[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0765677A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH0765677A
JPH0765677A JP21201293A JP21201293A JPH0765677A JP H0765677 A JPH0765677 A JP H0765677A JP 21201293 A JP21201293 A JP 21201293A JP 21201293 A JP21201293 A JP 21201293A JP H0765677 A JPH0765677 A JP H0765677A
Authority
JP
Japan
Prior art keywords
vacuum
vacuum valve
insulating
vacuum container
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21201293A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kagawa
芳弘 加川
Michihiko Koyama
充彦 小山
Satoshi Makishima
聡 槙島
Toshio Shimizu
敏夫 清水
Takayuki Miyazawa
孝幸 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21201293A priority Critical patent/JPH0765677A/en
Publication of JPH0765677A publication Critical patent/JPH0765677A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To provide a vacuum valve in which generation of cracks caused by thermal stress and generation of separation caused by impact on switching operation are prevented to enhance reliability by arranging a porous expansion laminated plate in which resin is impregnated in a space between a vacuum container and an insulating reinforced cylinder of the vacuum valve. CONSTITUTION:In a vacuum valve 1 in which a pair of electrodes 6, 7 capable of nearing and separating in a vacuum container 5 formed by airtightly sealing both ends of an insulating container are installed, an insulating reinforced cylinder 10 installed in the circumference of the vacuum container 5 and a porous laminated plate 12 which expands when heated installed between the insulating reinforced cylinder 10 and the vacuum container 5 are arranged, and a resin material (example, a fluidity epoxy resin compound) is impregnated into pores of the porous laminated plate 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空バルブに関する。FIELD OF THE INVENTION This invention relates to vacuum valves.

【0002】[0002]

【従来の技術】近年、高電圧に対して優れた絶縁耐力を
有する高真空を利用し、この中で接点を開閉する際に生
じるアークを直ちに消弧させる真空バルブは、高電圧回
路を遮断するものとして広く使用されている。さらに、
真空バルブは高真空中で接点を開閉するので遮断に必要
な電極開閉距離を短くすることができ、このため小形化
が可能になる。
2. Description of the Related Art In recent years, a vacuum valve that utilizes a high vacuum having an excellent dielectric strength against a high voltage and immediately extinguishes an arc generated when a contact is opened or closed in the vacuum valve shuts off a high voltage circuit. Widely used as a thing. further,
Since the vacuum valve opens and closes the contacts in a high vacuum, it is possible to shorten the electrode opening / closing distance required for interruption, which enables miniaturization.

【0003】ここで、代表的な真空バルブの断面図を図
2に示す。同図において、真空バルブ1は、例えばセラ
ミックス材から成る絶縁円筒2の両端開口部を固定側端
板3、可動側端板4により気密に封止して真空容器5を
形成し、固定軸6は固定側端板3に真空気密に固定さ
れ、可動軸7はベローズ8を介して可動側端板4に取り
付けられ、真空を保持したまま固定側と可動側の各々の
接点9a,9bの開閉ができるようになっている。
Here, a cross-sectional view of a typical vacuum valve is shown in FIG. In FIG. 1, a vacuum valve 1 is formed by hermetically sealing an opening at both ends of an insulating cylinder 2 made of, for example, a ceramic material with a fixed side end plate 3 and a movable side end plate 4 to form a vacuum container 5, and a fixed shaft 6 Is vacuum-tightly fixed to the fixed-side end plate 3, and the movable shaft 7 is attached to the movable-side end plate 4 via a bellows 8 to open and close the fixed-side and movable-side contacts 9a and 9b while maintaining the vacuum. You can do it.

【0004】一方、このような真空バルブ1は、上記し
た理由により接点9a,9bを収納する絶縁円筒2を小
形にすることができる。しかしながら、絶縁円筒2を小
形にするということは外側の絶縁沿面距離が短くなるこ
とを意味する。このため、大気中の汚損物(湿気、塵埃
等)が絶縁円筒2の外側表面に付着したような場合は耐
電圧が低下してしまい、外部閃絡が発生しやすくなる。
そこで、汚損条件を考慮し、真空容器の外側に例えばエ
ポキシ樹脂から成る絶縁外皮を注型によって一体に設け
ている。
On the other hand, in such a vacuum valve 1, the insulating cylinder 2 for accommodating the contacts 9a and 9b can be made small for the above-mentioned reason. However, making the insulating cylinder 2 small means that the outer insulating creepage distance becomes shorter. For this reason, when contaminants (moisture, dust, etc.) in the atmosphere adhere to the outer surface of the insulating cylinder 2, the withstand voltage decreases, and external flashover is likely to occur.
Therefore, in consideration of the fouling condition, an insulating outer cover made of, for example, an epoxy resin is integrally provided by casting on the outside of the vacuum container.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに絶縁外皮を真空容器の外側に直接形成した真空バル
ブでは、双方の材料の熱膨張係数の違いにより熱応力が
発生する。このため、真空バルブあるいは絶縁外皮にク
ラックが発生する。また、接点の開閉動作時の衝撃力に
よって界面が剥離する等の不具合が発生することもあ
り、信頼性が著しく低下する。本発明の目的は、熱応力
によるクラックの発生や開閉動作時の衝撃力による剥離
の発生を防いで信頼性を向上させた真空バルブを提供す
ることにある。
However, in the vacuum valve in which the insulating jacket is directly formed on the outside of the vacuum container in this way, thermal stress is generated due to the difference in the thermal expansion coefficient of both materials. For this reason, cracks occur in the vacuum valve or the insulating cover. In addition, impact such as opening and closing of the contact may cause a problem such as separation of the interface, resulting in a significant decrease in reliability. An object of the present invention is to provide a vacuum valve having improved reliability by preventing the occurrence of cracks due to thermal stress and the separation due to impact force during opening / closing operations.

【0006】[0006]

【課題を解決するための手段および作用】上記目的を達
成するために本発明は、絶縁容器の両端を気密封着して
成る真空容器内に接離可能な一対の電極を配設した真空
バルブにおいて、真空容器の外周に設けられる絶縁補強
筒と、絶縁補強筒と真空容器との間に設けられ加熱によ
り膨張する多孔性積層板とを有し、多孔性積層板の多孔
性部分に樹脂材料を含浸させるようにしたので、真空容
器と絶縁補強筒の界面の接着力が改善される。
In order to achieve the above object, the present invention provides a vacuum valve having a pair of electrodes which can be contacted and separated from each other in a vacuum container formed by hermetically sealing both ends of an insulating container. In, an insulating reinforcing cylinder provided on the outer periphery of the vacuum container, and a porous laminated plate which is provided between the insulating reinforcing cylinder and the vacuum container and expands by heating, and a resin material in a porous portion of the porous laminated plate. Since this is impregnated with, the adhesive force at the interface between the vacuum container and the insulating reinforcing cylinder is improved.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。なお、従来と同様のものについては同一番号を
付して説明を省略する。図1は、本発明の一実施例を示
す真空バルブの断面図である。同図において、真空バル
ブ1に、予めエポキシ樹脂注型により製作された絶縁補
強筒10を組み込み、その隙間に例えば多孔性膨張エポキ
シFRP層12を形成する。これは、規定の長さに切断し
た短冊状の多孔性膨張エポキシ積層板(例えば、isovol
ta社のPOROMAT ME 0747 )を配置し、約80℃〜100 ℃の
温度で膨張させる。一方、含浸樹脂としては、例えば、
日本チバガイギー社のXN1135を主剤とし、硬化剤とし
て同じく日本チバガイギー社のXN 1113の可とう性エ
ポキシ樹脂配合物を用いたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. It should be noted that the same components as those in the related art are designated by the same reference numerals and the description thereof will be omitted. FIG. 1 is a sectional view of a vacuum valve showing an embodiment of the present invention. In the same figure, the vacuum valve 1 is assembled with an insulating reinforcing cylinder 10 manufactured in advance by epoxy resin casting, and a porous expanded epoxy FRP layer 12 is formed in the gap. This is a strip of porous expanded epoxy laminate (eg isovol) cut to length.
PO company "TAROMA ME 0747" is placed and expanded at a temperature of about 80 ° C to 100 ° C. On the other hand, as the impregnating resin, for example,
The main agent is XN1135 manufactured by Ciba-Geigy Japan, and the flexible epoxy resin compound of XN1113 manufactured by Ciba-Geigy Japan is also used as a curing agent.

【0008】また、絶縁補強筒10はビスフェノールA型
エポキシ樹脂、例えば日本チバガイギー社のアラルダイ
トGY260 を主剤とし、硬化剤に酸無水物、例えば日立
化成社の変性酸無水物硬化剤HN2200を用いた配合物、
充填材としてシリカ微粉末、例えば龍森社のクリスタラ
イト5Xと、平均繊維長50μmのガラス短繊維、例えば
日本板硝子社のミルドファイバーREV−7の混合物を
全体の50%以上になるように配合した注型樹脂組成物
に、硬化促進剤として第3級アミン、例えばBDMAを
規定量添加し、規定の条件で硬化することにより形成さ
れる。
The insulating reinforcing cylinder 10 is composed of a bisphenol A type epoxy resin, for example, Araldite GY260 manufactured by Ciba-Geigy Japan, as a main component, and an acid anhydride, for example, a modified acid anhydride curing agent HN2200 manufactured by Hitachi Chemical Co., Ltd. as a curing agent. object,
As a filler, a mixture of fine silica powder such as Crystallite 5X manufactured by Tatsumori Co., Ltd. and glass short fibers having an average fiber length of 50 μm such as milled fiber REV-7 manufactured by Nippon Sheet Glass Co., Ltd. was blended so as to be 50% or more of the whole. It is formed by adding a specified amount of a tertiary amine such as BDMA as a curing accelerator to the cast resin composition and curing the composition under specified conditions.

【0009】ここで、本実施例における真空バルブにつ
いて、この種の真空バルブの実用化のために重要な信頼
性試験であるヒートショック試験および加熱劣化試験の
結果を示す。
Here, the results of the heat shock test and the heat deterioration test, which are important reliability tests for practical application of this type of vacuum valve, will be shown for the vacuum valve of this embodiment.

【0010】実際に行ったヒートショック試験は、98〜
100 ℃の沸騰水中に1時間浸漬し、これを取りだした後
に直ちに0〜2℃の冷水中に1時間浸漬を1サイクルと
して10サイクルまで行った。また加熱劣化試験は、加速
劣化を考慮し、実使用温度+α(115 ℃+35℃=150 ℃
とした)の温度中に1000Hr放置した。
The heat shock test actually conducted is from 98 to
Immersion in boiling water at 100 ° C. for 1 hour was taken out, and immediately thereafter, immersion in cold water at 0 to 2 ° C. for 1 hour was performed as one cycle, and up to 10 cycles were performed. In the heat deterioration test, considering the accelerated deterioration, the actual operating temperature + α (115 ℃ + 35 ℃ = 150 ℃
Was left for 1000 hours.

【0011】この条件における試験が終了した時点でイ
ンパルス耐電圧試験を実施し(真空バルブの定格電圧は
24kV、インパルス耐電圧試験の規格値は±125 kV/
3回以上とした)、異常の有無を調査したところ、規定
のインパルス耐電圧は十分に満足していた。
When the test under these conditions is completed, an impulse withstand voltage test is performed (the rated voltage of the vacuum valve is
24kV, standard value of impulse withstand voltage test is ± 125kV /
When the presence or absence of abnormality was investigated, it was found that the specified impulse withstand voltage was sufficiently satisfied.

【0012】この理由は、次のように考えられる。すな
わち、真空バルブ1の絶縁円筒5と絶縁補強筒10の隙間
に配置された多孔性膨張エポキシFRP層12が熱と樹脂
材料の含浸により膨張するため、真空容器5と絶縁補強
筒10には常に押し付けによる圧力が加わることになる。
このため、界面の接着力が改善されるわけである。な
お、押し付け圧力は、絶縁円筒5と絶縁補強筒10と積層
板厚さによって決まり、低温下でも圧力が保持できる様
にする。
The reason for this is considered as follows. That is, since the porous expanded epoxy FRP layer 12 disposed in the gap between the insulating cylinder 5 of the vacuum valve 1 and the insulating reinforcing cylinder 10 expands due to the impregnation of heat and the resin material, the vacuum container 5 and the insulating reinforcing cylinder 10 are always Pressure will be applied by pressing.
Therefore, the adhesive force at the interface is improved. The pressing pressure is determined by the insulating cylinder 5, the insulating reinforcing cylinder 10 and the thickness of the laminated plate so that the pressure can be maintained even at a low temperature.

【0013】また、多孔性膨張エポキシ積層板はガラス
繊維を多量に含有しているため、多孔性膨張エポキシF
RP層12の熱膨張係数は小さい。このため、真空容器5
の熱膨張係数に近いことから急激なヒートショックを受
けても熱応力の発生が少なく、剥離しにくいと考えられ
る。
Since the porous expanded epoxy laminate contains a large amount of glass fiber, the porous expanded epoxy F
The thermal expansion coefficient of the RP layer 12 is small. Therefore, the vacuum container 5
Since it is close to the coefficient of thermal expansion, it is considered that thermal stress is less likely to occur even if it receives a sudden heat shock, and peeling is difficult.

【0014】さらに、多孔性膨張エポキシ積層板と可と
う性樹脂材料を組み合わせることにより、万が一多孔性
膨張エポキシ積層板に亀裂が発生しても、可とう性樹脂
材料により亀裂の先端が鈍化するために破壊靭性(Kl
c)が大幅に改善され、ヒートショックに対する耐亀裂
性を向上させることができる。
Further, by combining the porous expanded epoxy laminate and the flexible resin material, even if a crack occurs in the porous expanded epoxy laminate, the tip of the crack is blunted by the flexible resin material. Fracture toughness (Kl
c) is greatly improved, and the crack resistance against heat shock can be improved.

【0015】[0015]

【発明の効果】以上のように本発明によれば、真空容器
の外周に設けられる絶縁補強筒と真空容器の間に加熱に
より膨張する多孔性積層板とを有し、この多孔性部分に
樹脂材料を含浸させたので、クラックや剥離の発生を防
ぎ、信頼性を向上させることができる。
As described above, according to the present invention, the insulating reinforcing cylinder provided on the outer periphery of the vacuum container and the porous laminated plate which expands by heating are provided between the vacuum container, and the resin is provided in this porous portion. Since the material is impregnated, the occurrence of cracks and peeling can be prevented, and the reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す真空バルブの断面図。FIG. 1 is a sectional view of a vacuum valve showing an embodiment of the present invention.

【図2】代表的な真空バルブの断面図。FIG. 2 is a sectional view of a typical vacuum valve.

【符号の説明】[Explanation of symbols]

2…絶縁円筒、5…真空容器、10…絶縁補強筒、12…多
孔性膨張エポキシFRP層。
2 ... Insulation cylinder, 5 ... Vacuum container, 10 ... Insulation reinforcement cylinder, 12 ... Porous expanded epoxy FRP layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 敏夫 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 宮沢 孝幸 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Shimizu 1 Toshiba Town Fuchu, Tokyo Fuchu factory Ltd. (72) Inventor Takayuki Miyazawa 1 Toshiba Town Fuchu, Tokyo Toshiba Fuchu plant Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁容器の両端を気密封着して成る真空
容器内に接離可能な一対の電極を配設した真空バルブに
おいて、前記真空容器の外周に設けられる絶縁補強筒
と、この絶縁補強筒と前記真空容器との間に設けられ加
熱により膨張する多孔性積層板とを有し、この多孔性積
層板の多孔性部分に樹脂材料を含浸させたことを特徴と
する真空バルブ。
1. A vacuum valve having a pair of electrodes that can be brought into contact with and separated from each other in a vacuum container formed by hermetically sealing both ends of the insulating container. A vacuum valve, comprising: a porous laminate provided between a reinforcing cylinder and the vacuum container and expanding by heating; and a porous material of the porous laminate is impregnated with a resin material.
JP21201293A 1993-08-27 1993-08-27 Vacuum valve Pending JPH0765677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21201293A JPH0765677A (en) 1993-08-27 1993-08-27 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21201293A JPH0765677A (en) 1993-08-27 1993-08-27 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH0765677A true JPH0765677A (en) 1995-03-10

Family

ID=16615424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21201293A Pending JPH0765677A (en) 1993-08-27 1993-08-27 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH0765677A (en)

Similar Documents

Publication Publication Date Title
EP2407990A1 (en) Circuit-breaker pole part and method for producing such a pole part
JP4832352B2 (en) Resin mold vacuum valve
US4880947A (en) Vacuum interrupter with simplified enclosure and method of assembly
US4393286A (en) Vacuum circuit breakers
EP1983537B1 (en) Vacuum interrupter
KR101213631B1 (en) Pressure-sensitive elastomer layer in circuit-breaker poles insulated by solid material
JPH0765677A (en) Vacuum valve
GB1562092A (en) Electrically insulated leadthrough assembly
CN101425423A (en) Vacuum circuit breaker polar and manufacturing method thereof
JPH03147221A (en) Plastic mold vacuum valve
JPH0644875A (en) Resin mold vacuum bulb
JPH0548347Y2 (en)
JP4665348B2 (en) Gas sensor
CN114360962A (en) Electric switching device and electric system
US20190259554A1 (en) High-Voltage Switching Device and Switching System Comprising a High-Voltage Switching Device and Method for Manufacturing a High-Voltage Switching Device
JPS6321076Y2 (en)
JP3215181B2 (en) Vacuum valve
JP3347990B2 (en) Gas circuit breaker
JP2003203546A (en) Mold vacuum switching device
JP2585632B2 (en) Switchgear pressure vessel
JP4350328B2 (en) Power distribution device
JP2002075097A (en) Insulation spacer and its manufacturing method
JP4939924B2 (en) Electrical equipment connection device
JP2009048842A (en) Vacuum switch, and manufacturing method thereof
JPH04345721A (en) Vacuum interrupter