIG.
A refractory metal 48 is deposited on the entire surface. In this case, as in the first embodiment, a sputtering technique is used in which the refractory metal 48 is sufficiently deposited on both side surfaces of the gate. (5) Next, as shown in FIG. 3E, silicidation reaction, unreacted refractory metal removal, and low resistance annealing are performed as in FIG. 1E. That is, by this annealing, silicidation is caused in the portion in contact with the refractory metal film 48, the P-type silicon substrate 41 and the polycrystalline silicon film 44 which is the gate electrode, and the refractory metal silicide 49 is obtained.

【0023】以下は、図1(f)の工程に従う。なお、
前記高融点金属の堆積は、共鳴周波数(高い周波数を用
いる)、ECRスパッタリング技術などのステップカバ
レージの良いスパッタリング技術で行なうことが望まし
い。また、本発明は上記実施例に限定されるものではな
く、本発明の趣旨に基づいて種々の変形が可能であり、
これらを本発明の範囲から排除するものではない。
The following follows the process of FIG. 1 (f). In addition,
The deposition of the refractory metal is preferably performed by a sputtering technique having good step coverage such as a resonance frequency (using a high frequency) or an ECR sputtering technique. Further, the present invention is not limited to the above embodiments, various modifications are possible based on the gist of the present invention,
They are not excluded from the scope of the present invention.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、高集積化に伴いゲート寸法が縮小化される場合
でも、ゲート電極両側面の少なくとも一部がシリサイド
化されるため、ゲート電極の低抵抗化を図ることができ
る。更に、窒化膜サイドウォール下も一部シリサイド化
することができ、サイドウォール下の寄生抵抗を低減す
ることができる。しかも、窒化膜サイドウォール下は、
スパッタリング時の回り込みにより、高融点金属を堆積
しているため、奥に行くほど、つまりゲート電極側に近
づくほど、高融点金属は薄くなり、ソース・ドレインの
接合深さ、及び不純物濃度もゲート電極側に近づくほど
浅くなるため、接合リーク電流を低減できる。
As described above in detail, according to the present invention, at least a part of both side surfaces of the gate electrode is silicidized even when the gate size is reduced due to high integration. It is possible to reduce the resistance of the gate electrode. Further, a part of the portion under the side wall of the nitride film can be silicidized, and the parasitic resistance under the side wall can be reduced. Moreover, under the nitride film side wall,
Since the refractory metal is deposited due to the wraparound during sputtering, the refractory metal becomes thinner as it goes deeper, that is, closer to the gate electrode side, and the source / drain junction depth and impurity concentration are Since it becomes shallower as it gets closer to the side, the junction leakage current can be reduced.

【0025】また、窒化膜サイドウォールとゲート電極
の間、及び窒化膜サイドウォールとシリコン基板の間を
1000Å程度エッチングする間に、ゲート電極表面、
ソース・ドレインとなるシリコン基板表面の酸化膜を確
実にエッチング除去できるため、安定したシリサイド形
成が可能となる。更に、第3図における製造方法におい
ては、簡単な工程でもって、ゲート電極両側面の少なく
とも一部がシリサイド化されるため、ゲート電極の低抵
抗化を図ることができる。
The surface of the gate electrode, while etching about 1000Å between the side wall of the nitride film and the gate electrode and between the side wall of the nitride film and the silicon substrate,
Since the oxide film on the surface of the silicon substrate to be the source / drain can be reliably removed by etching, stable silicide formation is possible. Further, in the manufacturing method shown in FIG. 3, at least a part of both side surfaces of the gate electrode is silicided by a simple process, so that the resistance of the gate electrode can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すサリサイド型MO
SFETの製造工程断面図である。
FIG. 1 is a salicide type MO showing a first embodiment of the present invention.
It is a manufacturing-process sectional drawing of SFET.

【図2】従来のサリサイド型MOSFETの製造工程断
面図である。
FIG. 2 is a sectional view of a conventional salicide-type MOSFET manufacturing process.

【図3】本発明の第2の実施例を示すサリサイド型MO
SFETの製造工程断面図である。
FIG. 3 is a salicide type MO showing a second embodiment of the present invention.
It is a manufacturing-process sectional drawing of SFET.

【符号の説明】[Explanation of symbols]

21,41 P型シリコン基板 22,42 フィールド酸化膜 23,43 ゲート酸化膜 24,44 多結晶シリコン膜(ゲート電極) 25,45 LDD層 26,46,47 酸化膜 27 窒化膜 28 サイドウォール 29 ソース・ドレイン層 30,48 高融点金属膜 31,49 高融点金属シリサイド 32 中間膜 33 コンタクトホール 34 配線層 21, 41 P-type silicon substrate 22, 42 Field oxide film 23, 43 Gate oxide film 24, 44 Polycrystalline silicon film (gate electrode) 25, 45 LDD layer 26, 46, 47 Oxide film 27 Nitride film 28 Sidewall 29 Source -Drain layer 30,48 Refractory metal film 31,49 Refractory metal silicide 32 Intermediate film 33 Contact hole 34 Wiring layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ゲート電極の両側面の少なくとも一部に
形成される高融点金属シリサイドを具備することを特徴
とするサリサイド型MOSFET。
1. A salicide-type MOSFET comprising a refractory metal silicide formed on at least a part of both side surfaces of a gate electrode.
【請求項2】 前記ゲート電極のサイドウォール絶縁膜
の下方の少なくとも一部に形成される高融点金属シリサ
イドを具備することを特徴とする請求項1記載のサリサ
イド型MOSFET。
2. The salicide type MOSFET according to claim 1, further comprising a refractory metal silicide formed on at least a part of a side wall insulating film of the gate electrode.
【請求項3】(a)ゲート電極形成後、全面に酸化膜を
堆積する工程と、 (b)全面に窒化膜を堆積し、異方性エッチングにより
窒化膜サイドウォールを形成する工程と、 (c)前記酸化膜を前記ゲート電極の両側面が一部露出
し、窒化膜サイドウォール下のシリコン基板が一部露出
するようにエッチングする工程と、 (d)全面に高融点金属を堆積する工程と、 (e)シリサイド化反応を行い、未反応高融点金属を除
去する工程とを施すことを特徴とするサリサイド型MO
SFETの製造方法。
3. A step of: (a) depositing an oxide film on the entire surface after forming the gate electrode; and (b) depositing a nitride film on the entire surface and forming a nitride film sidewall by anisotropic etching. c) a step of etching the oxide film so that both side surfaces of the gate electrode are partially exposed and a silicon substrate under the nitride film side wall is partially exposed; and (d) a step of depositing a refractory metal on the entire surface. And (e) a step of performing a silicidation reaction to remove unreacted refractory metal.
Manufacturing method of SFET.
【請求項4】(a)ゲート電極形成後、全面に絶縁膜を
堆積する工程と、 (b)異方性エッチングによりゲート電極両側面の一部
分が露出するまでエッチングを行う工程と、 (c)全面に高融点金属を堆積する工程と、 (d)シリサイド化反応を行い、未反応高融点金属を除
去する工程とを施すことを特徴とするサリサイド型MO
SFETの製造方法。
4. A step of: (a) depositing an insulating film on the entire surface after forming the gate electrode; (b) performing anisotropic etching until a part of both side surfaces of the gate electrode is exposed; (c) A salicide type MO characterized by performing a step of depositing a refractory metal on the entire surface and a step of (d) performing a silicidation reaction to remove unreacted refractory metal.
Manufacturing method of SFET.
JP21058493A 1993-08-25 1993-08-25 Self-aligned silicide mosfet and its manufacture Pending JPH0766406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21058493A JPH0766406A (en) 1993-08-25 1993-08-25 Self-aligned silicide mosfet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21058493A JPH0766406A (en) 1993-08-25 1993-08-25 Self-aligned silicide mosfet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0766406A true JPH0766406A (en) 1995-03-10

Family

ID=16591742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21058493A Pending JPH0766406A (en) 1993-08-25 1993-08-25 Self-aligned silicide mosfet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0766406A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201775A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device
JPH11150271A (en) * 1997-08-28 1999-06-02 Lsi Logic Corp Method of forming metal silicate contact and structure having metal silicate contact
KR20000043603A (en) * 1998-12-29 2000-07-15 윤종용 Mos transistor having metal silicide layer and fabrication method thereof
WO2001011669A1 (en) * 1999-08-09 2001-02-15 Koninklijke Philips Electronics N.V. Salicide process for mosfet integrated circuit
KR100412194B1 (en) * 2001-12-20 2003-12-24 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
US6724057B2 (en) 1999-12-14 2004-04-20 Sanyo Electric Co., Ltd. Semiconductor device with reduced short circuiting between gate electrode and source/drain region
US6979634B2 (en) 2002-11-20 2005-12-27 Oki Electric Industry Co., Ltd. Manufacturing method for semiconductor device having a T-type gate electrode
JP2007518274A (en) * 2004-01-12 2007-07-05 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Low stress sidewall spacers in integrated circuit technology.
JP2010010215A (en) * 2008-06-24 2010-01-14 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
JP2010093446A (en) * 2008-10-06 2010-04-22 Serukurosu:Kk Electromagnetic wave interface device and electromagnetic wave transmission system
JP2012218242A (en) * 2011-04-06 2012-11-12 Seiko Epson Corp Method for manufacturing liquid ejecting head
JP2014195091A (en) * 1998-11-13 2014-10-09 Intel Corp Method and device for improving salicide resistance on polycrystal silicon gate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201775A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device
JPH11150271A (en) * 1997-08-28 1999-06-02 Lsi Logic Corp Method of forming metal silicate contact and structure having metal silicate contact
JP2014195091A (en) * 1998-11-13 2014-10-09 Intel Corp Method and device for improving salicide resistance on polycrystal silicon gate
KR20000043603A (en) * 1998-12-29 2000-07-15 윤종용 Mos transistor having metal silicide layer and fabrication method thereof
WO2001011669A1 (en) * 1999-08-09 2001-02-15 Koninklijke Philips Electronics N.V. Salicide process for mosfet integrated circuit
FR2797522A1 (en) * 1999-08-09 2001-02-16 St Microelectronics Sa METHOD FOR MANUFACTURING AN INTEGRATED CIRCUIT HAVING IMPROVED SILICIURATION AND CORRESPONDING INTEGRATED CIRCUIT
US6724057B2 (en) 1999-12-14 2004-04-20 Sanyo Electric Co., Ltd. Semiconductor device with reduced short circuiting between gate electrode and source/drain region
KR100412194B1 (en) * 2001-12-20 2003-12-24 주식회사 하이닉스반도체 Method of manufacturing a semiconductor device
US6979634B2 (en) 2002-11-20 2005-12-27 Oki Electric Industry Co., Ltd. Manufacturing method for semiconductor device having a T-type gate electrode
US7247549B2 (en) 2002-11-20 2007-07-24 Oki Electric Industry Co., Ltd. Manufacturing method for semiconductor device having a T type gate electrode
JP2007518274A (en) * 2004-01-12 2007-07-05 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Low stress sidewall spacers in integrated circuit technology.
JP2010010215A (en) * 2008-06-24 2010-01-14 Oki Semiconductor Co Ltd Method of manufacturing semiconductor device
JP2010093446A (en) * 2008-10-06 2010-04-22 Serukurosu:Kk Electromagnetic wave interface device and electromagnetic wave transmission system
JP2012218242A (en) * 2011-04-06 2012-11-12 Seiko Epson Corp Method for manufacturing liquid ejecting head

Similar Documents

Publication Publication Date Title
US6399451B1 (en) Semiconductor device having gate spacer containing conductive layer and manufacturing method therefor
US6190976B1 (en) Fabrication method of semiconductor device using selective epitaxial growth
JPH10173177A (en) Manufacture of mis transistor
JPH10178172A (en) Semiconductor device and its manufacture
US6245626B1 (en) Method of fabricating a MOS device using a sacrificial layer and spacer
JPH0766406A (en) Self-aligned silicide mosfet and its manufacture
KR100305308B1 (en) Semiconductor device and method of manufacturing the same
US6218690B1 (en) Transistor having reverse self-aligned structure
JP4411677B2 (en) Manufacturing method of semiconductor device
JPH10150188A (en) Manufacture of semiconductor device
KR100327422B1 (en) Method of fabricating for semiconductor device
US6255206B1 (en) Method of forming gate electrode with titanium polycide structure
US6995434B2 (en) Semiconductor device and method of fabricating the same
US7078347B2 (en) Method for forming MOS transistors with improved sidewall structures
JP3439652B2 (en) Semiconductor device and manufacturing method thereof
US6238958B1 (en) Method for forming a transistor with reduced source/drain series resistance
US20050170596A1 (en) Semiconductor device and method for manufacturing the same
JP2819918B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH1098012A (en) Manufacture of semiconductor device
KR100451756B1 (en) Method for fabricating semiconductor device the same
KR100525446B1 (en) Method for forming salicide layer of semiconductor device
KR100348310B1 (en) method for manufacturing of semiconductor device
KR100380981B1 (en) Method for forming salicide gate electrode
JPH10125915A (en) Semiconductor device and its manufacture
KR20030079275A (en) Method for forming salicide of a semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010626